Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (8): 62-69.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0533
Previous Articles Next Articles
SHI Jia-xin1,2(), LIU Kai1,2, ZHU Jin-jie1, QI Xian-tao1, XIE Chuan-xiao1, LIU Chang-lin1()
Received:
2023-06-07
Online:
2023-08-26
Published:
2023-09-05
Contact:
LIU Chang-lin
E-mail:sjx98108@163.com;liuchanglin@caas.cn
SHI Jia-xin, LIU Kai, ZHU Jin-jie, QI Xian-tao, XIE Chuan-xiao, LIU Chang-lin. Gene Editing Reshaping Maize Plant Type for Increasing Hybrid Yield[J]. Biotechnology Bulletin, 2023, 39(8): 62-69.
Fig. 1 Plant and genotype of CX1 and CX1-lg1 A: Plant types between CX1 and CX1-lg1. B: Genotypes between CX1 and CX1-lg1. C: Pulvinus of 3rd upper leaf. D: Pulvinus of 3rd lower leaf. E: Statistics of upper leaf angle. F: Statistics of lower leaf angle. Error bar represents standard deviation, n=30; asterisks represent significant differences in t-test(*P<0.05; **P<0.01)
Fig. 2 Seed production yield of improved maternal parent A: Zhongdan 88 seed production trial. B: Zhongdan 88M seed production trial. C: Number of harvested ears in plots. D: Converted yield of plots. Error bar represents standard deviation, n=2
Fig. 3 Improved maternal parent grants a compact plant type for hybrid Zhongdan88M A: Plant types between Zhongdan88 and Zhongdan88M. B: The upper leaf angle between Zhongdan88 and Zhongdan88M under different densities in 3 environments. C: The lower leaf angle between Zhongdan88 and Zhongdan88M under different densities in 3 environments. Error bar represents standard deviation; n=80; and asterisks represent significant differences in t-test(*P<0.05; **P<0.01)
Fig. 4 Improved hybrid Zhongdan88M grants an increased yield in dense-planting cultivation A: Yield between Zhongdan88 and Zhongdan88M under 7 000 plants per 667 m2 dense. B: Statistic of yield in plots over density test. Error bar represents standard deviation, n=2
源Source | 自由度Df | 穗上叶夹角LLA | 穗下叶夹角ULA | 穗位叶夹角ELA | 穗位高EH | 株高PH |
---|---|---|---|---|---|---|
密度Density | 2 | 0.73 | 10.01** | 3.29* | 9.32** | 19.97** |
材料Material | 1 | 1581.94** | 1918.59** | 294.76** | 689.52** | 522.23** |
环境Environment | 2 | 736.70** | 1655.75** | 248.16** | 270.36** | 2909.15** |
密度×材料D×M | 2 | 2.81 | 4.93** | 2.96 | 2.68 | 1.17 |
环境×材料E×M | 2 | 30.45** | 20.42** | 4.35* | 12.06** | 3.06* |
Table 1 F statistic analysis of variance for plant type related traits
源Source | 自由度Df | 穗上叶夹角LLA | 穗下叶夹角ULA | 穗位叶夹角ELA | 穗位高EH | 株高PH |
---|---|---|---|---|---|---|
密度Density | 2 | 0.73 | 10.01** | 3.29* | 9.32** | 19.97** |
材料Material | 1 | 1581.94** | 1918.59** | 294.76** | 689.52** | 522.23** |
环境Environment | 2 | 736.70** | 1655.75** | 248.16** | 270.36** | 2909.15** |
密度×材料D×M | 2 | 2.81 | 4.93** | 2.96 | 2.68 | 1.17 |
环境×材料E×M | 2 | 30.45** | 20.42** | 4.35* | 12.06** | 3.06* |
源Source | 自由度Df | 秃尖长BTL | 收获量HM | 出籽率KY | 有效穗数PEC | 产量Y |
