Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (9): 183-191.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0043
Previous Articles Next Articles
WANG Gui-fang1(), YAO Yuan-tao2, XU Hai-feng1, XIANG Kun1, LIANG Jia-hui3, ZHANG Shu-hui3, WANG Wen-ru3, ZHANG Ming-juan1,4, ZHANG Mei-yong1(), CHEN Xin1()
Received:
2023-01-18
Online:
2023-09-26
Published:
2023-10-24
Contact:
ZHANG Mei-yong, CHEN Xin
E-mail:gfwang05@163.com;zyj625@163.com;sdaucx@163.com
WANG Gui-fang, YAO Yuan-tao, XU Hai-feng, XIANG Kun, LIANG Jia-hui, ZHANG Shu-hui, WANG Wen-ru, ZHANG Ming-juan, ZHANG Mei-yong, CHEN Xin. The Gene JrSnRK1α1.1 of Walnut Regulates Seed Oil Synthesis and Accumulation[J]. Biotechnology Bulletin, 2023, 39(9): 183-191.
引物名称 Primer name | 引物序列 Primer sequence(5'-3') | 用途 Uses |
---|---|---|
Jr SnRK1α1.1-F Jr SnRK1α1.1-R SNF1-2-BiFC-S SNF1-2-BiFC-A Jr SnRK1α1.1-A Jr SnRK1α1.1-B 18S-F 18S-R | GGGGTACCATGGATGGCTCAACTG CGGAATTCTTAAAGGACTCGGAGC GCGTCGACATGGATGGCTCAACTG GGGGTACCAAGGACTCGGAGCTGG CTTTGGGGATGAACCGACCA GCCAGGAAAGCAGCACAAAG ACAGGACCTCTCACGATCCA | JrSnRK1α1.1基因全长扩增 Full length amplification of the gene JrSnRK1α1.1 荧光双分子互作试验 Fluorescent bimolecular interaction test JrSnRK1α1.1基因表达荧光定量分析 Fluorescence quantitative analysis of JrSnRK1α1.1 expression |
CAGCAAATCCAGCACGCATT |
Table 1 Primer sequence of target gene JrSnRK1α1.1
引物名称 Primer name | 引物序列 Primer sequence(5'-3') | 用途 Uses |
---|---|---|
Jr SnRK1α1.1-F Jr SnRK1α1.1-R SNF1-2-BiFC-S SNF1-2-BiFC-A Jr SnRK1α1.1-A Jr SnRK1α1.1-B 18S-F 18S-R | GGGGTACCATGGATGGCTCAACTG CGGAATTCTTAAAGGACTCGGAGC GCGTCGACATGGATGGCTCAACTG GGGGTACCAAGGACTCGGAGCTGG CTTTGGGGATGAACCGACCA GCCAGGAAAGCAGCACAAAG ACAGGACCTCTCACGATCCA | JrSnRK1α1.1基因全长扩增 Full length amplification of the gene JrSnRK1α1.1 荧光双分子互作试验 Fluorescent bimolecular interaction test JrSnRK1α1.1基因表达荧光定量分析 Fluorescence quantitative analysis of JrSnRK1α1.1 expression |
CAGCAAATCCAGCACGCATT |
Fig. 2 Expressions of the JrSnRK1α1.1 gene in different growth stages of ‘Xiangling’ walnut kernel Different lowercase letters indicate significant difference(P<0.05). The same below
Fig. 4 Gel map of the JrSnRK1α1.1 gene amplified by PCR(A)and gene relative expressions of JrSnRK1α1.1(B)in transgenic A.thaliana lines M: DL2000 Marker; WT: wild type; Water: blank control; J-1-J-3: JrSnRK1α1.1 overexpressed transgenic A. thaliana lines. The same below
Fig. 6 Percents of shrunken seeds, size of a seed and the contents of crude fatty acid in the seeds of WT and transgenic A. thaliana transgenic lines(J-1, J-2 and J-3) A: Percent of shrunken seeds. B: 1000- seed weight. C: Seed length. D: Seed width. E: Ratio of seed length to width. F: Content of crude fat in dry seeds
[1] | 郗荣庭, 张毅萍. 中国核桃[M]. 北京: 中国林业出版社, 1995. |
Xi RT, Zhang YP. Chinese walnut[M]. Beijing: China Forestry Publishing House,1995. | |
[2] |
Guasch-Ferré M, Hernández-Alonso P, Drouin-Chartier JP, et al. Walnut consumption, plasma metabolomics, and risk of type 2 diabetes and cardiovascular disease[J]. J Nutr, 2021, 151(2): 303-311.
