Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (4): 259-267.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1083
Previous Articles Next Articles
CHEN Nan-nan1,3(), WANG Chun-lai1,3, JIANG Zhen-zhong1,3, JIAO Peng1,3, GUAN Shu-yan2,3(), MA Yi-yong2,3()
Received:
2022-09-01
Online:
2023-04-26
Published:
2023-05-16
CHEN Nan-nan, WANG Chun-lai, JIANG Zhen-zhong, JIAO Peng, GUAN Shu-yan, MA Yi-yong. Genetic Transformation and Chilling Resistance Analysis of Maize ZmDHN15 Gene in Tobacco[J]. Biotechnology Bulletin, 2023, 39(4): 259-267.
名称 Name | 引物序列 Primer sequence(5'-3') |
---|---|
ZmDHN15 for RT-qPCR-F | AAGCCAAAAGGCACTGAAGAAG |
ZmDHN15 for RT-qPCR-R | ACAGAACAGATCAGCAGGCTAGCTA |
Act-F | TTGAGGTAGGATGAGACT |
Act-R | GGAGTGAAGCAGATGATT |
ZmDHN15-F | AAGGCACTGAAGAAGCCAGTCA |
ZmDHN15-R | GAAACCAAAGCAATTATTAACGCAT |
ZmDHN15-3301-F | actcttgaccatggtagatctAAGGCACTGAAGAAG- CCAGTCA |
ZmDHN15-3301-R | ggggaaattcgagctggtcaccGAAACCAAAGCAA- TTATTAACGCAT |
Bar-F | TGACGCACAATCCCACTATCCT |
Bar-R | GAAACCCACGTCATGCCAGT |
Table 1 Primer sequences
名称 Name | 引物序列 Primer sequence(5'-3') |
---|---|
ZmDHN15 for RT-qPCR-F | AAGCCAAAAGGCACTGAAGAAG |
ZmDHN15 for RT-qPCR-R | ACAGAACAGATCAGCAGGCTAGCTA |
Act-F | TTGAGGTAGGATGAGACT |
Act-R | GGAGTGAAGCAGATGATT |
ZmDHN15-F | AAGGCACTGAAGAAGCCAGTCA |
ZmDHN15-R | GAAACCAAAGCAATTATTAACGCAT |
ZmDHN15-3301-F | actcttgaccatggtagatctAAGGCACTGAAGAAG- CCAGTCA |
ZmDHN15-3301-R | ggggaaattcgagctggtcaccGAAACCAAAGCAA- TTATTAACGCAT |
Bar-F | TGACGCACAATCCCACTATCCT |
Bar-R | GAAACCCACGTCATGCCAGT |
Fig. 2 ZmDHN15 gene expression pattern analysis A: ZmDHN15 gene analysis of expression patterns in different parts. B: Analysis of the expression pattern of ZmDHN15 gene in leaves under intercooling treatment. * indicate significant differences among organizations, P < 0.05(*), P < 0.01(**)
Fig. 3 Genetic transformation of tobacco A: Germination; B: co-culture; C: screening; D: differentiation; E: rooting; F: transplant; G: flowering; H: seed collection
Fig. 4 PCR validation of T2 generation tobacco M: DNA marker DL 2000; P: plasmid groups; N: negative control; CK: controlled plant ;1-9: positive plants
Fig. 5 RT-qPCR validation of transgenic tobacco of T2 ge-neration WT: Wild type, OE1-OE9: transgenic plants. * indicate significant differences from wild-type, P < 0.05(*), P < 0.01(**), and P < 0.001(***). The same below
Fig. 6 Determination of germination rate and root length of transgenic tobacco plants under cold stress tre-atment A: Germination rate statistics; B: root length statistics. Control: Control group. Cold stress: Chilling stress at 4℃.The same below
Fig. 9 Qualitative and quantitative analysis of H2O2 and O2- in transgenic and wild-type tobacco leaves under cold stress A: NBT staining; B: DAB staining; C: H2O2 content; D: O2- content
[1] |
Jiao P, Jiang ZZ, Wei XT, et al. Overexpression of the homeobox-leucine zipper protein ATHB-6 improves the drought tolerance of maize(Zea mays L.)[J]. Plant Sci, 2022, 316: 111159.
doi: 10.1016/j.plantsci.2021.111159 URL |
[2] |
Zhang YC, Liu P, Wang C, et al. Genome-wide association study uncovers new genetic loci and candidate genes underlying seed chilling-germination in maize[J]. PeerJ, 2021, 9: e11707.