---|---|---|---|---|---|---|
密度Density | 2 | 35.89** | 4.65* | 0.05 | 34.46** | 2.87 |
材料Material | 1 | 68.46** | 3.43 | 20.55** | 2.14 | 0.71 |
环境Environment | 2 | 3726.46** | 65.84** | 148.25** | 157.18** | 25.65** |
密度×材料D×M | 2 | 3.39* | 2.09 | 0.21 | 0.04 | 1.71 |
环境×材料E×M | 2 | 25.75** | 1.68 | 0.11 | 7.06** | 0.35 |
Table 2 F statistic analysis of variance for yield related traits
源Source | 自由度Df | 秃尖长BTL | 收获量HM | 出籽率KY | 有效穗数PEC | 产量Y |
---|---|---|---|---|---|---|
密度Density | 2 | 35.89** | 4.65* | 0.05 | 34.46** | 2.87 |
材料Material | 1 | 68.46** | 3.43 | 20.55** | 2.14 | 0.71 |
环境Environment | 2 | 3726.46** | 65.84** | 148.25** | 157.18** | 25.65** |
密度×材料D×M | 2 | 3.39* | 2.09 | 0.21 | 0.04 | 1.71 |
环境×材料E×M | 2 | 25.75** | 1.68 | 0.11 | 7.06** | 0.35 |
[1] | 徐田军, 吕天放, 赵久然, 等. 除草剂对不同玉米品种生长发育和产量的影响[J]. 中国生态农业学报, 2018, 26(8): 1159-1169. |
Xu TJ, Lyu TF, Zhao JR, et al. Effects of herbicides on growth, development and yield of different maize varieties[J]. Chin J Eco Agric, 2018, 26(8): 1159-1169. | |
[2] |
Leegood RC. Strategies for engineering C4 photosynthesis[J]. J Plant Physiol, 2013, 170(4): 378-388.
doi: 10.1016/j.jplph.2012.10.011 URL |
[3] |
Jia QM, Sun LF, Mou HY, et al. Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize(Zea mays L.) in semi-arid regions[J]. Agric Water Manag, 2018, 201: 287-298.
doi: 10.1016/j.agwat.2017.11.025 URL |
[4] | 王敬亚, 齐华, 梁熠, 等. 种植方式对春玉米光合特性、干物质积累及产量的影响[J]. 玉米科学, 2009, 17(5): 113-115, 120. |
Wang JY, Qi H, Liang Y, et al. Effects of different planting patterns on the photosynthesis capacity dry matter accumulation and yield of spring maize[J]. J Maize Sci, 2009, 17(5): 113-115, 120. | |
[5] |
朴琳, 李波, 陈喜昌, 等. 优化栽培措施对春玉米密植群体冠层结构及产量形成的调控效应[J]. 中国农业科学, 2020, 53(15): 3048-3058.
doi: 10.3864/j.issn.0578-1752.2020.15.006 |
Piao L, Li B, Chen XC, et al. Regulation effects of improved cultivation measures on canopy structure and yield formation of dense spring maize population[J]. Sci Agric Sin, 2020, 53(15): 3048-3058.
doi: 10.3864/j.issn.0578-1752.2020.15.006 |
|
[6] |
Li RF, Zhang GQ, Liu GZ, et al. Improving the yield potential in maize by constructing the ideal plant type and optimizing the maize canopy structure[J]. Food Energy Secur, 2021, 10(4): e312.
doi: 10.1002/fes3.v10.4 URL |
[7] | 刘胜群, 宋凤斌, 朱先灿, 等. 玉米穗下节间与抗倒性相关的某些性状对增加密度的响应[J]. 土壤与作物, 2013, 2(4): 145-149. |
Liu SQ, Song FB, Zhu XC, et al. Responses of internodes below ear and lodging-related traits to increased planting density in maize[J]. Soil Crop, 2013, 2(4): 145-149. | |
[8] |
金容, 李钟, 杨云, 等. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响[J]. 作物学报, 2020, 46(4): 614-630.
doi: 10.3724/SP.J.1006.2020.93034 |
Jin R, Li Z, Yang Y, et al. Effects of density and row spacing on population light distribution and male and female spike differentiation of summer maize in hilly area of central Sichuan[J]. Acta Agron Sin, 2020, 46(4): 614-630.
