Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (3): 69-80.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0793
Previous Articles Next Articles
WANG Xin-lu(), WANG Meng(), ZHAI Wen-lei
Received:
2022-06-28
Online:
2023-03-26
Published:
2023-04-10
WANG Xin-lu, WANG Meng, ZHAI Wen-lei. Application of Lipidomics in Toxicological Studies[J]. Biotechnology Bulletin, 2023, 39(3): 69-80.
序号 No. | 样品类别 Sample type | 提取方式 Extraction method | 分析仪器 Analysis instrument | 毒性研究目标物 Toxicity research target | 参考文献 Reference |
---|---|---|---|---|---|
1 | 斑马鱼肝细胞 | 氯仿/甲醇(2:1,V/V)+0.01%丁羟甲苯 | UHPLC-Q Exactive-MS | 双酚A、双酚F、双酚3-氯-2-羟丙基醚 | [ |
2 | C57BL/6J鼠 | 甲基叔丁基醚/甲醇/水(10:3:3,V/V/V) | LC-MS/MS | 多溴联苯醚 | [ |
3 | 雄性昆明鼠血清 | 十七烷酸/甲醇(7:2,V/V) | GC-MS | 万古霉素 | [ |
4 | 太平洋白虾 | 氯仿-甲醇体系 | LC-MS/MS | 微囊藻素 | [ |
5 | PC12细胞 | 二氯甲烷/甲醇(1:2,V/V) | UHPLC-MS/MS | 多氯联苯(PCB153) | [ |
6 | 雌性ICR小鼠 | 氯仿/甲醇/水(3:4:1,V/V/V) | AP-MALDI-MS | 镉 | [ |
7 | 斑马鱼胚胎 | 氯仿/甲醇/水(2:1:1,V/V/V) | LC-QTOF-MS | 全氟己烷磺酸 | [ |
8 | 小鼠大脑皮层 | 甲醇/甲基叔丁基醚(3:10,V/V) | UHPLC-Q Exactive plus-MS | 雄黄 | [ |
9 | 小鼠脑组织 | 甲醇/甲基叔丁基醚(3:10,V/V) | LC-MS/MS | 多溴联苯醚(BDE-47) | [ |
10 | 小鼠脑组织、血液、粪便 | 甲醇/甲基叔丁基醚(1:5,V/V) | UHPLC-Q Exactive Focus-MS | 砷 | [ |
11 | 猕猴血清、脑组织 | 氯仿/甲醇/水(1:2:0.8,V/V/V) | LC-MS/MS | 七氟烷 | [ |
12 | Neuro-2a细胞 | 二氯甲烷/甲醇(1:2,V/V) | UHPLC-Q Exactive plus-MS | 吡虫啉、啶虫脒 | [ |
13 | 小鼠肝脏组织 | 氯仿/甲醇(2:1,V/V) | LC-MS/MS | 邻苯二甲酸酯 | [ |
14 | 人肝细胞 | 甲醇/甲基叔丁基醚 | UHPLC-Q Exactive-MS | 二甲基甲酰胺 | [ |
15 | HepG2细胞 | 甲醇/甲基叔丁基醚(1:3,V/V) | LC-QTOF-MS | 聚乙烯微塑料、多氯联苯 | [ |
16 | 小鼠肝脏组织 | 甲醇 | UPLC-ESI-Orbitrap-MS | 全氟己烷磺酸 | [ |
Table 1 Extraction and analysis methods of lipidomics in different studies
序号 No. | 样品类别 Sample type | 提取方式 Extraction method | 分析仪器 Analysis instrument | 毒性研究目标物 Toxicity research target | 参考文献 Reference |
---|---|---|---|---|---|
1 | 斑马鱼肝细胞 | 氯仿/甲醇(2:1,V/V)+0.01%丁羟甲苯 | UHPLC-Q Exactive-MS | 双酚A、双酚F、双酚3-氯-2-羟丙基醚 | [ |
2 | C57BL/6J鼠 | 甲基叔丁基醚/甲醇/水(10:3:3,V/V/V) | LC-MS/MS | 多溴联苯醚 | [ |
3 | 雄性昆明鼠血清 | 十七烷酸/甲醇(7:2,V/V) | GC-MS | 万古霉素 | [ |
4 | 太平洋白虾 | 氯仿-甲醇体系 | LC-MS/MS | 微囊藻素 | [ |
5 | PC12细胞 | 二氯甲烷/甲醇(1:2,V/V) | UHPLC-MS/MS | 多氯联苯(PCB153) | [ |
6 | 雌性ICR小鼠 | 氯仿/甲醇/水(3:4:1,V/V/V) | AP-MALDI-MS | 镉 | [ |
7 | 斑马鱼胚胎 | 氯仿/甲醇/水(2:1:1,V/V/V) | LC-QTOF-MS | 全氟己烷磺酸 | [ |