doi: 10.1093/jn/nxaa374 pmid: 33382410 |
[3] |
Cortés B, Núñez I, Cofán M, et al. Acute effects of high-fat meals enriched with walnuts or olive oil on postprandial endothelial function[J]. J Am Coll Cardiol, 2006, 48(8): 1666-1671.
doi: 10.1016/j.jacc.2006.06.057 pmid: 17045905 |
[4] |
Wang LM, Yi Y, Yao YL, et al. Walnut oil improves spatial memory in rats and increases the expression of acid-sensing ion channel genes Asic2a and Asic4[J]. Food Sci Nutr, 2019, 7(1): 293-301.
doi: 10.1002/fsn3.2019.7.issue-1 URL |
[5] |
Simopoulos AP. Omega-6/Omega-3 essential fatty acid ratio and chronic diseases[J]. Food Rev Int, 2004, 20(1): 77-90.
doi: 10.1081/FRI-120028831 URL |
[6] | 冯春艳, 荣瑞芬, 刘雪峥. 核桃仁及内种皮营养与功能成分分析研究进展[J]. 食品工业科技, 2011, 32(2)408-411, 417 |
Feng CY, Rong RF, Liu XZ. Research progress in nutritional and functional compositions analysis of walnut kernel and pellicle[J]. Sci Technol Food Ind, 2011, 32(2)408-411, 417 | |
[7] | 赵翠格, 刘頔, 李凤兰, 等. 植物种子油脂的生物合成及代谢基础研究进展[J]. 种子, 2010, 29(4): 56-62. |
Zhao CG, Liu D, Li FL, et al. Advances in research on seed oil biosynthesis and basal metabolism[J]. Seed, 2010, 29(4): 56-62. | |
[8] | 陈虹, 潘存德, 王蓓, 等. 核桃种子发育主要营养物质积累之间的关系及脂肪酸动态变化[J]. 河北农业大学学报, 2016, 39(1): 57-62, 74. |
Chen H, Pan CD, Wang B, et al. The relationship among nutrients’ accumulation and dynamic changes of fatty acids in seed development of walnut[J]. J Agric Univ Hebei, 2016, 39(1): 57-62, 74. | |
[9] |
Alderson A, Sabelli PA, Dickinson JR, et al. Complementation of snf1, a mutation affecting global regulation of carbon metabolism in yeast, by a plant protein kinase cDNA[J]. Proc Natl Acad Sci USA, 1991, 88(19): 8602-8605.
pmid: 1924320 |
[10] |
Halford NG, Hardie DG. SNF1-related protein kinases: global regulators of carbon metabolism in plants?[J]. Plant Mol Biol, 1998, 37(5): 735-748.
doi: 10.1023/a:1006024231305 pmid: 9678569 |
[11] |
Purcell PC, Smith AM, Halford NG. Antisense expression of a sucrose non-fermenting-1-related protein kinase sequence in potato results in decreased expression of sucrose synthase in tubers and loss of sucrose-inducibility of sucrose synthase transcripts in leaves[J]. Plant J, 1998, 14(2): 195-202.
doi: 10.1046/j.1365-313X.1998.00108.x URL |
[12] |
Baena-González E, Rolland F, Thevelein JM, et al. A central integrator of transcription networks in plant stress and energy signalling[J]. Nature, 2007, 448(7156): 938-942.
doi: 10.1038/nature06069 |
[13] |
Delatte TL, Sedijani P, Kondou Y, et al. Growth arrest by trehalose-6-phosphate: an astonishing case of primary metabolite control over growth by way of the SnRK1 signaling pathway[J]. Plant Physiol, 2011, 157(1): 160-174.
doi: 10.1104/pp.111.180422 pmid: 21753116 |
[14] |
Wurzinger B, Nukarinen E, Nägele T, et al. The SnRK1 kinase as central mediator of energy signaling between different organelles[J]. Plant Physiol, 2018, 176(2): 1085-1094.
doi: 10.1104/pp.17.01404 pmid: 29311271 |
[15] |
Geigenberger P, Stitt M, Fernie AR. Metabolic control analysis and regulation of the conversion of sucrose to starch in growing potato tubers[J]. Plant Cell Environ, 2004, 27(6): 655-673.
