Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (5): 77-91.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1150
Previous Articles Next Articles
LIU Xiao-yan(), ZHU Zhen-liang, SHI Guang-yu, HUA Zi-yu, YANG Chen, ZHANG Yong, LIU Jun()
Received:
2022-09-30
Online:
2023-05-26
Published:
2023-06-08
Contact:
LIU Jun
E-mail:1710969610@nwafu.edu.cn;liujun2013@nwsuaf.edu.cn
LIU Xiao-yan, ZHU Zhen-liang, SHI Guang-yu, HUA Zi-yu, YANG Chen, ZHANG Yong, LIU Jun. Strategies to Optimize the Expression of Mammary Gland Bioreactor[J]. Biotechnology Bulletin, 2023, 39(5): 77-91.
重组蛋白 Recombinant protein | 物种 Species | 表达含量 Expression content /(μg·mL-1) | 时间/年 Time/Year | 参考文献 References |
---|---|---|---|---|
溶菌酶Lysozym | 奶牛Bovine | 3 100 | 2016 | [ |
人乳铁蛋白Human lactoferrin | 山羊Capra hircus | 3 200 | 2015 | [ |
人血清白蛋白HSA | 奶牛Bovine | 2 500 | 2016 | [ |
抗胰蛋白酶AAT | 绵羊Ovis aries | 650 | 2000 | [ |
重组人纤溶酶原激活物 Recombinant human plasminogen activator | 兔Leporidae | 15.2-630 | 2016 | [ |
凝血因子VIII FVlll | 小鼠Mus musculus | 1 000-4 000 | 2015 | [ |
凝血因子IX FIX | 猪Sus | 100-400 | 2008 | [ |
促红细胞生成素EPO | 山羊Capra hircus | 未报道Not reported | 2002 | [ |
人C1抑制剂Human C1 inhibitor | 兔Leporidae | 未报道Not reported | 2003 | [ |
人酸性α-葡萄糖苷酶 Human acid alpha-glucosidase | 小鼠Mus musculus | 1.5 | 1996 | [ |
粒细胞巨噬细胞集落刺激因子GM-CSF | 小鼠Mus musculus | 200-4 600 | 1997 | [ |
重组人抗凝血酶Recombinant human antithrombin | 山羊Capra hircus | 未报道Not reported | 1998 | [ |
人尿激酶Human urokinase | 小鼠Mus musculus | 1 000-2 000 | 1990 | [ |
胰岛素样生长因子-1 IGF-1 | 兔Leporidae | 1 000 | 1992 | [ |
铜/锌超氧化物歧化酶、细胞外超氧化物歧化酶 CuZn-SOD、EC-SOD | 山羊Capra hircus | 100.14 ± 5.09、279.10 ± 5.38 | 2018 | [ |
卵泡刺激素FSHα、FSHβ | 山羊Capra hircus | 0.28、0.30 | 2021 | [ |
芳基烷基胺N-乙酰转移酶、乙酰5-羟色胺甲基转移酶AANAT、ASMT | 绵羊Ovis aries | 未报道Not reported | 2017 | [ |
葡糖脑苷脂酶Glucocerebrosidase | 山羊Capra hircus | 111.1 ± 8.1 | 2015 | [ |
人蛋白C Human protein C | 猪Sus | 100-1 000 | 1994 | [ |
抗程序性细胞死亡1抗体PD-1 antibody | 小鼠Mus musculus | 80.52 ± 0.82 | 2020 | [ |
丁酰胆碱酯酶Butyrylcholinesterase | 山羊Capra hircus | 1 000-5 000 | 2008 | [ |
生长激素Growth hormone | 兔Leporidae | 10 | 2012 | [ |
胶原Collagen | 小鼠Mus musculus | 200 | 2000 | [ |
抗CD20单克隆抗体Anti-CD20 mAB | 小鼠Mus musculus | 17 | 2008 | [ |
Table 1 Example of recombinant protein production by mammary gland bioreactor
重组蛋白 Recombinant protein | 物种 Species | 表达含量 Expression content /(μg·mL-1) | 时间/年 Time/Year | 参考文献 References |
---|---|---|---|---|
溶菌酶Lysozym | 奶牛Bovine | 3 100 | 2016 | [ |
人乳铁蛋白Human lactoferrin | 山羊Capra hircus | 3 200 | 2015 | [ |
人血清白蛋白HSA | 奶牛Bovine | 2 500 | 2016 | [ |
抗胰蛋白酶AAT | 绵羊Ovis aries | 650 | 2000 | [ |
重组人纤溶酶原激活物 Recombinant human plasminogen activator | 兔Leporidae | 15.2-630 | 2016 | [ |
凝血因子VIII FVlll | 小鼠Mus musculus | 1 000-4 000 | 2015 | [ |
凝血因子IX FIX | 猪Sus | 100-400 | 2008 | [ |
促红细胞生成素EPO | 山羊Capra hircus | 未报道Not reported | 2002 | [ |
人C1抑制剂Human C1 inhibitor | 兔Leporidae | 未报道Not reported | 2003 | [ |
人酸性α-葡萄糖苷酶 Human acid alpha-glucosidase | 小鼠Mus musculus | 1.5 | 1996 | [ |
粒细胞巨噬细胞集落刺激因子GM-CSF | 小鼠Mus musculus | 200-4 600 | 1997 | [ |
重组人抗凝血酶Recombinant human antithrombin | 山羊Capra hircus | 未报道Not reported | 1998 | [ |
人尿激酶Human urokinase | 小鼠Mus musculus | 1 000-2 000 | 1990 | [ |
胰岛素样生长因子-1 IGF-1 | 兔Leporidae | 1 000 | 1992 | [ |
铜/锌超氧化物歧化酶、细胞外超氧化物歧化酶 CuZn-SOD、EC-SOD | 山羊Capra hircus | 100.14 ± 5.09、279.10 ± 5.38 | 2018 | [ |
卵泡刺激素FSHα、FSHβ | 山羊Capra hircus | 0.28、0.30 | 2021 | [ |
芳基烷基胺N-乙酰转移酶、乙酰5-羟色胺甲基转移酶AANAT、ASMT | 绵羊Ovis aries | 未报道Not reported | 2017 | [ |
葡糖脑苷脂酶Glucocerebrosidase | 山羊Capra hircus | 111.1 ± 8.1 | 2015 | [ |
人蛋白C Human protein C | 猪Sus | 100-1 000 | 1994 | [ |
抗程序性细胞死亡1抗体PD-1 antibody | 小鼠Mus musculus | 80.52 ± 0.82 | 2020 | [ |
丁酰胆碱酯酶Butyrylcholinesterase | 山羊Capra hircus | 1 000-5 000 | 2008 | [ |
生长激素Growth hormone | 兔Leporidae | 10 | 2012 | [ |
胶原Collagen | 小鼠Mus musculus | 200 | 2000 | [ |
抗CD20单克隆抗体Anti-CD20 mAB | 小鼠Mus musculus | 17 | 2008 | [ |
打靶位点 Target site | 物种 Species | 转基因 Transgenes | 基因编辑技术 Gene editing technology | 时间/年 Time/Year | 参考文献 Referencet |
---|---|---|---|---|---|
Rosa26 | 绵羊Ovis aries | turboGFP | CRISPR/Cas9 | 2016 | [ |
猪Sus | tdTomato | TALENs | 2014 | [ | |
牛Bovine | 自然抗性相关巨噬细胞蛋白1 NRAMP1 | CRISPR/Cas9 | 2021 | [ | |
β-casein | 牛Bovine | 人成纤维细胞生长因2 Human fibroblast growth factor 2 | CRISPR/Cas9 | 2015 | [ |
绵羊Ovis aries | 芳基烷基胺N-乙酰转移酶、乙酰5-羟色胺甲基转移酶AANAT、ASMT | CRISPR/Cas9 | 2017 | [ | |
