Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (10): 148-162.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0183
Previous Articles Next Articles
BAI Miao1(), TIAN Wen-qing1, WU Shuai1, WANG Min1, WANG Li-xiang1, YUE Ai-qin1, NIU Jing-ping3, ZHANG Yong-po2, GAO Chun-yan2, ZHANG Wu-xia2, GUO Shu-jin1, DU Wei-jun1(), ZHAO Jin-zhong2()
Received:
2023-03-03
Online:
2023-10-26
Published:
2023-11-28
Contact:
DU Wei-jun, ZHAO Jin-zhong
E-mail:629901582@qq.com;duweijun68@126.com;zhaojinzhongnd@126.com
BAI Miao, TIAN Wen-qing, WU Shuai, WANG Min, WANG Li-xiang, YUE Ai-qin, NIU Jing-ping, ZHANG Yong-po, GAO Chun-yan, ZHANG Wu-xia, GUO Shu-jin, DU Wei-jun, ZHAO Jin-zhong. Effects of Hormonal and Adversely Stress on Vitamin E and γ-TMT Gene Expression in Soybeans[J]. Biotechnology Bulletin, 2023, 39(10): 148-162.
基因名称 Gene name | 引物 Primer | 序列 Sequence(5'-3') |
---|---|---|
γ-TMT1 | F | GTGTGGTCCATGGAGAGTGG |
R | CCCTGTGGCACCATGTTACT | |
γ-TMT2 | F | CTGGCCGTCAGAGAATGGTT |
R | GGAGCAACCAGTGTAGGCAT | |
γ-TMT3 | F | TGACGCCCTAAAGCAACCAT |
R | CCCTGTGGCACCATGTTACT | |
GmCYP2 | F | CGGGACCAGTGTGCTTCTTCA |
R | GTGCTGCTACCCGAGCTAAT |
Table 1 Primers for RT-qPCR amplification of γ-TMT gene
基因名称 Gene name | 引物 Primer | 序列 Sequence(5'-3') |
---|---|---|
γ-TMT1 | F | GTGTGGTCCATGGAGAGTGG |
R | CCCTGTGGCACCATGTTACT | |
γ-TMT2 | F | CTGGCCGTCAGAGAATGGTT |
R | GGAGCAACCAGTGTAGGCAT | |
γ-TMT3 | F | TGACGCCCTAAAGCAACCAT |
R | CCCTGTGGCACCATGTTACT | |
GmCYP2 | F | CGGGACCAGTGTGCTTCTTCA |
R | GTGCTGCTACCCGAGCTAAT |
Fig. 1 Amino acid sequence alignment of γ-TMT A: Alanine. R: Arginine. N: Asparagine. D: Aspartic acid. C: Cystine. Q: Glutarnine. E: Lutamic acid. G: Glycine. H: Histidine. I: Isoleucine. L: Leucine. K: Lysine. M: Methionine. F: Phenylalanine. P: Proline. S: Serine. T: Threonine. W: Tryptophan. Y: Tyrosine. V: Valine
Fig. 3 SPAD values in hormonal and adversely stress environment Different lowercase letters indicate significant differences compared with the control(P<0.05). The same below
标准品 Standard | 回归方程 Regression equation | R2 | 检出限 Detection limit/(μg·g-1) |
---|---|---|---|
α-生育酚 α-Tocopherol | Y=5.281 3X+0.104 2 | 1 | 0.17 |
γ-生育酚 γ-Tocopherol | Y=22.477X+0.258 3 | 0.999 7 | 0.03 |
δ-生育酚 δ-Tocopherol | Y=25.108X-1.6 | 0.999 8 | 0.03 |
Table 2 Regression equation and detection limit of tocopherol standard
标准品 Standard | 回归方程 Regression equation | R2 | 检出限 Detection limit/(μg·g-1) |
---|---|---|---|
α-生育酚 α-Tocopherol | Y=5.281 3X+0.104 2 | 1 | 0.17 |
γ-生育酚 γ-Tocopherol | Y=22.477X+0.258 3 | 0.999 7 | 0.03 |
δ-生育酚 δ-Tocopherol | Y=25.108X-1.6 | 0.999 8 | 0.03 |
不同处理 Different treatment | α-生育酚 α-tocopherol/(μg·g-1) | γ-生育酚 γ-tocopherol/(μg·g-1) | δ-生育酚 δ-tocopherol/(μg·g-1) | 总维生素E Total vitamin E/(μg·g-1) |
---|---|---|---|---|
CK | 21.35±9.41a | 93.04±42.07a | 17.36±7.52a | 131.75±55.16a |