8 | 小鼠大脑皮层 | 甲醇/甲基叔丁基醚(3:10,V/V) | UHPLC-Q Exactive plus-MS | 雄黄 | [ |
9 | 小鼠脑组织 | 甲醇/甲基叔丁基醚(3:10,V/V) | LC-MS/MS | 多溴联苯醚(BDE-47) | [ |
10 | 小鼠脑组织、血液、粪便 | 甲醇/甲基叔丁基醚(1:5,V/V) | UHPLC-Q Exactive Focus-MS | 砷 | [ |
11 | 猕猴血清、脑组织 | 氯仿/甲醇/水(1:2:0.8,V/V/V) | LC-MS/MS | 七氟烷 | [ |
12 | Neuro-2a细胞 | 二氯甲烷/甲醇(1:2,V/V) | UHPLC-Q Exactive plus-MS | 吡虫啉、啶虫脒 | [ |
13 | 小鼠肝脏组织 | 氯仿/甲醇(2:1,V/V) | LC-MS/MS | 邻苯二甲酸酯 | [ |
14 | 人肝细胞 | 甲醇/甲基叔丁基醚 | UHPLC-Q Exactive-MS | 二甲基甲酰胺 | [ |
15 | HepG2细胞 | 甲醇/甲基叔丁基醚(1:3,V/V) | LC-QTOF-MS | 聚乙烯微塑料、多氯联苯 | [ |
16 | 小鼠肝脏组织 | 甲醇 | UPLC-ESI-Orbitrap-MS | 全氟己烷磺酸 | [ |
序号 No. | 研究对象 Research object | 毒性作用类型 Toxicity effect category | 差异脂质 Differential lipids | 参考文献 Reference |
---|---|---|---|---|
1 | 小鼠脑组织 | 神经毒性 | AcCa(14:0)、Cer(d18:1/21:0)、DG(16:0/16:0)等 | [ |
2 | 小鼠脑组织、血液、粪便 | 神经毒性 | PE(18:0/0:0)、PC(18:1/22:6)、PC(18:0/22:5)等 | [ |
3 | 猕猴血清、脑组织 | 神经毒性 | 16:1 LPG、18:0-20:4 PC、18:0 LPI等 | [ |
4 | Neuro-2a细胞 | 神经毒性 | MePC(33:0e)、PC(40:7)、ChE(20:4)等 | [ |
5 | 小鼠肝脏组织 | 肝脏毒性 | DG(16:0/16:0)、DG(16:0/20:4)、TG(16:0/18:2/18:2)等 | [ |
6 | 人肝细胞 | 肝脏毒性 | TG(18:1/22:6/22:6)、TG(20:2/22:6/22:6)、PE(18:0/22:6)等 | [ |
7 | HepG2细胞 | 肝脏毒性 | Cer(42:3)、HexosylCer(32:1)、SM(32:1)等 | [ |
8 | 小鼠肝脏组织 | 肝脏毒性 | LPC18:1、PI(18:0/22:5)、PC(18:0/20:2)等 | [ |
9 | ZFL细胞(斑马鱼肝脏细胞) | 肝脏毒性 | LPE(18:1)、LPC(18:1)等 | [ |
10 | 巨噬细胞 | 免疫毒性 | SM(d18:0/16:0)、Cer(d18:1/20:0)、PC(20:1/14:1)等 | [ |
11 | 人淋巴细胞 | 免疫毒性 | TG(16:0/16:1/18:2)、DG(18:2/22:6)、PC(P-14:0/24:4)等 | [ |
12 | 成年雄性大鼠 | 免疫毒性 | PGJ2、PGF2α、PGE2等 | [ |
13 | DU145前列腺癌细胞 | 内分泌干扰毒性 | PA(32:0)、LacCer(d18:1/24:0)、CL(68:2)等 | [ |
14 | MDA-MB-231细胞、雌性裸鼠 | 内分泌干扰毒性 | PC(36:1)、DG(18:1/18:2)、PE(18:0/20:4)等 | [ |
15 | MCF-7细胞 | 内分泌干扰毒性 | SM(16:0)、Lyso PC(16:0)、PC(32:1)等 | [ |
Table 2 Differential lipids screened out by lipidomics in toxicology researches
序号 No. | 研究对象 Research object | 毒性作用类型 Toxicity effect category | 差异脂质 Differential lipids | 参考文献 Reference |
---|---|---|---|---|
1 | 小鼠脑组织 | 神经毒性 | AcCa(14:0)、Cer(d18:1/21:0)、DG(16:0/16:0)等 | [ |
2 | 小鼠脑组织、血液、粪便 | 神经毒性 | PE(18:0/0:0)、PC(18:1/22:6)、PC(18:0/22:5)等 | [ |
3 | 猕猴血清、脑组织 | 神经毒性 | 16:1 LPG、18:0-20:4 PC、18:0 LPI等 | [ |
4 | Neuro-2a细胞 | 神经毒性 | MePC(33:0e)、PC(40:7)、ChE(20:4)等 | [ |
5 | 小鼠肝脏组织 | 肝脏毒性 | DG(16:0/16:0)、DG(16:0/20:4)、TG(16:0/18:2/18:2)等 | [ |
