Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (4): 103-113.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1270
Previous Articles Next Articles
ZHAO Sai-sai1(), ZHANG Xiao-dan1, JIA Xiao-yan1, TAO Da-wei1, LIU Ke-yu1, NING Xi-bin1,2,3()
Received:
2022-10-17
Online:
2023-04-26
Published:
2023-05-16
ZHAO Sai-sai, ZHANG Xiao-dan, JIA Xiao-yan, TAO Da-wei, LIU Ke-yu, NING Xi-bin. Investigation on the Complex Mutagenesis Selection of High-yield Nitrate Reductase Strain Staphylococcus simulans ZSJ6 and Its Enzymatic Properties[J]. Biotechnology Bulletin, 2023, 39(4): 103-113.
菌株编号Strain No. | 酶活力Enzyme activity/(U·mg-1 protein) |
---|---|
UV1-3 | 201.33 |
UV1-5 | 191.73 |
UV1-6 | 175.64 |
UV1-15 | 366.42 |
UV1-21 | 275.12 |
UV2-7 | 288.01 |
UV2-11 | 264.37 |
UV2-14 | 305.47 |
UV2-15 | 318.25 |
UV2-18 | 187.72 |
Table 1 Screening results of UV mutagenic strains
菌株编号Strain No. | 酶活力Enzyme activity/(U·mg-1 protein) |
---|---|
UV1-3 | 201.33 |
UV1-5 | 191.73 |
UV1-6 | 175.64 |
UV1-15 | 366.42 |
UV1-21 | 275.12 |
UV2-7 | 288.01 |
UV2-11 | 264.37 |
UV2-14 | 305.47 |
UV2-15 | 318.25 |
UV2-18 | 187.72 |
菌株编号Strain No. | 酶活力Enzyme activity/(U·mg-1 protein) |
---|---|
MW1-1 | 370.39 |
MW1-9 | 394.12 |
MW1-13 | 401.93 |
MW1-14 | 383.56 |
MW1-17 | 451.06 |
MW2-3 | 377.64 |
MW2-7 | 385.17 |
MW2-8 | 396.72 |
MW2-11 | 421.38 |
MW2-18 | 435.76 |
Table 2 Screening results of microwave mutagenic strains
菌株编号Strain No. | 酶活力Enzyme activity/(U·mg-1 protein) |
---|---|
MW1-1 | 370.39 |
MW1-9 | 394.12 |
MW1-13 | 401.93 |
MW1-14 | 383.56 |
MW1-17 | 451.06 |
MW2-3 | 377.64 |
MW2-7 | 385.17 |
MW2-8 | 396.72 |
MW2-11 | 421.38 |
MW2-18 | 435.76 |
菌株编号Strain No. | 酶活力Enzyme activity/(U·mg-1 protein) |
---|---|
LiCl2 | 483.52 |
LiCl4 | 505.21 |
LiCl5 | 476.32 |
LiCl7 | 490.18 |
LiCl11 | 511.97 |
LiCl12 | 489.15 |
LiCl16 | 521.75 |
LiCl17 | 518.72 |
LiCl20 | 463.74 |
LiCl21 | 470.19 |
Table 3 Screening results of mutagenic strains induced by lithium chloride
菌株编号Strain No. | 酶活力Enzyme activity/(U·mg-1 protein) |
---|---|
LiCl2 | 483.52 |
LiCl4 | 505.21 |
LiCl5 | 476.32 |
LiCl7 | 490.18 |
LiCl11 | 511.97 |
LiCl12 | 489.15 |
LiCl16 | 521.75 |
LiCl17 | 518.72 |
LiCl20 | 463.74 |
LiCl21 | 470.19 |
菌株编号Strain No. | 酶活力Enzyme activity/(U·mg-1 protein) |
---|---|
ZSJ1 | 473.36 |
ZSJ4 | 485.12 |
ZSJ6 | 603.29 |
ZSJ17 | 501.12 |
ZSJ18 | 556.71 |
ZSJ19 | 578.83 |
ZSJ23 | 511.97 |
ZSJ26 | 529.31 |
ZSJ30 | 536.75 |
ZSJ35 | 562.33 |
Table 4 Screening results of compound mutagenic strains
菌株编号Strain No. | 酶活力Enzyme activity/(U·mg-1 protein) |