PEG | 12.28±4.81b | 89.35±34.07a | 9.77±5.26b | 111.40±43.08b |
NaCl | 15.26±0.29b | 109.37±15.00b | 10.32±0.44b | 124.25±14.47a |
H2O2 | 8.93±0.61b | 105.83±7.39b | 3.86±0.38b | 118.62±8.26b |
ABA | 11.95±2.14b | 106.33±7.45b | 8.93±0.63b | 127.21±8.77a |
SA | 11.96±3.21b | 81.33±25.48b | 9.22±1.11b | 102.50±25.49b |
Table 3 Analysis of vitamin E content in soybean leaves under hormonal and adversely stress environment
不同处理 Different treatment | α-生育酚 α-tocopherol/(μg·g-1) | γ-生育酚 γ-tocopherol/(μg·g-1) | δ-生育酚 δ-tocopherol/(μg·g-1) | 总维生素E Total vitamin E/(μg·g-1) |
---|---|---|---|---|
CK | 21.35±9.41a | 93.04±42.07a | 17.36±7.52a | 131.75±55.16a |
PEG | 12.28±4.81b | 89.35±34.07a | 9.77±5.26b | 111.40±43.08b |
NaCl | 15.26±0.29b | 109.37±15.00b | 10.32±0.44b | 124.25±14.47a |
H2O2 | 8.93±0.61b | 105.83±7.39b | 3.86±0.38b | 118.62±8.26b |
ABA | 11.95±2.14b | 106.33±7.45b | 8.93±0.63b | 127.21±8.77a |
SA | 11.96±3.21b | 81.33±25.48b | 9.22±1.11b | 102.50±25.49b |
不同处理 Different treatment | α-生育酚 α-tocopherol/(μg·g-1) | γ-生育酚 γ-tocopherol/(μg·g-1) | δ-生育酚 δ-tocopherol/(μg·g-1) | 总维生素E Total vitamin E/(μg·g-1) |
---|---|---|---|---|
CK | 0.00±0.00 | 8.63±0.69a | 0.57±0.10a | 9.20±0.64a |
PEG | 0.00±0.00 | 3.21±0.47b | 0.68±0.22b | 3.89±0.27b |
NaCl | 0.00±0.00 | 1.00±0.27b | 0.69±0.11b | 1.68±0.29b |
Table 4 Analysis of vitamin E content in soybean stems under hormonal and adversely stress environment
不同处理 Different treatment | α-生育酚 α-tocopherol/(μg·g-1) | γ-生育酚 γ-tocopherol/(μg·g-1) | δ-生育酚 δ-tocopherol/(μg·g-1) | 总维生素E Total vitamin E/(μg·g-1) |
---|---|---|---|---|
CK | 0.00±0.00 | 8.63±0.69a | 0.57±0.10a | 9.20±0.64a |
PEG | 0.00±0.00 | 3.21±0.47b | 0.68±0.22b | 3.89±0.27b |
NaCl | 0.00±0.00 | 1.00±0.27b | 0.69±0.11b | 1.68±0.29b |
Fig. 5 Analysis of γ-TMT1 gene expressions in hormonal and advsrsely stress environment A, D: Relative expression in the leaf and root under SA treated. B, E: Relative expression in the leaf and root under ABA treated. C, F: Relative expression in the leaf and root under H2O2 treated. G, I: Relative expression in the leaf and root under PEG treated. H, J: Relative expression in the leaf and root under NaCl treated. The same below
[1] | 徐锐. 高效液相色谱法测定婴幼儿配方奶粉中维生素A和E含量的研究[D]. 广州: 华南理工大学, 2019. |
Xu R. Determination of vitamin A and vitamin E in infant formula milk powder by HPLC[D]. Guangzhou: South China University of Technology, 2019. | |
[2] | 吴琦. 黄豆的营养价值及其加工价值[J]. 现代食品, 2022, 28(9): 110-112. |
Wu Q. Nutritional value of soybean and its processing value[J]. Mod Food, 2022, 28(9): 110-112. | |
[3] | 李傲辰. 大豆的主要营养成分及营养价值研究进展[J]. 现代农业科技, 2020(23): 213-214, 218. |
Li AC. Main nutrientional components and values of soybean[J]. Mod Agric Sci Technol, 2020(23): 213-214, 218. | |
[4] | 秦宁. 大豆维生素E与蛋白质、脂肪含量鉴定及优异种质遴选[D]. 保定: 河北农业大学, 2021. |
Qin N. Soybean vitamin E and protein, identification of fat content and selection of excellent germplasm[D]. Baoding: Hebei Agricultural University, 2021. | |