doi: 10.7717/peerj.11707 URL |
[3] |
Jiang SQ, Zhang HB, Ni PZ, et al. Genome-wide association study dissects the genetic architecture of maize husk tightness[J]. Front Plant Sci, 2020, 11: 861.
doi: 10.3389/fpls.2020.00861 pmid: 32695127 |
[4] |
Bilska-Kos A, Solecka D, Dziewulska A, et al. Low temperature caused modifications in the arrangement of cell wall pectins due to changes of osmotic potential of cells of maize leaves(Zea mays L.)[J]. Protoplasma, 2017, 254(2): 713-724.
doi: 10.1007/s00709-016-0982-y pmid: 27193139 |
[5] |
Li Z, Xu JG, Gao Y, et al. The synergistic priming effect of exogenous salicylic acid and H2O2 on chilling tolerance enhancement during maize(Zea mays L.) seed germination[J]. Front Plant Sci, 2017, 8: 1153.
doi: 10.3389/fpls.2017.01153 URL |
[6] |
Li M, Lin L, Zhang YH, et al. ZmMYB31, a R2R3-MYB transcription factor in maize, positively regulates the expression of CBF genes and enhances resistance to chilling and oxidative stress[J]. Mol Biol Rep, 2019, 46(4): 3937-3944.
doi: 10.1007/s11033-019-04840-5 pmid: 31037550 |
[7] |
Li XY, Li LJ, Zuo SY, et al. Differentially expressed ZmASR genes associated with chilling tolerance in maize(Zea mays)varieties[J]. Funct Plant Biol, 2018, 45(12): 1173-1180.
doi: 10.1071/FP17356 URL |
[8] |
Ahmad S, Kamran M, Zhou XB, et al. Melatonin improves the seed filling rate and endogenous hormonal mechanism in grains of summer maize[J]. Physiol Plant, 2021, 172(2): 1059-1072.
doi: 10.1111/ppl.13282 pmid: 33206390 |
[9] |
Jiao P, Jin SY, Chen NN, et al. Improvement of cold tolerance in maize(Zea mays L.) using Agrobacterium-mediated transformation of ZmSAMDC gene[J]. GM Crops Food, 2022, 13(1): 131-141.
doi: 10.1080/21645698.2022.2097831 URL |
[10] |
Liu Y, Liang JN, Sun LP, et al. Group 3 LEA protein, ZmLEA3, is involved in protection from low temperature stress[J]. Front Plant Sci, 2016, 7: 1011.
doi: 10.3389/fpls.2016.01011 pmid: 27471509 |
[11] |
Wang XC, Zhang M, Xie BH, et al. Functional characteristics analysis of dehydrins in Larix kaempferi under osmotic stress[J]. Int J Mol Sci, 2021, 22(4): 1715.
doi: 10.3390/ijms22041715 URL |
[12] |
Yu YL, Li YJ, Jia FJ, et al. ZmFKBP20-1 improves the drought and salt tolerance of transformed Arabidopsis[J]. J Plant Biol, 2017, 60(6): 558-570.
doi: 10.1007/s12374-017-0262-1 URL |
[13] |
Li QL, Zhang XC, Lv Q, et al. Physcomitrella patens dehydrins(PpDHNA and PpDHNC)confer salinity and drought tolerance to transgenic Arabidopsis plants[J]. Front Plant Sci, 2017, 8: 1316.
doi: 10.3389/fpls.2017.01316 URL |
[14] | 潘潇潇, 胡慧芳, 陈楠, 等. 脱水素在植物非生物胁迫中的作用研究进展[J]. 农业生物技术学报, 2022, 30(3): 594-605. |
Pan XX, Hu HF, Chen N, et al. Research progress on the role of dehydrin in plant abiotic stress[J]. J Agric Biotechnol, 2022, 30(3): 594-605. | |
[15] |
Dong J, Cao L, Zhang XY, et al. An R2R3-MYB transcription factor RmMYB108 responds to chilling stress of Rosa multiflora and conferred cold tolerance of Arabidopsis[J]. Front Plant Sci, 2021, 12: 696919.
doi: 10.3389/fpls.2021.696919 URL |
[16] |
Habib I, Shahzad K, Rauf M, et al. Dehydrin responsive HVA1 driven inducible gene expression enhanced salt and drought tolerance in wheat[J]. Plant Physiol Biochem, 2022, 180: 124-133.