---|---|
ZSJ1 | 473.36 |
ZSJ4 | 485.12 |
ZSJ6 | 603.29 |
ZSJ17 | 501.12 |
ZSJ18 | 556.71 |
ZSJ19 | 578.83 |
ZSJ23 | 511.97 |
ZSJ26 | 529.31 |
ZSJ30 | 536.75 |
ZSJ35 | 562.33 |
传代数 Passage number | 酶活力 Enzyme activity/(U·mg-1protein) | 显著性 Significant level |
---|---|---|
1 | 603.29±0.01 | P>0.05 |
2 | 604.88±0.02 | |
3 | 602.19±0.03 | |
4 | 604.18±0.02 | |
5 | 599.56±0.02 | |
6 | 600.12±0.01 | |
7 | 603.73±0.02 | |
8 | 601.17±0.01 |
Table 5 The activity of nitrate reductase produced by mutant ZSJ6 in each generation
传代数 Passage number | 酶活力 Enzyme activity/(U·mg-1protein) | 显著性 Significant level |
---|---|---|
1 | 603.29±0.01 | P>0.05 |
2 | 604.88±0.02 | |
3 | 602.19±0.03 | |
4 | 604.18±0.02 | |
5 | 599.56±0.02 | |
6 | 600.12±0.01 | |
7 | 603.73±0.02 | |
8 | 601.17±0.01 |
Fig. 9 Effects of metal ions on the nitrate reductase activity * indicates a significant difference from the control group (P<0.05), no significant difference if not marked
[1] | 孔令杰, 邓洁莹, 吴莹, 等. 肉制品中替代亚硝酸盐发色微生物的作用机理及其应用研究进展[J]. 食品科学, 2022. http://kns.cnki.net/kcms/detail/11.2206.TS.20220621.1749.058.html. |
Kong LJ, Deng JY, Wu Y, et al. Mechanism and application of chromogenic microorganisms replacing nitrite in meat products[J]. Food Sci, 2022. http://kns.cnki.net/kcms/detail/11.2206.TS.20220621.1749.058.html. | |
[2] | 陈梦婷, 罗秉俊, 杨芳芳. 食品行业控制硝酸盐及亚硝酸盐含量的重要性及相关研究[J]. 广东化工, 2022, 49(8): 72-73, 105. |
Chen MT, Luo BJ, Yang FF. The importance and related research of controlling nitrate and nitrite content in food industry[J]. Guangdong Chem Ind, 2022, 49(8): 72-73, 105. | |
[3] | 杜娟, 王青华, 刘利强. 亚硝酸盐在肉制品中应用的危害分析及其替代物的研究[J]. 食品科技, 2007, 32(8): 166-169. |
Du J, Wang QH, Liu LQ. Nitrite application harmful analysis and its substitute research in meat product[J]. Food Sci Technol, 2007, 32(8): 166-169. | |
[4] | 汪杨峻杰. 亚硝酸盐及其对人体的危害[J]. 化工管理, 2017(5): 118, 120. |
Wang YJJ. Nitrite and its harm to human body[J]. Chem Enterp Manag, 2017(5): 118, 120. | |
[5] |
Vasavada MN, Cornforth DP. Evaluation of milk mineral antioxidant activity in beef meatballs and nitrite-cured sausage[J]. J Food Sci, 2005, 70(4): C250-C253.
doi: 10.1111/j.1365-2621.2005.tb07168.x URL |
[6] | 陈瑶, 刘成国, 罗扬, 等. 亚硝酸盐在腊肉加工中的作用及其替代物的研究进展[J]. 肉类研究, 2010, 24(5): 32-36. |
Chen Y, Liu CG, Luo Y, et al. The effect of nitrite in processing of cured meat and the progress of its substitute[J]. Meat Res, 2010, 24(5): 32-36. | |
[7] |
Skibsted LH. Nitric oxide and quality and safety of muscle based foods[J]. Nitric Oxide, 2011, 24(4): 176-183.