奶牛Bovine | 溶葡球菌酶Lysostaphin | ZFNickases | 2013 | [ | |
BLG | 奶牛Bovine | 人血清白蛋白HSA | TALENs | 2016 | [ |
山羊Capra hircus | 人α-乳清蛋白Human α -whey protein | Homologous recombination | 2019 | [ | |
山羊Capra hircus | 人乳铁蛋白Human lactoferrin | CRISPR/Cas9 | 2017 | [ | |
山羊Capra hircus | 人乳铁蛋白Human lactoferrin | CRISPR/Cas9 | 2020 | [ | |
Col1a1 | 绵羊Ovis aries | 抗胰蛋白酶AAT | Homologous recombination | 2000 | [ |
AAVS1 | 山羊Capra hircus | 转化生长因子-β1 TGF-beta1 | TALENs | 2014 | [ |
H11 | 猪Sus | 绿色荧光蛋白GFP | CRISPR/Cas9 | 2015 | [ |
Table 2 Common target sites for livestock
打靶位点 Target site | 物种 Species | 转基因 Transgenes | 基因编辑技术 Gene editing technology | 时间/年 Time/Year | 参考文献 Referencet |
---|---|---|---|---|---|
Rosa26 | 绵羊Ovis aries | turboGFP | CRISPR/Cas9 | 2016 | [ |
猪Sus | tdTomato | TALENs | 2014 | [ | |
牛Bovine | 自然抗性相关巨噬细胞蛋白1 NRAMP1 | CRISPR/Cas9 | 2021 | [ | |
β-casein | 牛Bovine | 人成纤维细胞生长因2 Human fibroblast growth factor 2 | CRISPR/Cas9 | 2015 | [ |
绵羊Ovis aries | 芳基烷基胺N-乙酰转移酶、乙酰5-羟色胺甲基转移酶AANAT、ASMT | CRISPR/Cas9 | 2017 | [ | |
奶牛Bovine | 溶葡球菌酶Lysostaphin | ZFNickases | 2013 | [ | |
BLG | 奶牛Bovine | 人血清白蛋白HSA | TALENs | 2016 | [ |
山羊Capra hircus | 人α-乳清蛋白Human α -whey protein | Homologous recombination | 2019 | [ | |
山羊Capra hircus | 人乳铁蛋白Human lactoferrin | CRISPR/Cas9 | 2017 | [ | |
山羊Capra hircus | 人乳铁蛋白Human lactoferrin | CRISPR/Cas9 | 2020 | [ | |
Col1a1 | 绵羊Ovis aries | 抗胰蛋白酶AAT | Homologous recombination | 2000 | [ |
AAVS1 | 山羊Capra hircus | 转化生长因子-β1 TGF-beta1 | TALENs | 2014 | [ |
H11 | 猪Sus | 绿色荧光蛋白GFP | CRISPR/Cas9 | 2015 | [ |
类型 Type | 名称 Name | 转基因 Transgene | 表达系统 Expression system | 参考文献 Reference |
---|---|---|---|---|
启动子 Promoter | β-lactoglobulin promoter | 溶菌酶 Lysozyme | 山羊乳腺生物反应器 Goat mammary gland bioreactor | [ |
αS1-casein promoter | 抗程序性细胞死亡1抗体 PD-1 antibody | 小鼠乳腺生物反应器 Mouse mammary gland bioreactor | [ | |
CMV promoter | 凝血因子Ⅷ FVlll | 小鼠乳腺生物反应器 Mouse mammary gland bioreactor | [ | |
增强子 Enhancer | CMV enhancer | 人乳铁蛋白 Human lactoferrin | 山羊乳腺生物反应器 Goat mammary gland bioreactor | [ |
CMV enhancer | 人乳铁蛋白 Human lactoferrin | 小鼠乳腺生物反应器 Mouse mammary gland bioreactor | [ | |
内含子 Intron | β-casein intron | 溶菌酶 Lysozyme | 小鼠乳腺生物反应器 Mouse mammary gland bioreactor | [ |
SV40 intron | 促红细胞生成素 EPO | 中国仓鼠卵巢细胞 CHO cell | [ | |
绝缘子 Insulator | β-lactoglobulin insulator | 溶菌酶 Lysozyme | 猪乳腺生物反应器 Porcine mammary gland bioreactor | [ |
cHS4 insulator | 人血清白蛋白 HSA | 牛乳腺生物反应器 Cattle mammary gland bioreactor | [ | |
tDNA insulator | 单克隆抗体 Monoclonal antibody | 中国仓鼠卵巢细胞 CHO cell | [ | |
MAR | MAR X-29 | 增强型绿色荧光蛋白 eGFP | 中国仓鼠卵巢细胞 CHO cell | [ |
Chicken lysozyme MAR | 免疫球蛋白 G IgG | 中国仓鼠卵巢细胞 CHO cell | [ | |
IFN-β MAR | 促红细胞生成素、肝细胞生长因子 EPO,HGF | 中国仓鼠卵巢细胞 CHO cell | [ | |
β-globin MAR | 可溶性TGF-II型受体 sTbetaRII | 中国仓鼠卵巢细胞 CHO cell | [ | |
TOP1 MAR | 增强型绿色荧光蛋白 eGFP | 中国仓鼠卵巢细胞 CHO cell | [ | |
DHFR intron MAR | 增强型绿色荧光蛋白 eGFP | 中国仓鼠卵巢细胞 CHO cell | [ | |
MAR6 | 增强型绿色荧光蛋白 eGFP | 中国仓鼠卵巢细胞 CHO cell | [ | |
UCOE | UCOE | 绿色荧光蛋白 GFP | 中国仓鼠卵巢细胞 CHO cell | [ |
STAR | STAR7 | 单克隆抗体 Monoclonal antibody | 中国仓鼠卵巢细胞 CHO cell | [ |
STAR67 | 单克隆抗体 Monoclonal antibody | 中国仓鼠卵巢细胞 CHO cell | [ | |
STAR40 | 分泌碱性磷酸酶 SEAP | 中国仓鼠卵巢细胞 CHO cell | [ |
Table 3 Regulatory sequences of exogenous proteins
类型 Type | 名称 Name | 转基因 Transgene | 表达系统 Expression system | 参考文献 Reference |
---|---|---|---|---|
启动子 Promoter | β-lactoglobulin promoter | 溶菌酶 Lysozyme | 山羊乳腺生物反应器 Goat mammary gland bioreactor | [ |
αS1-casein promoter | 抗程序性细胞死亡1抗体 PD-1 antibody | 小鼠乳腺生物反应器 Mouse mammary gland bioreactor | [ | |
CMV promoter | 凝血因子Ⅷ FVlll | 小鼠乳腺生物反应器 Mouse mammary gland bioreactor | [ | |
增强子 Enhancer | CMV enhancer | 人乳铁蛋白 Human lactoferrin | 山羊乳腺生物反应器 Goat mammary gland bioreactor | [ |
CMV enhancer | 人乳铁蛋白 Human lactoferrin | 小鼠乳腺生物反应器 Mouse mammary gland bioreactor | [ | |
内含子 Intron | β-casein intron | 溶菌酶 Lysozyme | 小鼠乳腺生物反应器 Mouse mammary gland bioreactor | [ |
SV40 intron | 促红细胞生成素 EPO | 中国仓鼠卵巢细胞 CHO cell | [ | |
绝缘子 Insulator | β-lactoglobulin insulator | 溶菌酶 Lysozyme | 猪乳腺生物反应器 Porcine mammary gland bioreactor | [ |
cHS4 insulator | 人血清白蛋白 HSA | 牛乳腺生物反应器 Cattle mammary gland bioreactor | [ | |
tDNA insulator | 单克隆抗体 Monoclonal antibody | 中国仓鼠卵巢细胞 CHO cell | [ | |
MAR | MAR X-29 | 增强型绿色荧光蛋白 eGFP | 中国仓鼠卵巢细胞 CHO cell | [ |
Chicken lysozyme MAR | 免疫球蛋白 G IgG | 中国仓鼠卵巢细胞 CHO cell | [ | |
IFN-β MAR | 促红细胞生成素、肝细胞生长因子 EPO,HGF | 中国仓鼠卵巢细胞 CHO cell | [ | |