doi: 10.1111/pce.2004.27.issue-6 URL |
[16] |
Schwachtje J, Minchin PEH, Jahnke S, et al. SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots[J]. Proc Natl Acad Sci USA, 2006, 103(34): 12935-12940.
doi: 10.1073/pnas.0602316103 pmid: 16912118 |
[17] | 王贵芳, 彭福田, 张亚飞, 等. 平邑甜茶MhSnRK1在番茄中超表达对植株碳代谢的影响[J]. 园艺学报, 2014, 41(11): 2188-2195. |
Wang GF, Peng FT, Zhang YF, et al. Effects of overexpressing Pingyi Tiancha MhSnRK1 on carbohydrate metabolism in tomato[J]. Acta Hortic Sin, 2014, 41(11): 2188-2195. | |
[18] |
Dubois M. Sugar transport from sheaths to seeds: a role for the kinase SnRK1[J]. Plant Physiol, 2022, 189(3): 1196-1198.
doi: 10.1093/plphys/kiac187 pmid: 35511161 |
[19] |
Jeong EY, Seo PJ, Woo JC, et al. AKIN10 delays flowering by inactivating IDD8 transcription factor through protein phosphorylation in Arabidopsis[J]. BMC Plant Biol, 2015, 15: 110.
doi: 10.1186/s12870-015-0503-8 URL |
[20] |
Gao XQ, Liu CZ, Li DD, et al. The Arabidopsis KINβγ subunit of the SnRK1 complex regulates pollen hydration on the stigma by mediating the level of reactive oxygen species in pollen[J]. PLoS Genet, 2016, 12(7): e1006228.
doi: 10.1371/journal.pgen.1006228 URL |
[21] | 王贵芳, 于雯, 罗静静, 等. 桃PpSnRK1α基因调控植株的生长发育进程[J]. 植物生理学报, 2018, 54(10): 1553-1560. |
Wang GF, Yu W, Luo JJ, et al. Peach PpSnRK1α gene regulates the growth and development processes of plants[J]. Plant Physiol J, 2018, 54(10): 1553-1560. | |
[22] |
Hu YX, Bai JQ, Xia YQ, et al. Increasing SnRK1 activity with the AMPK activator A-769662 accelerates seed germination in rice[J]. Plant Physiol Biochem, 2022, 185: 155-166.
doi: 10.1016/j.plaphy.2022.06.005 URL |
[23] |
Fragoso S, Espíndola L, Páez-Valencia J, et al. SnRK1 isoforms AKIN10 and AKIN11 are differentially regulated in Arabidopsis plants under phosphate starvation[J]. Plant Physiol, 2009, 149(4): 1906-1916.
doi: 10.1104/pp.108.133298 pmid: 19211700 |
[24] |
Coello P, Hirano E, Hey SJ, et al. Evidence that abscisic acid promotes degradation of SNF1-related protein kinase(SnRK)1 in wheat and activation of a putative calcium-dependent SnRK2[J]. J Exp Bot, 2012, 63(2): 913-924.
doi: 10.1093/jxb/err320 URL |
[25] |
Jin HB, Han XY, Wang ZH, et al. Barley GRIK1-SnRK1 kinases subvert a viral virulence protein to upregulate antiviral RNAi and inhibit infection[J]. EMBO J, 2022, 41(18): e110521.
doi: 10.15252/embj.2021110521 URL |
[26] |
Seip J, Jackson R, He HX, et al. Snf1 is a regulator of lipid accumulation in Yarrowia lipolytica[J]. Appl Environ Microbiol, 2013, 79(23): 7360-7370.
doi: 10.1128/AEM.02079-13 URL |
[27] |
Wei H, Wang W, Knoshaug EP, et al. Disruption of the Snf1 gene enhances cell growth and reduces the metabolic burden in cellulase-expressing and lipid-accumulating Yarrowia lipolytica[J]. Front Microbiol, 2021, 12: 757741.
doi: 10.3389/fmicb.2021.757741 URL |
[28] |
Zhai ZY, Liu H, Shanklin J. Phosphorylation of WRINKLED1 by KIN10 results in its proteasomal degradation, providing a link between energy homeostasis and lipid biosynthesis[J]. Plant Cell, 2017, 29(4): 871-889.