doi: 10.1016/j.niox.2011.03.307 pmid: 21605822 |
[8] | 赵亚娟, 郇延军, 孙冬梅, 等. 木糖葡萄球菌和肉糖葡萄球菌的生理特性及其转化硝酸盐影响因素的研究[J]. 食品工业科技, 2012, 33(5): 63-66. |
Zhao YJ, Huan YJ, Sun DM, et al. Study on physiological, biochemical characteristics and their influencing factors of nitrate reduction of Staphylococcus xylosus and Staphylococcus carnosus[J]. Sci Technol Food Ind, 2012, 33(5): 63-66. | |
[9] |
董竞, 冯美琴, 周超, 等. 侗族酸肉中硝酸盐还原菌的分离筛选及其特性研究[J]. 食品科学, 2009, 30(13): 241-244.
doi: 10.7506/spkx1002-6630-200913055 |
Dong J, Feng MQ, Zhou C, et al. Isolation and identification of nitrate reducing bacteria from traditionally fermented meat product “nanx wudl”[J]. Food Sci, 2009, 30(13): 241-244. | |
[10] |
Casaburi A, Blaiotta G, Mauriello G, et al. Technological activities of Staphylococcus carnosus and Staphylococcus simulans strains isolated from fermented sausages[J]. Meat Sci, 2005, 71(4): 643-650.
doi: 10.1016/j.meatsci.2005.05.008 URL |
[11] |
Jin SK, Choi JS, Yang HS, et al. Natural curing agents as nitrite alternatives and their effects on the physicochemical, microbiological properties and sensory evaluation of sausages during storage[J]. Meat Sci, 2018, 146: 34-40.
doi: 10.1016/j.meatsci.2018.07.032 URL |
[12] |
Wang H, Xu JH, Liu Q, et al. Effect of the protease from Staphylococcus carnosus on the proteolysis, quality characteristics, and flavor development of Harbin dry sausage[J]. Meat Sci, 2022, 189: 108827.
doi: 10.1016/j.meatsci.2022.108827 URL |
[13] |
Sun MJ, Ning XB. Screening and optimization of a nitrate reductase-producing Staphylococcus simulans UV-11 and its application[J]. J Food Meas Charact, 2021, 15(3): 2458-2468.
doi: 10.1007/s11694-021-00829-6 |
[14] |
Danz RBN, Gibis M, Schmidt H, et al. Nitrate reductase activity of Staphylococcus carnosus affecting the color formation in cured raw ham[J]. Food Res Int, 2016, 85: 113-120.
doi: 10.1016/j.foodres.2016.04.021 URL |
[15] | 卢承蓉, 叶美芝, 上官文丹, 等. 高产胞外多糖乳酸菌的诱变育种及其益生特性[J]. 食品与发酵工业, 2020, 46(12): 14-20. |
Lu CR, Ye MZ, Shangguan WD, et al. Mutation breeding for high-yield exopolysaccharide lactic acid bacteria and evaluation of its probiotic properties[J]. Food Ferment Ind, 2020, 46(12): 14-20. | |
[16] | 黄玉, 尼玛扎西, 薛正莲, 等. ARTP与紫外线复合诱变选育高性能绿僵菌菌株[J]. 食品工业科技, 2021, 42(4): 60-64, 70. |
Huang Y, Nimazhaxi, Xue ZL, et al. Breeding of high performance Metarhizium anisopliae strain by ARTP/UV mutagenesis[J]. Sci Technol Food Ind, 2021, 42(4): 60-64, 70. | |
[17] | 梅林, 陈芳, 阚睿, 等. 枯草芽孢杆菌凝乳酶高产菌株的微波诱变[J]. 食品与发酵工业, 2012, 38(10): 120-122. |