β-globin MAR | 可溶性TGF-II型受体 sTbetaRII | 中国仓鼠卵巢细胞 CHO cell | [ | |
TOP1 MAR | 增强型绿色荧光蛋白 eGFP | 中国仓鼠卵巢细胞 CHO cell | [ | |
DHFR intron MAR | 增强型绿色荧光蛋白 eGFP | 中国仓鼠卵巢细胞 CHO cell | [ | |
MAR6 | 增强型绿色荧光蛋白 eGFP | 中国仓鼠卵巢细胞 CHO cell | [ | |
UCOE | UCOE | 绿色荧光蛋白 GFP | 中国仓鼠卵巢细胞 CHO cell | [ |
STAR | STAR7 | 单克隆抗体 Monoclonal antibody | 中国仓鼠卵巢细胞 CHO cell | [ |
STAR67 | 单克隆抗体 Monoclonal antibody | 中国仓鼠卵巢细胞 CHO cell | [ | |
STAR40 | 分泌碱性磷酸酶 SEAP | 中国仓鼠卵巢细胞 CHO cell | [ |
[3] |
Qian X, Zhao FQ. Current major advances in the regulation of milk protein gene expression[J]. Crit Rev Eukaryot Gene Expr, 2014, 24(4): 357-378.
doi: 10.1615/CritRevEukaryotGeneExpr.v24.i4 URL |
[4] |
Clark AJ. The mammary gland as a bioreactor: expression, processing, and production of recombinant proteins[J]. J Mammary Gland Biol Neoplasia, 1998, 3(3): 337-350.
doi: 10.1023/A:1018723712996 URL |
[5] |
Lu D, Liu S, Ding FR, et al. Large-scale production of functional human lysozyme from marker-free transgenic cloned cows[J]. Sci Rep, 2016, 6: 22947.
doi: 10.1038/srep22947 pmid: 26961596 |
[6] |
Cui CC, Song YJ, Liu J, et al. Gene targeting by TALEN-induced homologous recombination in goats directs production of β-lactoglobulin-free, high-human lactoferrin milk[J]. Sci Rep, 2015, 5: 10482.
doi: 10.1038/srep10482 pmid: 25994151 |
[7] |
Luo Y, Wang YS, Liu J, et al. Generation of TALE nickase-mediated gene-targeted cows expressing human serum albumin in mammary glands[J]. Sci Rep, 2016, 6: 20657.
doi: 10.1038/srep20657 pmid: 26853907 |
[8] |
McCreath KJ, Howcroft J, Campbell KH, et al. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells[J]. Nature, 2000, 405(6790): 1066-1069.
doi: 10.1038/35016604 |
[9] |
Song SZ, Ge X, Cheng YB, et al. High-level expression of a novel recombinant human plasminogen activator(rhPA)in the milk of transgenic rabbits and its thrombolytic bioactivity in vitro[J]. Mol Biol Rep, 2016, 43(8): 775-783.
doi: 10.1007/s11033-016-4020-0 URL |
[10] |
Wang Q, Hao S, Ma L, et al. Comparison of human coagulation factor VIII expression directed by Cytomegalovirus and mammary gland-specific promoters in HC11 cells and transgenic mice[J]. Blood Coagul Fibrinolysis, 2015, 26(7): 755-761.
doi: 10.1097/MBC.0000000000000318 URL |
[11] |
Gil GC, Velander WH, van Cott KE. Analysis of the N-glycans of recombinant human Factor IX purified from transgenic pig milk[J]. Glycobiology, 2008, 18(7): 526-539.
doi: 10.1093/glycob/cwn035 URL |
[12] | 成勇, 王玉阁, 罗金平. 由成年转基因山羊体细胞而来的克隆山羊[J]. 生物工程学报, 2002, 18(1): 79-83. |
Cheng Y, Wang YG, Luo JP, et al. Cloned goats produced from the somatic cells of an adult transgenic goat[J]. Chinese Journal of Biotechnology, 2002, 18(1): 79-83.
pmid: 11977606 |
|
[13] |
Koles K, Pieper FR, et al. N- and O-glycans of recombinant human C1 inhibitor expressed in the milk of transgenic rabbits[J]. Glycobiology, 2004, 14(1): 51-64.
pmid: 14514717 |
[14] |
Bijvoet AG, Kroos MA, Pieper FR, et al. Expression of cDNA-encoded human acid alpha-glucosidase in milk of transgenic mice[J]. Biochim Biophys Acta, 1996, 1308(2): 93-96.
pmid: 8764823 |
[15] |
Uusi-Oukari M, Hyttinen JM, Korhonen VP, et al. Bovine alpha s1-casein gene sequences direct high level expression of human granulocyte-macrophage colony-stimulating factor in the milk of transgenic mice[J]. Transgenic Res, 1997, 6(1): 75-84.
pmid: 9032980 |
[16] |
Edmunds T, van Patten SM, Pollock J, et al. Transgenically produced human antithrombin: structural and functional comparison to human plasma-derived antithrombin[J]. Blood, 1998, 91(12): 4561-4571.
pmid: 9616152 |
[17] |
Meade H, Gates L, Lacy E, et al. Bovine AlphaS1-casein gene sequences direct high level expression of active human urokinase in mouse milk[J]. Nature Biotechnology, 1990, 8(5): 443-446.
pmid: 1369989 |
[18] |
Brem G, Hartl P, Besenfelder U, et al. Expression of synthetic cDNA sequences encoding human insulin-like growth factor-1(IGF-1)in the mammary gland of transgenic rabbits[J]. Gene, 1994, 149(2): 351-355.
pmid: 7959016 |
[19] |
Lu R, Zhang T, Wu DJ, et al. Production of functional human CuZn-SOD and EC-SOD in bitransgenic cloned goat milk[J]. Transgenic Res, 2018, 27(4): 343-354.
doi: 10.1007/s11248-018-0080-3 pmid: 29926349 |
[20] |
Hua RM, Liu JX, Li Y, et al. Novel functional recombinant human follicle-stimulating hormone acquired from goat milk[J]. J Agric Food Chem, 2021, 69(9): 2793-2804.