6 | 人肝细胞 | 肝脏毒性 | TG(18:1/22:6/22:6)、TG(20:2/22:6/22:6)、PE(18:0/22:6)等 | [ |
7 | HepG2细胞 | 肝脏毒性 | Cer(42:3)、HexosylCer(32:1)、SM(32:1)等 | [ |
8 | 小鼠肝脏组织 | 肝脏毒性 | LPC18:1、PI(18:0/22:5)、PC(18:0/20:2)等 | [ |
9 | ZFL细胞(斑马鱼肝脏细胞) | 肝脏毒性 | LPE(18:1)、LPC(18:1)等 | [ |
10 | 巨噬细胞 | 免疫毒性 | SM(d18:0/16:0)、Cer(d18:1/20:0)、PC(20:1/14:1)等 | [ |
11 | 人淋巴细胞 | 免疫毒性 | TG(16:0/16:1/18:2)、DG(18:2/22:6)、PC(P-14:0/24:4)等 | [ |
12 | 成年雄性大鼠 | 免疫毒性 | PGJ2、PGF2α、PGE2等 | [ |
13 | DU145前列腺癌细胞 | 内分泌干扰毒性 | PA(32:0)、LacCer(d18:1/24:0)、CL(68:2)等 | [ |
14 | MDA-MB-231细胞、雌性裸鼠 | 内分泌干扰毒性 | PC(36:1)、DG(18:1/18:2)、PE(18:0/20:4)等 | [ |
15 | MCF-7细胞 | 内分泌干扰毒性 | SM(16:0)、Lyso PC(16:0)、PC(32:1)等 | [ |
[1] | Yang S, Qiao B, Lu SH, et al. Comparative lipidomics analysis of cellular development and apoptosis in two Taxus cell lines[J]. Biochim Biophys Acta, 2007, 1771(5): 600-612. |
[2] |
Wang XM. Lipid signaling[J]. Curr Opin Plant Biol, 2004, 7(3): 329-336.
pmid: 15134755 |
[3] |
Baumruker T, Bornancin F, Billich A. The role of sphingosine and ceramide kinases in inflammatory responses[J]. Immunol Lett, 2005, 96(2): 175-185.
pmid: 15585321 |
[4] |
Lock EA, Reed CJ, Kinsey GR, et al. Caspase-dependent and-independent induction of phosphatidylserine externalization during apoptosis in human renal carcinoma Cak(1)-1 and A-498 cells[J]. Toxicology, 2007, 229(1-2): 79-90.
doi: 10.1016/j.tox.2006.10.003 URL |
[5] |
Ruscica M, Penson PE, Ferri N, et al. Impact of nutraceuticals on markers of systemic inflammation: potential relevance to cardiovascular diseases - A position paper from the International Lipid Expert Panel(ILEP)[J]. Prog Cardiovasc Dis, 2021, 67: 40-52.
doi: 10.1016/j.pcad.2021.06.010 URL |
[6] |
Han MJ, Choung SY. Codonopsis lanceolata ameliorates sarcopenic obesity via recovering PI3K/Akt pathway and lipid metabolism in skeletal muscle[J]. Phytomedicine, 2022, 96: 153877.
doi: 10.1016/j.phymed.2021.153877 URL |
[7] |
Rodríguez-Calvo R, Girona J, Rodríguez M, et al. Fatty acid binding protein 4(FABP4)as a potential biomarker reflecting myocardial lipid storage in type 2 diabetes[J]. Metabolism, 2019, 96: 12-21.
doi: 10.1016/j.metabol.2019.04.007 URL |
[8] |
van der Linden RJ, Reus LM, de Witte W, et al. Genetic overlap between Alzheimer's disease and blood lipid levels[J]. Neurobiol Aging, 2021, 108: 189-195.