doi: 10.3724/SP.J.1006.2020.93034 |
|
[9] |
Murchie EH, Niyogi KK. Manipulation of photoprotection to improve plant photosynthesis[J]. Plant Physiol, 2011, 155(1): 86-92.
doi: 10.1104/pp.110.168831 pmid: 21084435 |
[10] |
Stewart DW, Costa C, Dwyer LM, et al. Canopy structure, light interception, and photosynthesis in maize[J]. Agron J, 2003, 95(6): 1465-1474.
doi: 10.2134/agronj2003.1465 URL |
[11] |
Antonietta M, Fanello DD, Acciaresi HA, et al. Senescence and yield responses to plant density in stay green and earlier-senescing maize hybrids from Argentina[J]. Field Crops Res, 2014, 155: 111-119.
doi: 10.1016/j.fcr.2013.09.016 URL |
[12] |
卫晓轶, 杨海峰, 魏锋, 等. 不同基因型玉米株型性状的杂种优势分析[J]. 农学学报, 2022, 12(1): 1-5.
doi: 10.11923/j.issn.2095-4050.cjas2020-0195 |
Wei XY, Yang HF, Wei F, et al. Plant type characters of maize with different genotypes: heterosis analysis[J]. J Agric, 2022, 12(1): 1-5.
doi: 10.11923/j.issn.2095-4050.cjas2020-0195 |
|
[13] |
Li HT, Li JJ, Song JR, et al. An auxin signaling gene BnaA3. IAA 7 contributes to improved plant architecture and yield heterosis in rapeseed[J]. New Phytol, 2019, 222(2): 837-851.
doi: 10.1111/nph.2019.222.issue-2 URL |
[14] |
Warburton ML, Rauf S, Marek L, et al. The use of crop wild relatives in maize and sunflower breeding[J]. Crop Sci, 2017, 57(3): 1227-1240.
doi: 10.2135/cropsci2016.10.0855 URL |
[15] |
Li CX, Liu CL, Qi XT, et al. RNA-guided Cas9 as an in vivo desired-target mutator in maize[J]. Plant Biotechnol J, 2017, 15(12): 1566-1576.
doi: 10.1111/pbi.2017.15.issue-12 URL |
[16] |
Moreno MA, Harper LC, Krueger RW, et al. liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis[J]. Genes Dev, 1997, 11(5): 616-628.
doi: 10.1101/gad.11.5.616 URL |
[17] |
Sylvester AW, Cande WZ, Freeling M. Division and differentiation during normal and liguleless-1 maize leaf development[J]. Development, 1990, 110(3): 985-1000.
doi: 10.1242/dev.110.3.985 pmid: 2088734 |
[18] |
Lee J, Park JJ, Kim SL, et al. Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule, and laminar joint[J]. Plant Mol Biol, 2007, 65(4): 487-499.
doi: 10.1007/s11103-007-9196-1 pmid: 17594063 |
[19] |
Liu KY, Cao J, Yu KH, et al. Wheat TaSPL8 modulates leaf angle through auxin and brassinosteroid signaling[J]. Plant Physiol, 2019, 181(1): 179-194.
doi: 10.1104/pp.19.00248 URL |
[20] |
Yang SM, Overlander-Chen M, Carlson CH, et al. A SQUAMOSA promoter binding protein-like transcription factor controls crop ideotype for high productivity in barley[J]. Plant Direct, 2022, 6(9): e450.
doi: 10.1002/pld3.v6.9 URL |
[21] |
Filyushin MA, Khatefov EB, Kochieva EZ, et al. Comparative analysis of transcription factor genes liguleless1 and liguleless1-like in teosinte and modern maize accessions[J]. Russ J Genet, 2022, 58(3): 296-306.
doi: 10.1134/S102279542203005X |
[22] |
Bai F, Reinheimer R, Durantini D, et al. Tcp transcription factor, branch angle defective 1(bad1), is required for normal tassel branch angle formation in maize[J]. Proc Natl Acad Sci USA, 2012, 109(30): 12225-12230.