doi: 10.1016/j.plaphy.2022.03.035 URL |
[17] | Antonić DD, Subotić AR, Dragićević MB, et al. Effects of exogenous salicylic acid on drought response and characterization of dehydrins in Impatiens walleriana[J]. Plants(Basel), 2020, 9(11): 1589. |
[18] |
Meng YC, Zhang HF, Pan XX, et al. CaDHN3, a pepper(Capsicum annuum L.) dehydrin gene enhances the tolerance against salt and drought stresses by reducing ROS accumulation[J]. Int J Mol Sci, 2021, 22(6): 3205.
doi: 10.3390/ijms22063205 URL |
[19] |
张彤彤, 郑登俞, 吴忠义, 等. 玉米NF-Y转录因子基因ZmNF-YB13响应干旱和盐胁迫的功能分析[J]. 生物技术通报, 2022, 38(10):115-123.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0066 |
Zhang TT, Zhen DY, Wu ZY, et al. Functional analysis of ZmNF-YB13 response to drought and salt stress[J]. Biotechnol Bull, 2022, 38(10):115-123. | |
[20] |
张云川, 林熠轩, 曹新文, 等. 橡胶草TkDREB2基因的克隆以及在烟草中的抗旱功能分析[J]. 生物技术通报, 2021, 37(11): 212-224.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0108 |
Zhang YC, Lin YX, Cao XW, et al. TkDREB2 clone from Taraxa-cum kok-saghyz and drought tolerance analysis of transgenic Nico-tiana tabacum[J]. Biotechnol Bull, 2021, 37(11): 212-224. | |
[21] | 金时酉, 刘畅, 焦鹏, 等. 玉米抗冷相关基因ZmSAMDC克隆及生物信息学分析[J]. 吉林农业大学学报, 2021, 43(6): 651-656. |
Jin SY, Liu C, Jiao P, et al. Cloning and bioinformatics analysis of ZmSAMDC gene related to maize cold resistance[J]. J Jilin Agric Univ, 2021, 43(6): 651-656. | |
[22] |
刘桐羽, 刘梦彤, 周洋洋, 等. 玉米ZmTCP14基因的筛选、生物信息学分析及植物表达载体的构建[J]. 吉林农业大学学报, 2022. DOI: 10.13327/j.jjlau.2021.1657.
doi: 10.13327/j.jjlau.2021.1657 |
Liu TY, Liu MT, Zhou YY, et al. Screening, bioinformatics analysis and construction of plant expression vector of ZmTCP14 gene in maize[J]. J Jilin Agric Univ, 2022. DOI: 10.13327/j.jjlau.2021.1657.
doi: 10.13327/j.jjlau.2021.1657 |
|
[23] |
Nkomo M, Gokul A, Ndimba R, et al. Piperonylic acid alters growth, mineral content accumulation and reactive oxygen species-scavenging capacity in chia seedlings[J]. AoB PLANTS, 2022, 14(3): plac025.
doi: 10.1093/aobpla/plac025 URL |
[24] | Bao F, Du DL, An Y, et al. Overexpression of Prunus mume dehydrin genes in tobacco enhances tolerance to cold and drought[J]. Front Plant Sci, 2017, 8: 151. |
[25] |
Falavigna V, Malabarba J, Silveira CP, et al. Characterization of the nucellus-specific dehydrin MdoDHN11 demonstrates its involvement in the tolerance to water deficit[J]. Plant Cell Rep, 2019, 38(9): 1099-1107.
doi: 10.1007/s00299-019-02428-8 pmid: 31127322 |
[26] |
Ju HN, Li DX, Li DQ, et al. Overexpression of ZmDHN11 could enhance transgenic yeast and tobacco tolerance to osmotic stress[J]. Plant Cell Rep, 2021, 40(9): 1723-1733.
doi: 10.1007/s00299-021-02734-0 |
[27] |
Zhang HF, Liu SY, Ma JH, et al. CaDHN4, a salt and cold stress-responsive dehydrin gene from pepper decreases abscisic acid sensitivity in Arabidopsis[J]. Int J Mol Sci, 2019, 21(1): 26.
doi: 10.3390/ijms21010026 URL |
[28] | 董程, 杨景松, 刘紫嫣, 等. 红花非生物胁迫相关CtDHN1基因的克隆及功能研究[J]. 中国油料作物学报, 2020, 42(1): 85-90. |
Dong C, Yang JS, Liu ZY, et al. Cloning and functional analysis of CtDHN1 gene related to abiotic stress in Carthamus tinctori-us[J]. Chin J Oil Crop Sci, 2020, 42(1): 85-90. | |
[29] |
Wang HY, Li ZB, Ren HB, et al. Regulatory interaction of BcWRKY33A and BcHSFA4A promotes salt tolerance in non-heading Chinese cabbage[Brassica campestris(syn. Brassica rapa)ssp. chinensis[J]. Hortic Res, 2022, 9: uhac113.