doi: 10.1016/j.neurobiolaging.2021.06.019 pmid: 34340865 |
[9] |
Parrales A, Iwakuma T. p53 as a regulator of lipid metabolism in cancer[J]. Int J Mol Sci, 2016, 17(12): 2074.
doi: 10.3390/ijms17122074 URL |
[10] |
Han XL, Gross RW. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics[J]. J Lipid Res, 2003, 44(6): 1071-1079.
doi: 10.1194/jlr.R300004-JLR200 pmid: 12671038 |
[11] | 王泓午, 赵紫薇, 曹姗, 等. 中国脂质组学研究现状的文献计量学分析[J]. 天津中医药, 2015, 32(2): 76-79. |
Wang HW, Zhao ZW, Cao S, et al. The bibliometric manalysis of lipidomics research in China[J]. Tianjin J Tradit Chin Med, 2015, 32(2): 76-79. | |
[12] |
Wang XL, Qiu J, Xu YY, et al. Integrated non-targeted lipidomics and metabolomics analyses for fluctuations of neonicotinoids imidacloprid and acetamiprid on Neuro-2a cells[J]. Environ Pollut, 2021, 284: 117327.
doi: 10.1016/j.envpol.2021.117327 URL |
[13] |
Tham YK, Bernardo BC, Huynh K, et al. Lipidomic profiles of the heart and circulation in response to exercise versus cardiac pathology: a resource of potential biomarkers and drug targets[J]. Cell Rep, 2018, 24(10): 2757-2772.
doi: S2211-1247(18)31271-3 pmid: 30184508 |
[14] |
Saito K. Application of comprehensive lipidomics to biomarker research on adverse drug reactions[J]. Drug Metab Pharmacokinet, 2021, 37: 100377.
doi: 10.1016/j.dmpk.2020.100377 URL |
[15] |
Luque de Castro MD, Quiles-Zafra R. Lipidomics: an omics discipline with a key role in nutrition[J]. Talanta, 2020, 219: 121197.
doi: 10.1016/j.talanta.2020.121197 URL |
[16] | 蔡潭溪, 刘平生, 杨福全, 等. 脂质组学研究进展[J]. 生物化学与生物物理进展, 2010, 37(2): 121-128. |
Cai TX, Liu PS, Yang FQ, et al. The research advances in the field of lipidomics[J]. Prog Biochem Biophys, 2010, 37(2): 121-128.
doi: 10.3724/SP.J.1206.2009.00479 URL |
|
[17] |
宋诗瑶, 白玉, 刘虎威. 脂质组学分析中样品前处理技术的研究进展[J]. 色谱, 2020, 38(1): 66-73.
doi: 10.3724/SP.J.1123.2019.07011 |
Song SY, Bai Y, Liu HW. Advances in the development of the sample preparation techniques in lipidomics[J]. Chin J Chromatogr, 2020, 38(1): 66-73.
doi: 10.3724/SP.J.1123.2019.07011 |
|
[18] |
Folch J, Lees M, SLOANE STANLEY GH. A simple method for the isolation and purification of total lipides from animal tissues[J]. J Biol Chem, 1957, 226(1): 497-509.
pmid: 13428781 |
[19] |
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification[J]. Can J Biochem Physiol, 1959, 37(8): 911-917.
doi: 10.1139/o59-099 pmid: 13671378 |
[20] |
Chen IS, Shen CSJ, Sheppard AJ. Comparison of methylene chloride and chloroform for the extraction of fats from food products[J]. J Am Oil Chem Soc, 1981, 58(5): 599-601.
doi: 10.1007/BF02672373 URL |
[21] |
Matyash V, Liebisch G, Kurzchalia TV, et al. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics[J]. J Lipid Res, 2008, 49(5): 1137-1146.
doi: 10.1194/jlr.D700041-JLR200 pmid: 18281723 |
[22] |
Calderón C, Sanwald C, Schlotterbeck J, et al. Comparison of simple monophasic versus classical biphasic extraction protocols for comprehensive UHPLC-MS/MS lipidomic analysis of Hela cells[J]. Anal Chim Acta, 2019, 1048: 66-74.
doi: S0003-2670(18)31265-0 pmid: 30598159 |
[23] |
Jin WB, Yang JN, Liu DY, et al. Determination of inflammation-related lipids in depressive rats by on-line supercritical fluid extraction-supercritical fluid chromatography-tandem mass spectrometry[J]. J Pharm Biomed Anal, 2021, 203: 114210.
doi: 10.1016/j.jpba.2021.114210 URL |
[24] |
Mao GW, Qu F, St Croix CM, et al. Mitochondrial redox opto-lipidomics reveals mono-oxygenated cardiolipins as pro-apoptotic death signals[J]. ACS Chem Biol, 2016, 11(2): 530-540.