Mei L, Chen F, Kan R, et al. The breeding of the rennet high-producing strain from Bacillus subtilis and studies on conditions for microwave irradiation[J]. Food Ferment Ind, 2012, 38(10): 120-122. | |
[18] | 王陶, 谢平进, 董玉玮, 等. 氯化锂诱变选育3-羟基丙酸高产菌株[J]. 工业微生物, 2017, 47(2): 1-6. |
Wang T, Xie PJ, Dong YW, et al. Breeding of 3-hydroxypropnic acid high-producing strain by lithium chloride mutagenesis[J]. Ind Microbiol, 2017, 47(2): 1-6. | |
[19] | 李文, 王陶, 李同祥. 氯化锂诱变黑曲霉原生质体选育高产植酸酶菌株[J]. 食品与发酵工业, 2012, 38(2): 69-73. |
Li W, Wang T, Li TX. Breeding of phytase high-producing Aspergillus niger using protoplasts by lithium chloride mutagenesis[J]. Food Ferment Ind, 2012, 38(2): 69-73. | |
[20] |
王陶, 储渊明, 陈宏伟, 等. 氯化锂诱变蛹虫草菌株液体发酵富集微量元素锌[J]. 食品科学, 2017, 38(6): 74-80.
doi: 10.7506/spkx1002-6630-201706012 |
Wang T, Chu YM, Chen HW, et al. Zinc enrichment of Cordyceps militaris cultured in liquid medium: optimization of medium components and culture conditions and strain improvement by LiCl mutagenesis[J]. Food Sci, 2017, 38(6): 74-80. | |
[21] |
李文, 董明盛. 发酵鹰嘴豆乳产γ-氨基丁酸乳酸菌的复合诱变选育[J]. 食品科学, 2018, 39(16): 147-153.
doi: 10.7506/spkx1002-6630-201816022 |
Li W, Dong MS. Improving γ-aminobutyric acid production of lactic acid bacteria in chickpea milk by compound mutagenesis[J]. Food Sci, 2018, 39(16): 147-153.
doi: 10.1111/jfds.1974.39.issue-1 URL |
|
[22] |
李杨, 蔡海莺, 赵敏洁, 等. 高产耐高温脂肪酶生产菌的筛选与鉴定[J]. 生物技术通报, 2015, 31(1): 144-150.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.01.022 |
Li Y, Cai HY, Zhao MJ, et al. Screening and identification of high-yield thermostable lipase producing microorganisms[J]. Biotechnol Bull, 2015, 31(1): 144-150.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.01.022 |
|
[23] | 蒋雨鹤, 康大成, 周光宏, 等. 两株发酵乳杆菌体外抗氧化活性研究[J]. 南京农业大学学报, 2017, 40(5): 915-920. |
Jiang YH, Kang DC, Zhou GH, et al. Antioxidant activity in vitro of two strains of Lactobacillus fermentum[J]. J Nanjing Agric Univ, 2017, 40(5): 915-920. | |
[24] | 郑怀忠. 产亚硝酸还原酶菌株发酵特性及酶在肉制品中的应用[D]. 厦门: 集美大学, 2009. |
Zheng HZ. The study on the strain fermentation of nitrite reductase and its application in cooking sausage[D]. Xiamen: Jimei University, 2009. | |
[25] | 赵璐, 何婷, 丁文欢, 等. 考马斯亮兰法(Bradford法)测定驼乳中蛋白质的含量[J]. 应用化工, 2016, 45(12): 2366-2368, 2372. |
Zhao L, He T, Ding WH, et al. Determination of protein from camel milk by Bradford[J]. Appl Chem Ind, 2016, 45(12): 2366-2368, 2372. | |
[26] |
Gøtterup J, Olsen K, Knöchel S, et al. Relationship between nitrate/nitrite reductase activities in meat associated staphylococci and nitrosylmyoglobin formation in a cured meat model system[J]. Int J Food Microbiol, 2007, 120(3): 303-310.