doi: 10.1105/tpc.17.00019 URL |
[29] |
王贵芳, 彭福田, 于雯, 等. 桃PpSnRK1β1和PpSnRK1β2在番茄中超表达对光合碳代谢的影响[J]. 园艺学报, 2017, 44(8): 1429-1438.
doi: 10.16420/j.issn.0513-353x.2016-0905 |
Wang GF, Peng FT, Yu W, et al. Effects of over-expression of peach PpSnRK1β1 and PpSnRK1β2 on photosynthetic carbohydrate metabolism in tomato[J]. Acta Hortic Sin, 2017, 44(8): 1429-1438. | |
[30] |
王贵芳, 于雯, 罗静静, 等. 平邑甜茶MhSnRK1在番茄中超表达对种子萌发及幼苗生长的影响[J]. 园艺学报, 2018, 45(6): 1185-1192.
doi: 10.16420/j.issn.0513-353x.2017-0672 |
Wang GF, Yu W, Luo JJ, et al. Effects of overexpression of pingyitiancha MhSnRK1 on tomato seed germination and seedling growth[J]. Acta Hortic Sin, 2018, 45(6): 1185-1192. | |
[31] |
Ghillebert R, Swinnen E, Wen J, et al. The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation[J]. FEBS J, 2011, 278(21): 3978-3990.
doi: 10.1111/j.1742-4658.2011.08315.x pmid: 21883929 |
[32] | 王贵芳, 王文茹, 张淑辉, 等. 核桃油脂合成转录因子JrWRI1基因的克隆及生物信息学分析[J]. 山东农业科学, 2019, 51(2): 1-6. |
Wang GF, Wang WR, Zhang SH, et al. Cloning and bioinformatics analysis of transcription factor JrWRI1 gene related with lipids synthesis of walnut[J]. Shandong Agric Sci, 2019, 51(2): 1-6. | |
[33] |
Wang HL, Han C, Wang JG, et al. Regulatory functions of cellular energy sensor SnRK1 for nitrate signalling through NLP7 repression[J]. Nat Plants, 2022, 8(9): 1094-1107.
doi: 10.1038/s41477-022-01236-5 pmid: 36050463 |
[34] |
Laurie S, McKibbin RS, Halford NG. Antisense SNF1-related(SnRK1)protein kinase gene represses transient activity of an alpha-amylase(alpha-Amy2)gene promoter in cultured wheat embryos[J]. J Exp Bot, 2003, 54(383): 739-747.
doi: 10.1093/jxb/erg085 URL |
[35] |
Radchuk R, Radchuk V, Weschke W, et al. Repressing the expression of the sucrose nonfermenting-1-related protein kinase gene in pea embryo causes pleiotropic defects of maturation similar to an abscisic acid-insensitive phenotype[J]. Plant Physiol, 2006, 140(1): 263-278.
doi: 10.1104/pp.105.071167 pmid: 16361518 |
[36] |
Zhai ZY, Blanford JK, Cai YQ, et al. CYCLIN-DEPENDENT KINASE 8 positively regulates oil synthesis by activating WRINKLED1 transcription[J]. New Phytol, 2023, 238(2): 724-736.
doi: 10.1111/nph.v238.2 URL |
[37] | 张通. 山核桃油脂合成和基因表达变化分析[D]. 杭州: 浙江农林大学, 2015. |
Zhang T. The analysis of lipid synthesis and gene expression changes in Carya cathayensis sarg.[D]. Hangzhou: Zhejiang A & F University, 2015. | |
[38] | 张楠. 核桃胚脂肪积累期转录组分析[D]. 泰安: 山东农业大学, 2014. |
Zhang N. Analysis of transcriptome profiling during lipids accumulation in embryo of walnut(Juglans regia L.)[D]. Tai'an: Shandong Agricultural University, 2014. |
[1] | LIU Bao-cai, CHEN Jing-ying, ZHANG Wu-jun, HUANG Ying-zhen, ZHAO Yun-qing, LIU Jian-chao, WEI Zhi-cheng. Characteristics Analysis of Seed Microrhizome Gene Expression of Polygonatum cyrtonema [J]. Biotechnology Bulletin, 2023, 39(8): 220-233. |
[2] | CHU Rui, LI Zhao-xuan, ZHANG Xue-qing, YANG Dong-ya, CAO Hang-hang, ZHANG Xue-yan. Screening and Identification of Antagonistic Bacillus spp. Against Cucumber Fusarium wilt and Its Biocontrol Effect [J]. Biotechnology Bulletin, 2023, 39(8): 262-271. |