doi: 10.1021/acs.jafc.0c07208 URL |
[21] | Ma T, Tao J, Yang M, et al. An AANAT/ASMT transgenic animal model constructed with CRISPR/Cas9 system serving as the mammary gland bioreactor to produce melatonin-enriched milk in sheep[J]. J Pineal Res, 2017, 63(1): 2017 Aug; 63(1). |
[22] |
Tavares KC, Dias AC, Lazzarotto CR, et al. Transient expression of functional glucocerebrosidase for treatment of Gaucher’s disease in the goat mammary gland[J]. Mol Biotechnol, 2016, 58(1): 47-55.
doi: 10.1007/s12033-015-9902-1 URL |
[23] |
Morcöl T, Akers RM, Johnson JL, et al. The porcine mammary gland as a bioreactor for complex proteins[J]. Ann N Y Acad Sci, 1994, 721: 218-233.
doi: 10.1111/nyas.1994.721.issue-1 URL |
[24] |
Gong GH, Zhang W, Xie LP, et al. Expression of a recombinant anti-programed cell death 1 antibody in the mammary gland of transgenic mice[J]. Prep Biochem Biotechnol, 2021, 51(2): 183-190.
doi: 10.1080/10826068.2020.1805755 URL |
[25] |
Baldassarre H, Hockley DK, Olaniyan B, et al. Milk composition studies in transgenic goats expressing recombinant human butyrylcholinesterase in the mammary gland[J]. Transgenic Res, 2008, 17(5): 863-872.
doi: 10.1007/s11248-008-9184-5 pmid: 18483775 |
[26] |
Lipinski D, Zeyland J, Szalata M, et al. Expression of human growth hormone in the milk of transgenic rabbits with transgene mapped to the telomere region of chromosome 7q[J]. J Appl Genet, 2012, 53(4): 435-442.
doi: 10.1007/s13353-012-0110-4 pmid: 22898896 |
[27] |
Bulleid NJ, John DC, Kadler KE. Recombinant expression systems for the production of collagen[J]. Biochem Soc Trans, 2000, 28(4): 350-353.
doi: 10.1042/bst0280350 URL |
[28] |
Tang B, Yu SS, Zheng M, et al. High level expression of a functional human/mouse chimeric anti-CD20 monoclonal antibody in milk of transgenic mice[J]. Transgenic Res, 2008, 17(4): 727-732.
doi: 10.1007/s11248-007-9162-3 pmid: 18183493 |
[29] |
Yu HQ, Wang XB, Zhu L, et al. Establishment of a rapid and scalable gene expression system in livestock by site-specific integration[J]. Gene, 2013, 515(2): 367-371.
doi: 10.1016/j.gene.2012.10.017 pmid: 23089494 |
[30] |
Ahmadi M, Damavandi N, Akbari Eidgahi MR, et al. Utilization of site-specific recombination in biopharmaceutical production[J]. Iran Biomed J, 2016, 20(2): 68-76.
pmid: 26602035 |
[31] |
Jensen KT, Fløe L, Petersen TS, et al. Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency[J]. FEBS Lett, 2017, 591(13): 1892-1901.
doi: 10.1002/1873-3468.12707 pmid: 28580607 |
[32] |
Barnes LM, Bentley CM, Dickson AJ. Stability of protein production from recombinant mammalian cells[J]. Biotechnol Bioeng, 2003, 81(6): 631-639.
pmid: 12529877 |
[33] |
Houdebine LM. Production of pharmaceutical proteins by transgenic animals[J]. Comp Immunol Microbiol Infect Dis, 2009, 32(2): 107-121.
doi: 10.1016/j.cimid.2007.11.005 URL |
[34] |
Wang TY, Guo X. Expression vector cassette engineering for recombinant therapeutic production in mammalian cell systems[J]. Appl Microbiol Biotechnol, 2020, 104(13): 5673-5688.
doi: 10.1007/s00253-020-10640-w |
[35] |
Shepelev MV, Kalinichenko SV, Deykin AV, et al. Production of recombinant proteins in the milk of transgenic animals: current state and prospects[J]. Acta Naturae, 2018, 10(3): 40-47.
pmid: 30397525 |
[36] |
Ran FA, Hsu PD, Wright J, et al. Genome engineering using the CRISPR-Cas9 system[J]. Nat Protoc, 2013, 8(11): 2281-2308.
doi: 10.1038/nprot.2013.143 pmid: 24157548 |
[37] |
Pavani G, Amendola M. Targeted gene delivery: where to land[J]. Front Genome Ed, 2021, 2: 609650.
doi: 10.3389/fgeed.2020.609650 URL |
[38] |
Kumar S, Clarke AR, Hooper ML, et al. Milk composition and lactation of beta-casein-deficient mice[J]. PNAS, 1994, 91(13): 6138-6142.
pmid: 8016126 |
[39] | 宋绍征, 张婷, 潘生强, 等. CRISPR/Cas9系统介导的人乳铁蛋白基因在山羊β-乳球蛋白基因座定点敲入[J]. 中国农业大学学报, 2020, 25(7): 111-119. |
Song SZ, Zhang T, Pan SQ, et al. hLF gene knock-in at the BLGlocus of goat by CRISPR/Cas9 system[J]. J China Agric Univ, 2020, 25(7): 111-119. | |
[40] | 冀艳华, 徐乔璐, 刘军, 等. TALEN介导猪瘟病毒结构蛋白基因E0敲入山羊乳腺上皮细胞β-乳球蛋白基因座[J]. 中国兽医学报, 2017, 37(7): 1206-1211. |
Ji YH, Xu QL, Liu J, et al. CSFV E0 gene knocked-in β-lactoglobulin locus in goat mammary epithelial cells by TALEN[J]. Chin J Vet Sci, 2017, 37(7): 1206-1211. | |
[41] |
An LY, Yang L, Huang YJ, et al. Generating goat mammary gland bioreactors for producing recombinant proteins by gene targeting[J]. Methods Mol Biol, 2019, 1874: 391-401.
doi: 10.1007/978-1-4939-8831-0_23 pmid: 30353527 |
[42] |
Wu MM, Wei CH, Lian ZX, et al. Rosa26-targeted sheep gene knock-in via CRISPR-Cas9 system[J]. Sci Rep, 2016, 6: 24360.
doi: 10.1038/srep24360 pmid: 27063570 |
[43] |
Li XP, Yang Y, Bu L, et al. Rosa26-targeted swine models for stable gene over-expression and Cre-mediated lineage tracing[J]. Cell Res, 2014, 24(4): 501-504.
doi: 10.1038/cr.2014.15 pmid: 24503648 |
[44] |
Yuan MK, Zhang JC, Gao YP, et al. HMEJ-based safe-harbor genome editing enables efficient generation of cattle with increased resistance to tuberculosis[J]. J Biol Chem, 2021, 296: 100497.
doi: 10.1016/j.jbc.2021.100497 URL |
[45] |
Jeong YH, Kim YJ, Kim EY, et al. Knock-in fibroblasts and transgenic blastocysts for expression of human FGF2 in the bovine β-casein gene locus using CRISPR/Cas9 nuclease-mediated homologous recombination[J]. Zygote, 2016, 24(3): 442-456.
doi: 10.1017/S0967199415000374 URL |
[46] |
Liu X, Wang YS, Guo WJ, et al. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows[J]. Nat Commun, 2013, 4: 2565.