pmid: 17920151 |
[27] | Tan W, Shao ZH, Zhao GP. In vitro nitrate reductase activity assay of Mycolicibacterium smegmatis crude extract[J]. Bio-protocol, 2021, 11(14): e4098. |
[28] | 陶大炜, 张小丹, 宁喜斌, 等. 复合诱变选育高产α-环糊精葡萄糖基转移酶的菌株及产酶条件优化[J]. 食品与发酵工业, 2021, 47(19): 63-70. |
Tao DW, Zhang XD, Ning XB, et al. Strain breeding for high-yielding α-cyclodextrin glucosyltransferase and optimization of the enzyme formation conditions[J]. Food Ferment Ind, 2021, 47(19): 63-70. | |
[29] | 王敏. 四株葡萄球菌的产酶能力及蛋白降解机制研究[D]. 扬州: 扬州大学, 2013. |
Wang M. Study on enzyme production ability and protein degradation mechanism of four strains of staphylococci[D]. Yangzhou: Yangzhou University, 2013. | |
[30] | 汪淼, 徐铮铮, 郭明亮, 等. 如皋火腿中肉糖葡萄球菌RG-10产硝酸盐还原酶条件的优化[J]. 食品科技, 2014, 39(11): 130-138. |
Wang M, Xu ZZ, Guo ML, et al. Optimization of nitrate reductase-producing condition for Staphylococcus carnosus RG-10 isolated from Rugao ham[J]. Food Sci Technol, 2014, 39(11): 130-138. | |
[31] | Filimonenkov AA, Zvyagilskaya RA, Tikhonova TV, et al. Isolation and characterization of nitrate reductase from the halophilic sulfur-oxidizing bacterium Thioalkalivibrio nitratireducens[J]. Biochemistry(Mosc), 2010, 75(6): 744-751. |
[32] | Antipov AN, Morozkina EV, Sorokin DY, et al. Characterization of molybdenum-free nitrate reductase from haloalkalophilic bacterium Halomonas sp. strain AGJ 1-3[J]. Biochemistry(Mosc), 2005, 70(7): 799-803. |
[33] | 李静, 张剑, 赵永祥. 金属离子对蛋白酶作用的研究进展[J]. 日用化学工业, 2017, 47(6): 345-351. |
Li J, Zhang J, Zhao YX. Progress in research work field with respect to effects of metal ions on protease[J]. China Surfactant Deterg & Cosmet, 2017, 47(6): 345-351. | |
[34] | 邱昌恩. 重金属对绿球藻硝酸还原酶活性的影响[J]. 微生物学杂志, 2008, 28(6): 40-43. |
Qiu CG. Effects of four heavy metal ions on nitrate reductase activity in chlorococcumsp[J]. J Microbiol, 2008, 28(6): 40-43. | |
[35] | 赵改名, 李珊珊, 崔文明, 等. 不同来源腊肉中细菌菌群结构与风味相关性分析[J]. 食品与发酵工业, 2021, 47(13): 246-253. |
Zhao GM, Li SS, Cui WM, et al. Correlation analysis of bacterial community structure and flavor in different Chinese bacon[J]. Food Ferment Ind, 2021, 47(13): 246-253. |
[1] | ZHANG Kai-ping, LIU Yan-li, TU Mian-liang, LI Ji-wei, WU Wen-biao. Optimization of Producing Cellulase by Aspergillus fumigatus A-16 and Its Enzymatic Properties [J]. Biotechnology Bulletin, 2022, 38(9): 215-225. |
[2] | CHANG Qing, SHU Yue-rong, WANG Wen-tao, JIANG Hao, YAN Quan-de, QIAN Zheng, GAO Xue-chun, WU Jin-hong, ZHANG Yong. Heterologous Expression and Characterization of Endo-type Alginate Lyase from Yeosuana marina sp. JLT21 [J]. Biotechnology Bulletin, 2022, 38(2): 123-131. |
[3] | TIAN Jia-hui, FENG Jia-li, LU Jun-hua, MAO Lin-jing, HU Zhu-ran, WANG Ying, CHU Jie. Isolation,Purification and Characterization of Laccase LacT-1 from Cerrena unicolor [J]. Biotechnology Bulletin, 2021, 37(8): 186-194. |