doi: 10.1073/pnas.1202439109 URL |
[23] | 郝晓敏. 利用两个高油主效QTL改良优良杂交种—郑单958的研究[D]. 北京: 中国农业大学, 2014. |
Hao XM. Studies of improving elite maize hybrid Zhengdan958 using two major QTL for oil content[D]. Beijing: China agricultural University, 2014. | |
[24] |
Mickelson SM, Stuber CS, Senior L, et al. Quantitative trait loci controlling leaf and tassel traits in a B73 × Mo17 population of maize[J]. Crop Sci, 2002, 42(6): 1902-1909.
doi: 10.2135/cropsci2002.1902 URL |
[1] | LI Xue-qi, ZHANG Su-jie, YU Man, HUANG Jin-guang, ZHOU Huan-bin. Establishment of CRISPR/CasX-based Genome Editing Technology in Rice [J]. Biotechnology Bulletin, 2023, 39(9): 40-48. |
[2] | WANG Bao-bao, WANG Hai-yang. Molecular Design of Ideal Plant Architecture for High-density Tolerance of Maize Plant [J]. Biotechnology Bulletin, 2023, 39(8): 11-30. |
[3] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
[4] | ZHOU Xiao-jie, YANG Si-qi, ZHANG Yi-wen, XU Jia-qi, YANG Sheng. CRISPR-associated Transposases and Their Applications in Bacterial Genome Editing [J]. Biotechnology Bulletin, 2023, 39(4): 49-58. |
[5] | LIU Xiao-tian, QIU Hao, TIAN Li, REN Ang, ZHAO Ming-wen. Research Progress in CRISPR/Cas9 Genome Editing System in Edible and Medicinal Fungi [J]. Biotechnology Bulletin, 2021, 37(11): 4-13. |
[6] | GAO Wei-fang, ZHANG Li-ping, ZHU Peng. Recent Progress on Isothermal Amplification Technology and Its Combination with CRISPR in Rapid Detection of Microorganisms [J]. Biotechnology Bulletin, 2020, 36(5): 22-31. |
[7] | YE Ming-wang, LI Can-hui, GONG Ming. Applications and Prospect of Genome Editing Techniques in Precise Potato Molecular Breeding [J]. Biotechnology Bulletin, 2020, 36(3): 9-17. |
[8] | ZHOU Yan, GUO Jia, HU Yu-feng, WEI Jian, LI Yi-dan. Editing of Fragrant Rice Related Gene OsBADH2 in‘Jijing 88’ [J]. Biotechnology Bulletin, 2020, 36(3): 88-94. |
[9] | QIAO Long-liang, PANG Jian-hu, DANG Chen-yang, HUANG Hai-long, ZHU Peng. CRISPR/Cas9 Genome Editing Technology and Its Application in Streptomyces [J]. Biotechnology Bulletin, 2018, 34(5): 32-40. |
[10] | YAO Heng, YANG Da-hai, BAI Ge, XIE He. CRISPR/Cas9-mediated Targeted Knockout of Polyphenol Oxidase NtPPO1 Gene in Nicotiana tabacum [J]. Biotechnology Bulletin, 2018, 34(11): 97-102. |
[11] | YIN Chao-min, FAN Xiu-zhi, SHI De-fang, GAO Hong. CRISPR/Cas Genome Editing Technology and Its Application in Fungi [J]. Biotechnology Bulletin, 2017, 33(3): 58-65. |
[12] | LIU Ni, LU Qin, LIU Juan, CHEN Hang. The Latest Research Progress on CRISPR/Cas System [J]. Biotechnology Bulletin, 2017, 33(2): 53-58. |
[13] | YANG Ju, DENG Yu. Key Technologies and Applications of Synthetic Biology [J]. Biotechnology Bulletin, 2017, 33(1): 12-23. |
[14] | ZHANG Kai-li,LI Rui,HU Tong-tong,XU Yong-jie. The Development of CRISPR/Cas9 Technique and Its Applications in Genome Editing [J]. Biotechnology Bulletin, 2016, 32(5): 47-60. |
[15] | LI Wei-jie, YANG Jiao, HE Gao-ming, WANG Li-min, PI Wen-hui, ZHOU Ping. The Comparison of Three Methods of Monitoring Endogenous Gene Modification [J]. Biotechnology Bulletin, 2016, 32(2): 76-83. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||