doi: 10.1021/acschembio.5b00737 pmid: 26697918 |
[25] | 胡聪, 吴琳静, 熊印华, 等. 脂质组学在肝脏疾病中的研究进展[J]. 中国药理学通报, 2021, 37(1): 6-12. |
Hu C, Wu LJ, Xiong YH, et al. Research progress of lipomics in liver diseases[J]. Chin Pharmacol Bull, 2021, 37(1): 6-12. | |
[26] | 蔡教英, 欧阳克蕙, 上官新晨, 等. 脂质代谢组学的研究进展[J]. 动物营养学报, 2011, 23(11): 1870-1876. |
Cai JY, Ouyang KH, Shangguan XC, et al. Recent advances in lipidomics[J]. Chin J Animal Nutr, 2011, 23(11): 1870-1876. | |
[27] |
Fuchs B, Süss R, Teuber K, et al. Lipid analysis by thin-layer chromatography—a review of the current state[J]. J Chromatogr A, 2011, 1218(19): 2754-2774.
doi: 10.1016/j.chroma.2010.11.066 URL |
[28] |
Goto-Inoue N, Hayasaka T, Taki T, et al. A new lipidomics approach by thin-layer chromatography-blot-matrix-assisted laser desorption/ionization imaging mass spectrometry for analyzing detailed patterns of phospholipid molecular species[J]. J Chromatogr A, 2009, 1216(42): 7096-7101.
doi: 10.1016/j.chroma.2009.08.056 pmid: 19740470 |
[29] |
Wang XL, Xu YY, Song X, et al. Analysis of glycerophospholipid metabolism after exposure to PCB153 in PC12 cells through targeted lipidomics by UHPLC-MS/MS[J]. Ecotoxicol Environ Saf, 2019, 169: 120-127.
doi: 10.1016/j.ecoenv.2018.11.006 URL |
[30] |
Abinaya B, Waseem M, Kashif M, et al. Lipidomics: an excellent tool for chronic disease detection[J]. Curr Res Transl Med, 2022, 70(4): 103346.
doi: 10.1016/j.retram.2022.103346 URL |
[31] |
Liu ZQ, Zhao MT, Wang XW, et al. Investigation of oyster Crassostrea gigas lipid profile from three sea areas of China based on non-targeted lipidomics for their geographic region traceability[J]. Food Chem, 2022, 386: 132748.
doi: 10.1016/j.foodchem.2022.132748 URL |
[32] |
Wang KW, Xu L, Wang X, et al. Discrimination of beef from different origins based on lipidomics: a comparison study of DART-QTOF and LC-ESI-QTOF[J]. LWT, 2021, 149: 111838.
doi: 10.1016/j.lwt.2021.111838 URL |
[33] |
Shi T, Wu GC, Jin QZ, et al. Detection of camellia oil adulteration using chemometrics based on fatty acids GC fingerprints and phytosterols GC-MS fingerprints[J]. Food Chem, 2021, 352: 129422.
doi: 10.1016/j.foodchem.2021.129422 URL |
[34] |
Zhang SM, Wang HB, Zhu MJ. A sensitive GC/MS detection method for analyzing microbial metabolites short chain fatty acids in fecal and serum samples[J]. Talanta, 2019, 196: 249-254.
doi: S0039-9140(18)31316-X pmid: 30683360 |
[35] | 李石磊, 张阳阳, 关明, 等. MALDIMSI在脂质组学研究中的应用[J]. 分析测试学报, 2017, 36(2): 170-177. |
Li SL, Zhang YY, Guan M, et al. Application of MALDI MSI in lipidomics research[J]. J Instrum Anal, 2017, 36(2): 170-177. | |
[36] |
Manikandan M, Wu HF. Bio-mimicked gold nanoparticles with complex fetal bovine serum as sensors for single cell MALDI MS of cancer cell and cancer stem cell[J]. Sens Actuat B Chem, 2016, 231: 154-165.
doi: 10.1016/j.snb.2016.02.060 URL |
[37] |
Zeng T, Zhang R, Chen YY, et al. In situ localization of lipids on mouse kidney tissues with acute cadmium toxicity using atmospheric pressure-MALDI mass spectrometry imaging[J]. Talanta, 2022, 245: 123466.
doi: 10.1016/j.talanta.2022.123466 URL |
[38] |
Liu HX, Wang SQ, Lin JM, et al. Investigation of the lipidomic changes in differentiated glioblastoma cells after drug treatment using MALDI-MS[J]. Talanta, 2021, 233: 122570.