[5] | 胡英考, 孟宪萍, 李雅轩, 等. 大豆γ-生育酚甲基转移酶基因的克隆与表达分析[J]. 大豆科学, 2011, 30(2): 198-204. |
Hu YK, Meng XP, Li YX, et al. Cloning and expression analysis of Glycine max γ-tocopherol methyltransferase gene[J]. Soybean Sci, 2011, 30(2): 198-204. | |
[6] | 宋雯雯. 中国大豆功能性成分地理分布规律及环境影响因素分析[D]. 北京: 中国农业科学院, 2018. |
Song WW. Geographical distribution of soybean functional components and analysis of environmental influencing factors in China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. | |
[7] | 刘焕成, 赵强, 杜艳丽, 等. 气候条件对大豆籽粒维生素E含量的影响[J]. 黑龙江八一农垦大学学报, 2022, 34(6): 1-11, 28. |
Liu HC, Zhao Q, Du YL, et al. Effects of meteorological factors on vitamin E contents of soybean seeds[J]. J Heilongjiang Bayi Agric Univ, 2022, 34(6): 1-11, 28. | |
[8] | 刘彦余. 稀土镧、铈对大豆籽粒品质的影响[D]. 哈尔滨: 东北农业大学, 2021. |
Liu YY. Effects of rare earth lanthanum and cerium on soybean seed quality[D]. Harbin: Northeast Agricultural University, 2021. | |
[9] | 上官文秀, 王敏, 岳爱琴, 等. 大豆维生素E及组分含量特异种质发掘鉴定[J]. 山西农业科学, 2022, 50(7): 979-986. |
Shangguan WX, Wang M, Yue AQ, et al. Exploration and identification of soybean special germplasm of vitamin E and its components[J]. J Shanxi Agric Sci, 2022, 50(7): 979-986. | |
[10] | 郑小健. 维生素E和维生素C缓解植物大量元素缺乏的机理研究[D]. 雅安: 四川农业大学, 2018. |
Zheng XJ. Study on the mechanism of vitamin E and vitamin C in alleviating the deficiency of macroelements in plants[D]. Ya'an: Sichuan Agricultural University, 2018. | |
[11] |
Miret JA, Munné-Bosch S. Redox signaling and stress tolerance in plants: a focus on vitamin E[J]. Ann N Y Acad Sci, 2015, 1340(1): 29-38.
doi: 10.1111/nyas.2015.1340.issue-1 URL |
[12] |
Cela J, Falk J, Munné-Bosch S. Ethylene signaling may be involved in the regulation of tocopherol biosynthesis in Arabidopsis thaliana[J]. FEBS Lett, 2009, 583(6): 992-996.
doi: 10.1016/j.febslet.2009.02.036 URL |
[13] |
Casadesús A, Bouchikh R, Pérez-Llorca M, et al. Linking jasmonates with vitamin E accumulation in plants: a case study in the Mediterranean shrub Cistus albidus L[J]. Planta, 2021, 253(2): 1-16.
doi: 10.1007/s00425-020-03501-3 |
[14] |
Maeda H, Sage TL, Isaac G, et al. Tocopherols modulate extraplastidic polyunsaturated fatty acid metabolism in Arabidopsis at low temperature[J]. Plant Cell, 2008, 20(2): 452-470.
doi: 10.1105/tpc.107.054718 URL |
[15] |
König S, Mosblech A, Heilmann I. Stress-inducible and constitutive phosphoinositide pools have distinctive fatty acid patterns in Arabidopsis thaliana[J]. FASEB J, 2007, 21(9): 1958-1967.
doi: 10.1096/fsb2.v21.9 URL |
[16] | 董强. 大豆维生素E合成酶基因的克隆与功能分析[D]. 武汉: 华中农业大学, 2016. |
Dong Q. Cloning and functional analysis of soybean vitamin E synthase gene[D]. Wuhan: Huazhong Agricultural University, 2016. | |
[17] |
Czarnocka W, Karpiński S. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses[J]. Free Radic Biol Med, 2018, 122: 4-20.