doi: 10.1038/ncomms3565 pmid: 24121612 |
[47] | 周文君, 郭日红, 邓明田, 等. RS-1提高CRISPR-Cas9系统介导的人乳铁蛋白基因敲入效率[J]. 生物工程学报, 2017, 33(8): 1224-1234. |
Zhou WJ, Guo RH, Deng MT, et al. RS-1 enhanced the efficiency of CRISPR-Cas9 mediated knock-in of human lactoferrin[J]. Chin J Biotechnol, 2017, 33(8): 1224-1234. | |
[48] | Hu SW, Hall J, Wang Z, et al. TALEN-mediated targeted insertion of transforming growth factor-beta 1(TGF-beta 1)gene into the goat AAVS1 locus[J]. Transgenic Research, 2014, 23(1): 203-204. |
[49] |
Ruan JX, Li HG, Xu K, et al. Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs[J]. Sci Rep, 2015, 5: 14253.
doi: 10.1038/srep14253 pmid: 26381350 |
[50] |
Brady JR, Tan MC, Whittaker CA, et al. Identifying improved sites for heterologous gene integration using ATAC-seq[J]. ACS Synth Biol, 2020, 9(9): 2515-2524.
doi: 10.1021/acssynbio.0c00299 pmid: 32786350 |
[51] |
Iler N, Goodwin AJ, McInerney J, et al. Targeted remodeling of human beta-globin promoter chromatin structure produces increased expression and decreased silencing[J]. Blood Cells Mol Dis, 1999, 25(1): 47-60.
doi: 10.1006/bcmd.1999.0226 URL |
[52] |
Nemeth MJ, Bodine DM, Garrett LJ, et al. An erythroid-specific chromatin opening element reorganizes beta-globin promoter chromatin structure and augments gene expression[J]. Blood Cells Mol Dis, 2001, 27(4): 767-780.
doi: 10.1006/bcmd.2001.0448 URL |
[53] |
Eyquem J, Poirot L, Galetto R, et al. Characterization of three loci for homologous gene targeting and transgene expression[J]. Biotechnol Bioeng, 2013, 110(8): 2225-2235.
doi: 10.1002/bit.24892 pmid: 23475535 |
[54] |
Yan CH, Boyd DD. Histone H 3 acetylation and H3 K4 methylation define distinct chromatin regions permissive for transgene expression[J]. Mol Cell Biol, 2006, 26(17): 6357-6371.
doi: 10.1128/MCB.00311-06 URL |
[55] |
Veith N, Ziehr H, MacLeod RAF, et al. Mechanisms underlying epigenetic and transcriptional heterogeneity in Chinese hamster ovary(CHO)cell lines[J]. BMC Biotechnol, 2016, 16: 6.
doi: 10.1186/s12896-016-0238-0 URL |
[56] |
Singh K, Erdman RA, Swanson KM, et al. Epigenetic regulation of milk production in dairy cows[J]. J Mammary Gland Biol Neoplasia, 2010, 15(1): 101-112.
doi: 10.1007/s10911-010-9164-2 URL |
[57] |
Clapier CR, Iwasa J, Cairns BR, et al. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes[J]. Nat Rev Mol Cell Biol, 2017, 18(7): 407-422.
doi: 10.1038/nrm.2017.26 URL |
[58] |
Zhao YX, Hou Y, Xu YY, et al. A compendium and comparative epigenomics analysis of Cis-regulatory elements in the pig genome[J]. Nat Commun, 2021, 12(1): 2217.
doi: 10.1038/s41467-021-22448-x |
[1] |
O'Flaherty R, Bergin A, Flampouri E, et al. Mammalian cell culture for production of recombinant proteins: a review of the critical steps in their biomanufacturing[J]. Biotechnol Adv, 2020, 43: 107552.
doi: 10.1016/j.biotechadv.2020.107552 URL |
[2] | Wang YL, Zhao SH, Bai L, et al. Expression systems and species used for transgenic animal bioreactors[J]. Biomed Res Int, 2013, 2013: 580463. |
[59] |
Reilly SK, Yin J, Ayoub AE, et al. Evolutionary genomics. Evolutionary changes in promoter and enhancer activity during human corticogenesis[J]. Science, 2015, 347(6226): 1155-1159.
doi: 10.1126/science.1260943 pmid: 25745175 |
[60] |
Chen KF, Chen Z, Wu DY, et al. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor-suppressor genes[J]. Nat Genet, 2015, 47(10): 1149-1157.
doi: 10.1038/ng.3385 pmid: 26301496 |
[61] |
Bartosovic M, Kabbe M, Castelo-Branco G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues[J]. Nat Biotechnol, 2021, 39(7): 825-835.
doi: 10.1038/s41587-021-00869-9 pmid: 33846645 |
[62] |
Shlyueva D, Stampfel G, Stark A. Transcriptional enhancers: from properties to genome-wide predictions[J]. Nat Rev Genet, 2014, 15(4): 272-286.
doi: 10.1038/nrg3682 pmid: 24614317 |
[63] |
Rijnkels M, Freeman-Zadrowski C, Hernandez J, et al. Epigenetic modifications unlock the milk protein gene loci during mouse mammary gland development and differentiation[J]. PLoS One, 2013, 8(1): e53270.
doi: 10.1371/journal.pone.0053270 URL |
[64] |
Singh K, Molenaar AJ, Swanson KM, et al. Epigenetics: a possible role in acute and transgenerational regulation of dairy cow milk production[J]. Animal, 2012, 6(3): 375-381.
doi: 10.1017/S1751731111002564 pmid: 22436216 |
[65] |
Zhang XY, Zhang SH, Ma L, et al. Reduced representation bisulfite sequencing(RRBS)of dairy goat mammary glands reveals DNA methylation profiles of integrated genome-wide and critical milk-related genes[J]. Oncotarget, 2017, 8(70): 115326-115344.
doi: 10.18632/oncotarget.v8i70 URL |
[66] |
Yan F, Powell DR, Curtis DJ, et al. From reads to insight: a hitchhiker's guide to ATAC-seq data analysis[J]. Genome Biol, 2020, 21(1): 22.
doi: 10.1186/s13059-020-1929-3 pmid: 32014034 |
[67] |
Papapetrou EP, Schambach A. Gene insertion into genomic safe harbors for human gene therapy[J]. Mol Ther, 2016, 24(4): 678-684.
doi: 10.1038/mt.2016.38 pmid: 26867951 |
[68] |
Sadelain M, Papapetrou EP, Bushman FD. Safe harbours for the integration of new DNA in the human genome[J]. Nat Rev Cancer, 2011, 12(1): 51-58.
doi: 10.1038/nrc3179 pmid: 22129804 |
[69] |
Pellenz S, Phelps M, Tang WL, et al. New human chromosomal sites with “safe harbor” potential for targeted transgene insertion[J]. Hum Gene Ther, 2019, 30(7): 814-828.
doi: 10.1089/hum.2018.169 pmid: 30793977 |
[70] |
Beagan JA, Phillips-Cremins JE. On the existence and functionality of topologically associating domains[J]. Nat Genet, 2020, 52(1): 8-16.
doi: 10.1038/s41588-019-0561-1 pmid: 31925403 |
[71] |
Hilliard W, Lee KH. Systematic identification of safe harbor regions in the CHO genome through a comprehensive epigenome analysis[J]. Biotechnol Bioeng, 2021, 118(2): 659-675.
doi: 10.1002/bit.27599 pmid: 33049068 |
[72] |
Meuleman W, Muratov A, Rynes E, et al. Index and biological spectrum of human DNase I hypersensitive sites[J]. Nature, 2020, 584(7820): 244-251.