[3] | ZHANG Dao-lei, GAN Yu-jun, LE Liang, PU Li. Epigenetic Regulation of Yield-related Traits in Maize and Epibreeding [J]. Biotechnology Bulletin, 2023, 39(8): 31-42. |
[4] | LENG Yan, MA Xiao-wei, CHEN Guang, REN He, LI Xiang. High-yield Contests in Maize Facilitate the Vitalization of China’s Seed Industry [J]. Biotechnology Bulletin, 2023, 39(8): 4-10. |
[5] | ZHANG Yong, XU Tian-jun, LYU Tian-fang, XING Jin-feng, LIU Hong-wei, CAI Wan-tao, LIU Yue-e, ZHAO Jiu-ran, WANG Rong-huan. Effects of Planting Density on the Stem Quality and Root Phenotypic Characters of Summer Sowing Maize [J]. Biotechnology Bulletin, 2023, 39(8): 70-79. |
[6] | XIE Tian-peng, ZHANG Jia-ning, DONG Yong-jun, ZHANG Jian, JING Ming. Effect of Premature Bolting on the Rhizosphere Soil Microenvironment of Angelica sinensis [J]. Biotechnology Bulletin, 2023, 39(7): 206-218. |
[7] | ZHAO Lin-yan, XU Wu-mei, WANG Hao-ji, WANG Kun-yan, WEI Fu-gang, YANG Shao-zhou, GUAN Hui-lin. Effects of Applying Biochar on the Rhizosphere Fungal Community and Survival Rate of Panax notoginseng Under Continuous Cropping [J]. Biotechnology Bulletin, 2023, 39(7): 219-227. |
[8] | LUO Yi, ZHANG Li-juan, HUANG Wei, WANG Ning, Wuerlika MAITIHASEM, SHI Chong, WANG Wei. Identification of a Uranium-resistant Strain and Its Growth-promoting Properties [J]. Biotechnology Bulletin, 2023, 39(5): 286-296. |
[9] | HUANG Ya-ning, ZHANG Hai-jiao, HAN Yu-qian, LIU Zun-ying. Effects of Supercritical CO2 Combined with Ginger Essential Oil on the Sterilization of Vibrio parahaemolyticus and Its Mechanism [J]. Biotechnology Bulletin, 2023, 39(5): 297-305. |
[10] | LI Shan-jia, LEI Yu-xin, SUN Meng-ge, LIU Hai-feng, WANG Xing-min. Research Progress in the Diversity of Endophytic Bacteria in Seeds and Their Interaction with Plants [J]. Biotechnology Bulletin, 2023, 39(4): 166-175. |
[11] | SUN Ya-ling, LI Rui-ping, WANG Zhen-bao, ZHANG Shu, LIU Bing-jiang, HUO Yu-meng. A New Method for Onion Seed Disinfection and Aseptic Seedling Culture [J]. Biotechnology Bulletin, 2023, 39(4): 212-220. |
[12] | LI Yue, YU Wan-xian, LI Ning, YAO Ming-hua, LI Feng, DENG Ying-tian. Inoculation Method for Colletotrichum in Pepper(Capsicum annuum)Seedlings [J]. Biotechnology Bulletin, 2023, 39(4): 221-226. |
[13] | XIAO Xiao-jun, CHEN Ming, HAN De-peng, YU Pao-lan, ZHENG Wei, XIAO Guo-bin, ZHOU Qing-hong, ZHOU Hui-wen. Genome Wide Association Analysis of Thousand Seed Weight in Brassica napus L. [J]. Biotechnology Bulletin, 2023, 39(3): 143-151. |
[14] | SHEN Yun-xin, SHI Zhu-feng, ZHOU Xu-dong, LI Ming-gang, ZHANG Qing, FENG Lu-yao, CHEN Qi-bin, YANG Pei-wen. Isolation, Identification and Bio-activity of Three Bacillus Strains with Biocontrol Function [J]. Biotechnology Bulletin, 2023, 39(3): 267-277. |
[15] | XU Xiao-wen, LI Jin-cang, HAI Du, ZHA Yu-ping, SONG Fei, WANG Yi-xun. Identification and Diversity Analysis of Mycoviruses from the Phytopathogenic Fungus Colletotrichum spp. of Walnut [J]. Biotechnology Bulletin, 2023, 39(3): 278-289. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||