doi: 10.1016/j.talanta.2021.122570 URL |
[39] |
Buszewska-Forajta M, Pomastowski P, Monedeiro F, et al. New approach in determination of urinary diagnostic markers for prostate cancer by MALDI-TOF/MS[J]. Talanta, 2022, 236: 122843.
doi: 10.1016/j.talanta.2021.122843 URL |
[40] |
Rocha B, Cillero-Pastor B, Ruiz-Romero C, et al. Identification of a distinct lipidomic profile in the osteoarthritic synovial membrane by mass spectrometry imaging[J]. Osteoarthritis Cartilage, 2021, 29(5): 750-761.
doi: 10.1016/j.joca.2020.12.025 URL |
[41] |
Chen YY, Wang T, Xie PS, et al. Mass spectrometry imaging revealed alterations of lipid metabolites in multicellular tumor spheroids in response to hydroxychloroquine[J]. Anal Chim Acta, 2021, 1184: 339011.
doi: 10.1016/j.aca.2021.339011 URL |
[42] |
Marqueño A, Pérez-Albaladejo E, Denslow ND, et al. Untargeted lipidomics reveals the toxicity of bisphenol A bis(3-chloro-2- hydroxypropyl)ether and bisphenols A and F in zebrafish liver cells[J]. Ecotoxicol Environ Saf, 2021, 219: 112311.
doi: 10.1016/j.ecoenv.2021.112311 URL |
[43] |
Yang CX, Wei JT, Cao GD, et al. Lipid metabolism dysfunction and toxicity of BDE-47 exposure in white adipose tissue revealed by the integration of lipidomics and metabolomics[J]. Sci Total Environ, 2022, 806(Pt 1): 150350.
doi: 10.1016/j.scitotenv.2021.150350 URL |
[44] |
Cui CM, Zhu L, Wang Q, et al. A GC-MS-based untargeted metabolomics approach for comprehensive metabolic profiling of vancomycin-induced toxicity in mice[J]. Heliyon, 2022, 8(7): e09869.
doi: 10.1016/j.heliyon.2022.e09869 URL |
[45] |
Duan YF, Zeng SM, Lu ZJ, et al. Responses of lipid metabolism and lipidomics in the hepatopancreas of Pacific white shrimp Litopenaeus vannamei to microcystin-LR exposure[J]. Sci Total Environ, 2022, 820: 153245.
doi: 10.1016/j.scitotenv.2022.153245 URL |
[46] |
Zeng T, Guo WJ, Jiang LL, et al. Integration of omics analysis and atmospheric pressure MALDI mass spectrometry imaging reveals the cadmium toxicity on female ICR mouse[J]. Sci Total Environ, 2021, 801: 149803.
doi: 10.1016/j.scitotenv.2021.149803 URL |
[47] |
Xu MM, Legradi J, Leonards P. Using comprehensive lipid profiling to study effects of PFHxS during different stages of early zebrafish development[J]. Sci Total Environ, 2022, 808: 151739.
doi: 10.1016/j.scitotenv.2021.151739 URL |
[48] |
Zhang WW, Huo TG, Li AH, et al. Identification of neurotoxicity markers induced by realgar exposure in the mouse cerebral cortex using lipidomics[J]. J Hazard Mater, 2020, 389: 121567.
doi: 10.1016/j.jhazmat.2019.121567 URL |
[49] |
Ji FF, Sreenivasmurthy SG, Wei JT, et al. Study of BDE-47 induced Parkinson's disease-like metabolic changes in C57BL/6 mice by integrated metabolomic, lipidomic and proteomic analysis[J]. J Hazard Mater, 2019, 378: 120738.
doi: 10.1016/j.jhazmat.2019.06.015 URL |
[50] |
Wang CF, Deng HY, Wang DB, et al. Changes in metabolomics and lipidomics in brain tissue and their correlations with the gut microbiome after chronic food-derived arsenic exposure in mice[J]. Ecotoxicol Environ Saf, 2021, 228: 112935.
doi: 10.1016/j.ecoenv.2021.112935 URL |
[51] |
Wang CY, Liu F, Frisch-Daiello JL, et al. Lipidomics reveals a systemic energy deficient state that precedes neurotoxicity in neonatal monkeys after sevoflurane exposure[J]. Anal Chim Acta, 2018, 1037: 87-96.
doi: S0003-2670(17)31330-2 pmid: 30292318 |
[52] |
Yang Y, Sun FJ, Chen HJ, et al. Postnatal exposure to DINP was associated with greater alterations of lipidomic markers for hepatic steatosis than DEHP in postweaning mice[J]. Sci Total Environ, 2021, 758: 143631.