doi: 10.1038/s41586-020-2559-3 |
[73] |
Autio MI, Motakis E, Perrin A, et al. Computationally defined and in vitro validated putative genomic safe harbour loci for transgene expression in human cells[J]. bioRxiv, 2022, DOI:10.1101/2021.12.07.471422.
doi: 10.1101/2021.12.07.471422 |
[74] |
Bhagwan JR, Collins E, Mosqueira D, et al. Variable expression and silencing of CRISPR-Cas9 targeted transgenes identifies the AAVS1 locus as not an entirely safe harbour[J]. F1000Research, 2019, 8: 1911.
doi: 10.12688/f1000research.19894.2 pmid: 32789000 |
[75] |
Yu HQ, Chen JQ, Liu SG, et al. Large-scale production of functional human lysozyme in transgenic cloned goats[J]. J Biotechnol, 2013, 168(4): 676-683.
pmid: 24432381 |
[76] |
Zhang T, Yuan YG, Lu R, et al. The goat β-casein/CMV chimeric promoter drives the expression of hLF in transgenic goats produced by cell transgene microinjection[J]. Int J Mol Med, 2019, 44(6): 2057-2064.
doi: 10.3892/ijmm.2019.4382 pmid: 31661123 |
[77] |
Cheng Y, An LY, Yuan YG, et al. Hybrid expression cassettes consisting of a milk protein promoter and a cytomegalovirus enhancer significantly increase mammary-specific expression of human lactoferrin in transgenic mice[J]. Mol Reprod Dev, 2012, 79(8): 573-585.
doi: 10.1002/mrd.22063 pmid: 22730016 |
[78] |
Li GC, Shi WQ, Chen G, et al. Construction and in vivo evaluation of a mammary gland-specific expression vector for human lysozyme[J]. Plasmid, 2014, 76: 47-53.
doi: 10.1016/j.plasmid.2014.09.004 pmid: 25280784 |
[79] |
Xu DH, Wang XY, Jia YL, et al. SV40 intron, a potent strong intron element that effectively increases transgene expression in transfected Chinese hamster ovary cells[J]. J Cell Mol Med, 2018, 22(4): 2231-2239.
doi: 10.1111/jcmm.2018.22.issue-4 URL |
[80] |
Lu D, Li QY, Wu ZB, et al. High-level recombinant human lysozyme expressed in milk of transgenic pigs can inhibit the growth of Escherichia coli in the duodenum and influence intestinal morphology of sucking pigs[J]. PLoS One, 2014, 9(2): e89130.
doi: 10.1371/journal.pone.0089130 URL |
[81] |
Luo Y, Liu J, Liu QQ, et al. Chicken hypersensitive site-4 insulator increases human serum albumin expression in bovine mammary epithelial cells modified with phiC31 integrase[J]. Biotechnol Lett, 2013, 35(4): 529-537.
doi: 10.1007/s10529-012-1125-y pmid: 23264267 |
[82] |
Naderi F, Hashemi M, Bayat H, et al. The augmenting effects of the tDNA insulator on stable expression of monoclonal antibody in Chinese hamster ovary cells[J]. Monoclon Antib Immunodiagn Immunother, 2018, 37(5): 200-206.
doi: 10.1089/mab.2018.0015 pmid: 30362930 |
[83] |
Zhang JH, Zhang JH, Wang XY, et al. Distance effect characteristic of the matrix attachment region increases recombinant protein expression in Chinese hamster ovary cells[J]. Biotechnol Lett, 2020, 42(2): 187-196.
doi: 10.1007/s10529-019-02775-2 |
[84] |
Girod PA, Zahn-Zabal M, Mermod N. Use of the chicken lysozyme 5' matrix attachment region to generate high producer CHO cell lines[J]. Biotechnol Bioeng, 2005, 91(1): 1-11.
doi: 10.1002/(ISSN)1097-0290 URL |
[85] |
Kim JD, Yoon Y, Hwang HY, et al. Efficient selection of stable Chinese hamster ovary (CHO) cell lines for expression of recombinant proteins by using human interferon beta SAR element[J]. Biotechnol Prog, 2005, 21(3): 933-937.
doi: 10.1021/(ISSN)1520-6033 URL |
[86] |
Kim JM, Kim JS, Park DH, et al. Improved recombinant gene expression in CHO cells using matrix attachment regions[J]. J Biotechnol, 2004, 107(2): 95-105.
doi: 10.1016/j.jbiotec.2003.09.015 URL |
[87] |
Jia YL, Guo X, Wang XC, et al. Human genome-derived TOP1 matrix attachment region enhances transgene expression in the transfected CHO cells[J]. Biotechnol Lett, 2019, 41(6/7): 701-709.
doi: 10.1007/s10529-019-02673-7 |
[88] | Tian ZW, Xu DH, Wang TY, et al. Identification of a potent MAR element from the human genome and assessment of its activity in stably transfected CHO cells[J]. J Cell Mol Med, 2018, 22(2): 1095-1102. |
[89] |
Benton T, Chen T, McEntee M, et al. The use of UCOE vectors in combination with a preadapted serum free, suspension cell line allows for rapid production of large quantities of protein[J]. Cytotechnology, 2002, 38(1-3): 43-46.
doi: 10.1023/A:1021141712344 pmid: 19003085 |
[90] |
Saunders F, Sweeney B, Antoniou MN, et al. Chromatin function modifying elements in an industrial antibody production platform—comparison of UCOE, MAR, STAR and cHS4 elements[J]. PLoS One, 2015, 10(4): e0120096.
doi: 10.1371/journal.pone.0120096 URL |
[91] |
Kwaks THJ, Barnett P, Hemrika W, et al. Identification of anti-repressor elements that confer high and stable protein production in mammalian cells[J]. Nat Biotechnol, 2003, 21(5): 553-558.
pmid: 12679786 |
[92] |
Maksimenko OG, Deykin AV, Khodarovich YM, et al. Use of transgenic animals in biotechnology: prospects and problems[J]. Acta Naturae, 2013, 5(1): 33-46.
pmid: 23556129 |
[93] |
Li S, Huang SH, Qiao SY, et al. Cloning and functional characterization of STAT5a and STAT5b genes in buffalo mammary epithelial cells[J]. Anim Biotechnol, 2020, 31(1): 59-66.
doi: 10.1080/10495398.2018.1538014 pmid: 30431388 |
[94] |
Qian X, Zhao FQ. Regulatory roles of Oct proteins in the mammary gland[J]. Biochim Biophys Acta, 2016, 1859(6): 812-819.
doi: 10.1016/j.bbagrm.2016.03.015 pmid: 27044595 |
[95] |
Song N, Luo J, Huang L, et al. Mutation of signal transducer and activator of transcription 5 (STAT5) binding sites decreases milk allergen αS1-casein content in goat mammary epithelial cells[J]. Foods, 2022, 11(3): 346.
doi: 10.3390/foods11030346 URL |
[96] |
Kung MH, Lee YJ, Hsu JT, et al. A functional study of proximal goat β-casein promoter and intron 1 in immortalized goat mammary epithelial cells[J]. J Dairy Sci, 2015, 98(6): 3859-3875.
doi: 10.3168/jds.2014-9054 pmid: 25841968 |
[97] |
Panigrahi A, O'Malley BW. Mechanisms of enhancer action: the known and the unknown[J]. Genome Biol, 2021, 22(1): 108.