doi: 10.1093/hr/uhac113 URL |
[30] | Xiong J, Zhang WX, Zheng D, et al. ZmLBD5 increases drought sensitivity by suppressing ROS accumulation in Arabidopsis[J]. Plants(Basel), 2022, 11(10): 1382. |
[31] |
Yu YL, Zhen SM, Wang S, et al. Comparative transcriptome analysis of wheat embryo and endosperm responses to ABA and H2O2 stresses during seed germination[J]. BMC Genomics, 2016, 17: 97.
doi: 10.1186/s12864-016-2416-9 URL |
[1] | WANG Bao-bao, WANG Hai-yang. Molecular Design of Ideal Plant Architecture for High-density Tolerance of Maize Plant [J]. Biotechnology Bulletin, 2023, 39(8): 11-30. |
[2] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
[3] | LENG Yan, MA Xiao-wei, CHEN Guang, REN He, LI Xiang. High-yield Contests in Maize Facilitate the Vitalization of China’s Seed Industry [J]. Biotechnology Bulletin, 2023, 39(8): 4-10. |
[4] | WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding [J]. Biotechnology Bulletin, 2023, 39(8): 43-51. |
[5] | LIU Yue-e, XU Tian-jun, CAI Wan-tao, LYU Tian-fang, ZHANG Yong, XUE Hong-he, WANG Rong-huan, ZHAO Jiu-ran. Current Status and Prospects of Maize Super High Yield Research in China [J]. Biotechnology Bulletin, 2023, 39(8): 52-61. |
[6] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[7] | ZHU Shao-xi, JIN Zhao-yang, GE Jian-rong, WANG Rui, WANG Feng-ge, LU Yun-cai. High-throughput Specific Detection Methods for Transgenic Maize Based on the KASP Platform [J]. Biotechnology Bulletin, 2023, 39(6): 133-140. |
[8] | MA Yu-qian, SUN Dong-hui, YUE Hao-feng, XIN Jia-yu, LIU Ning, CAO Zhi-yan. Identification, Heterologous Expression and Functional Analysis of a GH61 Family Glycoside Hydrolase from Setosphaeria turcica with the Assisting Function in Degrading Cellulose [J]. Biotechnology Bulletin, 2023, 39(4): 124-135. |
[9] | LI Sheng-yan, LI Xiang-yin, LI Peng-cheng, ZHANG Ming-jun, ZHANG Jie, LANG Zhi-hong. Identification of Target Traits and Genetic Stability of Transgenic Maize 2HVB5 [J]. Biotechnology Bulletin, 2023, 39(1): 21-30. |
[10] | LI Dong-yang, XIAO Bing, WANG Chen-yao, YANG Xian-ming, LIANG Jin-gang, WU Kong-ming. Spatio-temporal Expression of Cry1Ab/Cry2Aj Insecticidal Protein in Genetically Modified Maize Ruifeng 125 with Stacked Insect and Herbicide Resistance Traits [J]. Biotechnology Bulletin, 2023, 39(1): 31-39. |
[11] | LI Peng-cheng, ZHANG Ming-jun, WANG Yin-xiao, LI Xiang-yin, LI Sheng-yan, LANG Zhi-hong. Insect Resistance Identification and Agronomy Traits Analysis of Transgenic Maize HGK60 with Different Genetic Backgrounds [J]. Biotechnology Bulletin, 2023, 39(1): 40-47. |
[12] | JIN Yun-qian, WANG Bin, GUO Shu-lei, ZHAO Lin-xi, HAN Zan-ping. Research Progress in Gibberellin Regulation on Maize Seed Vigor [J]. Biotechnology Bulletin, 2023, 39(1): 84-94. |
[13] | ZHU Jing, YU Cun. Effects of Trichoderma longibrachiatum on Maize Growth,Soil Fertility and Rhizosphere Microorganism [J]. Biotechnology Bulletin, 2022, 38(4): 230-241. |
[14] | NIU Xin, ZHANG Ying, WANG Mao-jun, LIU Wen-long, LU Fu-ping, LI Yu. Effects of Different Integration Sites on the Expression of Exogenous Alkaline Protease in Bacillus amyloliquefaciens [J]. Biotechnology Bulletin, 2022, 38(4): 253-260. |
[15] | CUI Jie-bing, ZHANG Meng, ZHANG Ying-ting, XU Jin. Effects of Low Temperature Stress on Different Clones of Cryptomeria fortunei and Evaluation of Their Cold Resistance [J]. Biotechnology Bulletin, 2022, 38(3): 31-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||