doi: 10.1016/j.scitotenv.2020.143631 URL |
[53] |
Xu L, Zhao QW, Luo J, et al. Integration of proteomics, lipidomics, and metabolomics reveals novel metabolic mechanisms underlying N, N-dimethylformamide induced hepatotoxicity[J]. Ecotoxicol Environ Saf, 2020, 205: 111166.
doi: 10.1016/j.ecoenv.2020.111166 URL |
[54] |
Menéndez-Pedriza A, Jaumot J, Bedia C. Lipidomic analysis of single and combined effects of polyethylene microplastics and polychlorinated biphenyls on human hepatoma cells[J]. J Hazard Mater, 2022, 421: 126777.
doi: 10.1016/j.jhazmat.2021.126777 URL |
[55] |
Li X, Li T, Wang ZP, et al. Distribution of perfluorooctane sulfonate in mice and its effect on liver lipidomic[J]. Talanta, 2021, 226: 122150.
doi: 10.1016/j.talanta.2021.122150 URL |
[56] | 韩运祺, 肖云峰, 钱新宇, 等. 药物毒理学的研究进展[J]. 中国药理学与毒理学杂志, 2019, 33(10):835. |
Han YQ, Xiao YF, Qian XY, et al. Research advances of drug toxicology[J]. Chin J Pharmacol Toxicol, 2019, 33(10):835. | |
[57] | 耿柠波, 任晓倩, 张海军, 等. 蛋白质组学在环境毒理学中的研究进展[J]. 生态毒理学报, 2020, 15(4): 88-98. |
Geng NB, Ren XQ, Zhang HJ, et al. A review on the application of proteomic approaches in environmental toxicology[J]. Asian J Ecotoxicol, 2020, 15(4): 88-98. | |
[58] |
Zhao C, Tang Z, Yan JC, et al. Bisphenol S exposure modulate macrophage phenotype as defined by cytokines profiling, global metabolomics and lipidomics analysis[J]. Sci Total Environ, 2017, 592: 357-365.
doi: 10.1016/j.scitotenv.2017.03.035 URL |
[59] |
Li R, Guo C, Lin X, et al. Integrative omics analyses uncover the mechanism underlying the immunotoxicity of perfluorooctanesulfonate in human lymphocytes[J]. Chemosphere, 2020, 256: 127062.
doi: 10.1016/j.chemosphere.2020.127062 URL |
[60] | Yang X, Chen WY, Gong Y, et al. A target lipidomics approach to investigate the acute inflammatory irritation induced by indolealkylamines from Chansu water fraction in rats[J]. Chin J Nat Med, 2021, 19(11): 856-867. |
[61] |
Wei JT, Li XN, Xiang L, et al. Metabolomics and lipidomics study unveils the impact of polybrominated diphenyl ether-47 on breast cancer mice[J]. J Hazard Mater, 2020, 390: 121451.
doi: 10.1016/j.jhazmat.2019.121451 URL |
[62] |
Jungnickel H, Potratz S, Baumann S, et al. Identification of lipidomic biomarkers for coexposure to subtoxic doses of benzo[a]Pyrene and cadmium: the toxicological cascade biomarker approach[J]. Environ Sci Technol, 2014, 48(17): 10423-10431.
doi: 10.1021/es502419w pmid: 25093272 |
[63] |
Dai CS, Tang SS, Biao X, et al. Colistin induced peripheral neurotoxicity involves mitochondrial dysfunction and oxidative stress in mice[J]. Mol Biol Rep, 2019, 46(2): 1963-1972.
doi: 10.1007/s11033-019-04646-5 pmid: 30783935 |
[64] |
Cristaldi A, Fiore M, Oliveri Conti G, et al. Possible association between PM 2.5 and neurodegenerative diseases: a systematic review[J]. Environ Res, 2022, 208: 112581.
doi: 10.1016/j.envres.2021.112581 URL |
[65] |
Piomelli D, Astarita G, Rapaka R. A neuroscientist's guide to lipidomics[J]. Nat Rev Neurosci, 2007, 8(10): 743-754.
pmid: 17882252 |
[66] |
Kim TH, Kim YW, Shin SM, et al. Synergistic hepatotoxicity of N, N-dimethylformamide with carbon tetrachloride in association with endoplasmic Reticulum stress[J]. Chem Biol Interact, 2010, 184(3): 492-501.
doi: 10.1016/j.cbi.2010.01.029 URL |
[67] |
Chen MY, Bai MR, Yi YD, et al. Upregulation of hepatic CD36 via glucocorticoid receptor activation contributes to dexamethasone-induced liver lipid metabolism disorder in mice[J]. Toxicol Lett, 2022, 363: 1-10.