doi: 10.1186/s13059-021-02322-1 pmid: 33858480 |
[98] |
Galouzis CC, Furlong EEM. Regulating specificity in enhancer-promoter communication[J]. Curr Opin Cell Biol, 2022, 75: 102065.
doi: 10.1016/j.ceb.2022.01.010 URL |
[99] |
Osterwalder M, Barozzi I, Tissières V, et al. Enhancer redundancy provides phenotypic robustness in mammalian development[J]. Nature, 2018, 554(7691): 239-243.
doi: 10.1038/nature25461 URL |
[100] | Song W, Sharan R, Ovcharenko I. The first enhancer in an enhancer chain safeguards subsequent enhancer-promoter contacts. |
[101] |
Shin HY, Willi M, HyunYoo K, et al. Hierarchy within the mammary STAT5-driven wap super-enhancer[J]. Nat Genet, 2016, 48(8): 904-911.
doi: 10.1038/ng.3606 pmid: 27376239 |
[102] |
Hnisz D, Abraham BJ, Lee TI, et al. Super-enhancers in the control of cell identity and disease[J]. Cell, 2013, 155(4): 934-947.
doi: 10.1016/j.cell.2013.09.053 pmid: 24119843 |
[103] |
Lee Z, Raabe M, Hu WS. Epigenomic features revealed by ATAC-seq impact transgene expression in CHO cells[J]. Biotechnol Bioeng, 2021, 118(5): 1851-1861.
doi: 10.1002/bit.27701 pmid: 33521928 |
[104] |
Zeng XK, Lee HK, Wang CC, et al. The interdependence of mammary-specific super-enhancers and their native promoters facilitates gene activation during pregnancy[J]. Exp Mol Med, 2020, 52(4): 682-690.
doi: 10.1038/s12276-020-0425-x pmid: 32321991 |
[105] |
Borsari B, Villegas-Mirón P, Pérez-Lluch S, et al. Enhancers with tissue-specific activity are enriched in intronic regions[J]. Genome Res, 2021, 31(8): 1325-1336.
doi: 10.1101/gr.270371.120 pmid: 34290042 |
[106] |
Andersson R, Sandelin A. Determinants of enhancer and promoter activities of regulatory elements[J]. Nat Rev Genet, 2020, 21(2): 71-87.
doi: 10.1038/s41576-019-0173-8 pmid: 31605096 |
[107] |
Corrales M, Rosado A, Cortini R, et al. Clustering of Drosophila housekeeping promoters facilitates their expression[J]. Genome Res, 2017, 27(7): 1153-1161.
doi: 10.1101/gr.211433.116 pmid: 28420691 |
[108] |
Zhu I, Song W, Ovcharenko I, et al. A model of active transcription hubs that unifies the roles of active promoters and enhancers[J]. Nucleic Acids Res, 2021, 49(8): 4493-4505.
doi: 10.1093/nar/gkab235 URL |
[109] | Dong WH, Li CP, Yang Y, et al. Increasing transgenic expression in recombinant Chinese hamster ovary cells using introns in different directions[J]. Sheng Wu Gong Cheng Xue Bao, 2019, 35(6): 1071-1078. |
[110] |
Chorev M, Carmel L. The function of introns[J]. Front Genet, 2012, 3: 55.
doi: 10.3389/fgene.2012.00055 pmid: 22518112 |
[111] |
Bieberstein NI, Carrillo Oesterreich F, Straube K, et al. First exon length controls active chromatin signatures and transcription[J]. Cell Rep, 2012, 2(1): 62-68.
doi: 10.1016/j.celrep.2012.05.019 pmid: 22840397 |
[112] |
Agarwal N, Ansari A. Enhancement of transcription by a splicing-competent intron is dependent on promoter directionality[J]. PLoS Genet, 2016, 12(5): e1006047.
doi: 10.1371/journal.pgen.1006047 URL |
[113] |
Palazzo AF, Mahadevan K, Tarnawsky SP. ALREX-elements and introns: two identity elements that promote mRNA nuclear export[J]. Wiley Interdiscip Rev RNA, 2013, 4(5): 523-533.
doi: 10.1002/wrna.2013.4.issue-5 URL |
[114] |
Shaul O. How introns enhance gene expression[J]. Int J Biochem Cell Biol, 2017, 91(Pt B): 145-155.
doi: S1357-2725(17)30154-1 pmid: 28673892 |
[115] | Houdebine LM. Design of vectors for optimizing transgene expression[M]// Transgenic Animal Technology. Amsterdam: Elsevier, 2014: 489-511. |
[116] |
Qu GS, Piazza CL, Smith D, et al. Group II intron inhibits conjugative relaxase expression in bacteria by mRNA targeting[J]. eLife, 2018, 7: e34268.
doi: 10.7554/eLife.34268 URL |
[117] |
Rose AB. Introns as gene regulators: a brick on the accelerator[J]. Front Genet, 2019, 9: 672.
doi: 10.3389/fgene.2018.00672 |
[118] |
Gallegos JE, Rose AB. The enduring mystery of intron-mediated enhancement[J]. Plant Sci, 2015, 237: 8-15.
doi: 10.1016/j.plantsci.2015.04.017 pmid: 26089147 |
[119] |
Dwyer K, Agarwal N, Gega A, et al. Proximity to the promoter and Terminator regions regulates the transcription enhancement potential of an intron[J]. Front Mol Biosci, 2021, 8: 712639.
doi: 10.3389/fmolb.2021.712639 URL |
[120] | Romanova N, Noll T. Engineered and natural promoters and chromatin-modifying elements for recombinant protein expression in CHO cells[J]. Biotechnol J, 2018, 13(3): e1700232. |
[121] |
Reddi PP, Urekar CJ, Abhyankar MM, et al. Role of an insulator in testis-specific gene transcription[J]. Ann N Y Acad Sci, 2007, 1120: 95-103.
doi: 10.1196/annals.1411.012 URL |
[122] |
Chetverina D, Aoki T, Erokhin M, et al. Making connections: insulators organize eukaryotic chromosomes into independent cis-regulatory networks[J]. Bioessays, 2014, 36(2): 163-172.
doi: 10.1002/bies.201300125 pmid: 24277632 |
[123] |
Lu XB, Guo YH, Huang W. Characterization of the cHS4 insulator in mouse embryonic stem cells[J]. FEBS Open Bio, 2020, 10(4): 644-656.
doi: 10.1002/feb4.v10.4 URL |
[124] |
Kisseljova NP, Dmitriev P, Katargin A, et al. DNA polymorphism and epigenetic marks modulate the affinity of a scaffold/matrix attachment region to the nuclear matrix[J]. Eur J Hum Genet, 2014, 22(9): 1117-1123.
doi: 10.1038/ejhg.2013.306 pmid: 24448543 |
[125] |
Guo X, Wang C, Wang TY. Chromatin-modifying elements for recombinant protein production in mammalian cell systems[J]. Crit Rev Biotechnol, 2020, 40(7): 1035-1043.
doi: 10.1080/07388551.2020.1805401 pmid: 32777953 |
[126] |
Harraghy N, Calabrese D, Fisch I, et al. Epigenetic regulatory elements: recent advances in understanding their mode of action and use for recombinant protein production in mammalian cells[J]. Biotechnol J, 2015, 10(7): 967-978.