[4] | LIU Shan, YE Wei, ZHU Mu-zi, LI Sai-ni, DENG Zhang-shuang, ZHANG Wei-min. Cloning,Expression and Characterization of a Novel Acyltransferase GPAT [J]. Biotechnology Bulletin, 2021, 37(11): 257-266. |
[5] | ZHAO Hai-yan, SONG Chen-bin, LIU Zheng-ya, MA Xing-rong, SHANG Hui-hui, LI An-hua, GUAN Xian-jun, WANG Jian-she. Cloning,Recombinant Expression and Enzymatic Properties of α-Amylase Gene from Laceyella sp. [J]. Biotechnology Bulletin, 2020, 36(8): 23-33. |
[6] | GONG Wei, YU Jian-yuan, ZHANG Xi, SHAN Xiao-yi. Research Progress on Molecular Mechanisms of Nitrate-regulated Plant Flowering and Yield [J]. Biotechnology Bulletin, 2020, 36(8): 162-172. |
[7] | ZHU Cai-lin, LÜ Xiang, XIA Xiao-le. Effect of Site-directed Mutagenesis of Amino Acids in Lid Region on the Enzymatic Properties of T1 Lipase [J]. Biotechnology Bulletin, 2020, 36(11): 94-102. |
[8] | LI Yu-qi, MA Pei-yu, LIU Han, WANG Ling-zhi, GAO Ren-ling, LI Hui-juan. Identification and Denitrification Characters of a High-temperature-resistant Nitrite-denitrifying Bacterium [J]. Biotechnology Bulletin, 2019, 35(9): 194-201. |
[9] | GUO Jing-jing, GUO Lei-lei, ZHAO Yun-xiu, DAI Yi-jun. Research on the NAMase of Ensifer meliloti 1021 and Regulation Mechanism of 3-Cyanopyridine [J]. Biotechnology Bulletin, 2019, 35(8): 51-58. |
[10] | ZHANG Qing-fang, PANG Fei, YU Shuang, XIAO Jing-hui, DOU Shao-hua, CHI Nai-yu. Screening and Identification of High Uricase-producting Strain from Marine and the Enzymatic Properties [J]. Biotechnology Bulletin, 2019, 35(7): 61-69. |
[11] | LUO Zhen-peng, XIE Fang. Mechanism of Nitrate Regulating Symbiotic Nitrogen Fixation Between Legumes and Rhizobium [J]. Biotechnology Bulletin, 2019, 35(10): 34-39. |
[12] | KE Dan-xia, XU Qin-zhen, YANG Na, BAI Meng-yan, GUAN Yue-feng. Research Progresses on the Mechanism of High Nitrogen Inhibiting Nodulation and Nitrogen Fixation in Legumes [J]. Biotechnology Bulletin, 2019, 35(10): 40-45. |
[13] | MAO Pei-qi, LI Hou-hua, LI Ai, CAO Zhi-xiu, HAN Mei-ling, ZHANG Yan-long. Effects of Silver Nitrate on the Synthesis of Phenolic Compounds and the Expression Levels of Related Genes in Callus Browning Process of Paeonia ostii ‘Fengdan’ [J]. Biotechnology Bulletin, 2018, 34(8): 101-107. |
[14] | XU Shan ,LI Ren-qiang ,ZHENG Zhen-hua ,ZHANG Yun ,SUN Ai-jun ,HU Yun-feng. Properties of Extracellular Protease of Microbe DH-2 from Mangrove and Optimization of Enzyme Producing Conditions [J]. Biotechnology Bulletin, 2018, 34(6): 120-127. |
[15] | QIN Ri-tian, XIE Zhan-ling. Isolation,Purification,Characterization and Structural Analysis of a Pectinase PGL1 Produced by Fusarium sp. Q7-31T [J]. Biotechnology Bulletin, 2018, 34(4): 151-160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||