doi: 10.1016/j.toxlet.2022.05.003 pmid: 35589016 |
[68] | Yang F, Dai YY, Min CT, et al. Neonatal overfeeding induced glucocorticoid overexposure accelerates hepatic lipogenesis in male rats[J]. Nutr Metab(Lond), 2018, 15: 30. |
[69] |
Fai Tse WK, Li JW, Kwan Tse AC, et al. Fatty liver disease induced by perfluorooctane sulfonate: novel insight from transcriptome analysis[J]. Chemosphere, 2016, 159: 166-177.
doi: S0045-6535(16)30707-X pmid: 27289203 |
[70] |
Kataria A, Trachtman H, Malaga-Dieguez L, et al. Association between perfluoroalkyl acids and kidney function in a cross-sectional study of adolescents[J]. Environ Health, 2015, 14: 89.
doi: 10.1186/s12940-015-0077-9 URL |
[71] |
Lai KP, Lee JCY, Wan HT, et al. Effects of in utero PFOS exposure on transcriptome, lipidome, and function of mouse testis[J]. Environ Sci Technol, 2017, 51(15): 8782-8794.
doi: 10.1021/acs.est.7b02102 pmid: 28654245 |
[72] | 刘嫄淑, 王振涛. 免疫反应在心血管疾病中的作用及中药干预研究进展[J]. 中医临床研究, 2022, 14(13): 137-140. |
Liu YS, Wang ZT. A review on the role of immune response in cardiovascular disease and TCM material intervention[J]. Clin J Chin Med, 2022, 14(13): 137-140. | |
[73] | 杨超超, 潘鹏涛, 谭婷, 等. 内分泌干扰物对鱼类性腺干扰的分子作用机制[J]. 延安大学学报: 自然科学版, 2021, 40(3): 27-32. |
Yang CC, Pan PT, Tan T, et al. Molecular mechanism of endocrine disruptors interfering with fish gonads[J]. J Yan’an Univ Nat Sci Ed, 2021, 40(3): 27-32. | |
[74] |
Kajta M, Wójtowicz AK. Impact of endocrine-disrupting chemicals on neural development and the onset of neurological disorders[J]. Pharmacol Rep, 2013, 65(6): 1632-1639.
pmid: 24553011 |
[75] |
Jeng HA. Exposure to endocrine disrupting chemicals and male reproductive health[J]. Front Public Health, 2014, 2: 55.
doi: 10.3389/fpubh.2014.00055 pmid: 24926476 |
[76] |
Bedia C, Dalmau N, Jaumot J, et al. Phenotypic malignant changes and untargeted lipidomic analysis of long-term exposed prostate cancer cells to endocrine disruptors[J]. Environ Res, 2015, 140: 18-31.
doi: 10.1016/j.envres.2015.03.014 pmid: 25817993 |
[77] | 李欣慧, 赵飞, 徐倩茹, 等. 内分泌干扰物对机体脂质代谢的影响及其机制研究进展[J]. 生态毒理学报, 2021, 16(3): 52-65. |
Li XH, Zhao F, Xu QR, et al. Research progress on effects of endocrine disrupting chemicals on lipid metabolism of organisms and underlying mechanisms[J]. Asian J Ecotoxicol, 2021, 16(3): 52-65. |
[1] | TANG Ying, HUANG Jia, DENG Zhan-rui, YANG Xiao-nan. Product Analysis of Degrading Aflatoxin B1 by a Strain Bacillus subtilis [J]. Biotechnology Bulletin, 2021, 37(12): 82-90. |
[2] | GU Han-qi, SHAO Ling-zhi, LIU Ran, LIU Xiao-guang, LI Ling, LIU Qian, LI Jie, ZHANG Ya-li. Lipidomics Analysis of Saccharomyces cerevisiae with Tolerance to Phenolic Inhibitors [J]. Biotechnology Bulletin, 2021, 37(1): 15-23. |
[3] | TIAN He, SHUI Guang-hou. Advances in Analysis Methods of Mass Spectrometry-based Metabolomics [J]. Biotechnology Bulletin, 2021, 37(1): 24-32. |
[4] | ZHANG Miao, SUN Xiang-rui, XU Chun-ming. Research Progress of Approaches in Single Cell RNA Sequencing Data Analysis [J]. Biotechnology Bulletin, 2021, 37(1): 52-59. |
[5] | Du Xiuxiu, Fang Zhijia, Chen Zhongxiang, Kuang Xin, Huang Zhiwei. Rapid Quantitation and Dynamic Accumulation Analysis of Neutral Lipids in Yeast [J]. Biotechnology Bulletin, 2014, 0(8): 208-214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||