doi: 10.1002/biot.201400649 pmid: 26099730 |
[127] |
Zhao CP, Guo X, Chen SJ, et al. Matrix attachment region combinations increase transgene expression in transfected Chinese hamster ovary cells[J]. Sci Rep, 2017, 7: 42805.
doi: 10.1038/srep42805 |
[128] |
Nematpour F, Mahboudi F, Vaziri B, et al. Evaluating the expression profile and stability of different UCOE containing vector combinations in mAb-producing CHO cells[J]. BMC Biotechnol, 2017, 17(1): 18.
doi: 10.1186/s12896-017-0330-0 pmid: 28228095 |
[129] |
Rocha-Pizaña MDR, Ascencio-Favela G, Soto-García BM, et al. Evaluation of changes in promoters, use of UCOES and chain order to improve the antibody production in CHO cells[J]. Protein Expr Purif, 2017, 132: 108-115.
doi: 10.1016/j.pep.2017.01.014 URL |
[130] |
Wang B, Guo Q, Liu LY, et al. Effect of interactions of chromatin regulatory elements with different promoters on the regulation of gene expression[J]. Chinese journal of biotechnology, 2021, 37(9): 3310-3322.
doi: 10.13345/j.cjb.200748 pmid: 34622638 |
[131] |
Mayr C. What are 3' UTRs doing?[J]. Cold Spring Harb Perspect Biol, 2019, 11(10): a034728.
doi: 10.1101/cshperspect.a034728 URL |
[132] |
Kim JJ, Yu J, Bag J, et al. Translation attenuation via 3' terminal codon usage in bovine csn1s2 is responsible for the difference in αs2- and β-casein profile in milk[J]. RNA Biol, 2015, 12(3): 354-367.
doi: 10.1080/15476286.2015.1017231 URL |
[133] |
Goodarzi H, Najafabadi HS, Oikonomou P, et al. Systematic discovery of structural elements governing stability of mammalian messenger RNAs[J]. Nature, 2012, 485(7397): 264-268.
doi: 10.1038/nature11013 |
[134] |
Cohen-Zontag O, Baez C, Lim LQJ, et al. A secretion-enhancing cis regulatory targeting element(SECReTE)involved in mRNA localization and protein synthesis[J]. PLoS Genet, 2019, 15(7): e1008248.
doi: 10.1371/journal.pgen.1008248 URL |
[135] |
He Z, Song D, van Zalen S, et al. Structural determinants of human ζ-globin mRNA stability[J]. J Hematol Oncol, 2014, 7: 35.
doi: 10.1186/1756-8722-7-35 |
[1] | CHEN Xiao-ling, LIAO Dong-qing, HUANG Shang-fei, CHEN Ying, LU Zhi-long, CHEN Dong. Advances in CRISPR/Cas9 System Modifying Saccharomycescerevisiae [J]. Biotechnology Bulletin, 2023, 39(8): 148-158. |
[2] | YANG Yu-mei, ZHANG Kun-xiao. Establishing a Stable Cell Line with Site-specific Integration of ERK Kinase Phase-separated Fluorescent Probe Using CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(8): 159-164. |
[3] | SHI Wei-tao, YAO Chun-peng, WEI Wen-Kang, WANG Lei, FANG Yuan-jie, TONG Yu-jie, MA Xiao-jiao, JIANG Wen, ZHANG Xiao-ai, SHAO Wei. Establishment of MDH2 Knockout Cell Line Using CRISPR/Cas9 Technology and Study of Anti-deoxynivalenol Effect [J]. Biotechnology Bulletin, 2023, 39(7): 307-315. |
[4] | CHENG Jing-wen, CAO Lei, ZHANG Yan-min, YE Qian, CHEN Min, TAN Wen-song, ZHAO Liang. Establishment and Application of Multigene Engineering Transformation Strategy for CHO Cells [J]. Biotechnology Bulletin, 2023, 39(2): 283-291. |
[5] | HUANG Wen-li, LI Xiang-xiang, ZHOU Wen-ting, LUO Sha, YAO Wei-jia, MA Jie, ZHANG Fen, SHEN Yu-sen, GU Hong-hui, WANG Jian-sheng, SUN Bo. Targeted Editing of BoZDS in Broccoli by CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2023, 39(2): 80-87. |
[6] | WANG Bing, ZHAO Hui-na, YU Jing, CHEN Jie, LUO Mei, LEI Bo. Regulation of Leaf Bud by REVOLUTA in Tobacco Based on CRISPR/Cas9 System [J]. Biotechnology Bulletin, 2023, 39(10): 197-208. |
[7] | LI Shuang-xi, HUA Jin-lian. Research Progress in Anti-porcine Reproductive and Respiratory Syndrome Genetically Modified Pigs [J]. Biotechnology Bulletin, 2023, 39(10): 50-57. |
[8] | LIN Rong, ZHENG Yue-ping, XU Xue-zhen, LI Dan-dan, ZHENG Zhi-fu. Functional Analysis of ACOL8 Gene in the Ethylene Synthesis and Response in Arabidopsis thaliana [J]. Biotechnology Bulletin, 2023, 39(1): 157-165. |
[9] | LIU Jing-jing, LIU Xiao-rui, LI Lin, WANG Ying, YANG Hai-yuan, DAI Yi-fan. Establishment of Porcine Fetal Fibroblasts with OXTR-knockout Using CRISPR/Cas9 [J]. Biotechnology Bulletin, 2022, 38(6): 272-278. |
[10] | Olalekan Amoo, HU Li-min, ZHAI Yun-gu, FAN Chu-chuan, ZHOU Yong-ming. Regulation of Shoot Branching by BRANCHED1 in Brassica napus Based on Gene Editing Technology [J]. Biotechnology Bulletin, 2022, 38(4): 97-105. |
[11] | DING Ya-qun, DING Ning, XIE Shen-min, HUANG Meng-na, ZHANG Yu, ZHANG Qin, JIANG Li. Construction of Vps28 Knock-out Mice and Model Study of the Impact on Lactation and Immune Traits [J]. Biotechnology Bulletin, 2022, 38(3): 164-172. |
[12] | YAN Jiong, FENG Chen-yi, GAO Xue-kun, XU Xiang, YANG Jia-min, CHEN Zhao-yang. Construction of Homozygous Plin1-knockout Mouse Model and Phenotype Analysis Based on CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2022, 38(3): 173-180. |
[13] | ZHONG Jing, SUN Ling-ling, ZHANG Shu, MENG Yuan, ZHI Yi-fei, TU Li-qing, XU Tian-peng, PU Li-ping, LU Yang-qing. Effect of Knocking Out the Mda5 Gene by CRISPR/Cas9 Technology on the Replication of Newcastle Disease and Infectious Bursal Virus [J]. Biotechnology Bulletin, 2022, 38(11): 90-96. |
[14] | ZONG Mei, HAN Shuo, GUO Ning, DUAN Meng-meng, LIU Fan, WANG Gui-xiang. Production of Marker-free Mutants of Brassica campestris Mediated by CRISPR/Cas9 Through Vacuum Infiltration [J]. Biotechnology Bulletin, 2022, 38(10): 159-163. |
[15] | WANG Hai-jie, WANG Cheng-ji, GUO Yang, WANG Yun, CHEN Yan-juan, LIANG Min, WANG Jue, GONG Hui, SHEN Ru-ling. Construction of Coagulation Factor 8 Gene Knockout Mouse Model Based on CRSIPR/Cas9 Technique and Verification of Phenotype [J]. Biotechnology Bulletin, 2022, 38(10): 273-280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||