doi: 10.1016/j.freeradbiomed.2018.01.011 URL |
[18] | 郭娟, 游文慧, 彭秋菊, 等. 辣椒γ-生育酚甲基转移酶(γ-TMT)基因克隆和生物信息学分析[J]. 分子植物育种, 2019, 17(9): 2791-2798. |
Guo J, You WH, Peng QJ, et al. Cloning and bioinformatics analysis of gamma-tocopherol methyl-transferase(γ-TMT)gene in Capsicum annuum[J]. Mol Plant Breed, 2019, 17(9): 2791-2798. | |
[19] | 刘婷.花生维生素E含量近红外模型构建及生育酚甲基转移酶基因(γ-TMT)序列分析[D]. 郑州: 河南农业大学, 2018. |
Liu T. Construction of near infrared model of vitamin E content in peanut and sequence analysis of tocopherol methyltransferase gene(γ-TMT)[D]. Zhengzhou: Henan Agricultural University, 2018. | |
[20] |
Lee BK, Kim SL, Kim KH, et al. Seed specific expression of Perilla γ-tocopherol methyltransferase gene increases α-tocopherol content in transgenic Perilla(Perilla frutescens)[J]. Plant Cell Tiss Organ Cult, 2008, 92(1): 47-54.
doi: 10.1007/s11240-007-9301-9 URL |
[21] | 马江涛.紫花苜蓿γ-生育酚甲基转移酶(γ-TMT)基因在响应非生物胁迫中的功能研究[D]. 北京: 中国农业科学院, 2020. |
Ma JT.Study on the function of alfalfa γ-tocopherol methyltransferase(γ-TMT)gene in response to abiotic stress[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. | |
[22] |
Ma JT, Qiu DY, Pang YZ, et al. Diverse roles of tocopherols in response to abiotic and biotic stresses and strategies for genetic biofortification in plants[J]. Mol Breeding, 2020, 40(2): 18.
doi: 10.1007/s11032-019-1097-x |
[23] |
Nanda AK, El Habti A, Hocart CH, et al. ERECTA receptor-kinases play a key role in the appropriate timing of seed germination under changing salinity[J]. J Exp Bot, 2019, 70(21): 6417-6435.
doi: 10.1093/jxb/erz385 pmid: 31504732 |
[24] | 贾会丽, 王学敏, 高洪文, 等. 紫花苜蓿γ-生育酚甲基转移酶(γ-TMT)基因的克隆与逆境下的表达分析[J]. 草业学报, 2012, 21(6): 198-206. |
Jia HL, Wang XM, Gao HW, et al. Cloning the gene of γ-tocopherol methyltransferase(γ-TMT)from alfalfa and expression analysis in adverse situations[J]. Acta Prataculturae Sin, 2012, 21(6): 198-206. | |
[25] |
Renu, Sarim KM, Sahu U, et al. Augmentation of metal-tolerant bacteria elevates growth and reduces metal toxicity in spinach[J]. Bioremediation J, 2021, 25(2): 108-127.
doi: 10.1080/10889868.2020.1844133 URL |
[26] |
Liu XL, Hua XJ, Guo J, et al. Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana[J]. Biotechnol Lett, 2008, 30(7): 1275-1280.
doi: 10.1007/s10529-008-9672-y URL |
[27] |
Kocsy G, Laurie R, Szalai G, et al. Genetic manipulation of proline levels affects antioxidants in soybean subjected to simultaneous drought and heat stresses[J]. Physiol Plant, 2005, 124(2): 227-235.
doi: 10.1111/ppl.2005.124.issue-2 URL |
[28] |
Fang XF, Zhao GZ, Zhang S, et al. Chloroplast-to-nucleus signaling regulates microRNA biogenesis in Arabidopsis[J]. Dev Cell, 2019, 48(3): 371-382.e4.
doi: 10.1016/j.devcel.2018.11.046 URL |
[29] |
Espinoza A, San Martín A, López-Climent M, et al. Engineered drought-induced biosynthesis of α-tocopherol alleviates stress-induced leaf damage in tobacco[J]. J Plant Physiol, 2013, 170(14): 1285-1294.
doi: 10.1016/j.jplph.2013.04.004 URL |
[30] |
Rohmer M. Mevalonate-independent methylerythritol phosphate pathway for isoprenoid biosynthesis. Elucidation and distribution[J]. Pure Appl Chem, 2003, 75(2/3): 375-388.
doi: 10.1351/pac200375020375 URL |
[31] | 刘谢香, 常汝镇, 关荣霞, 等. 大豆出苗期耐盐性鉴定方法建立及耐盐种质筛选[J]. 作物学报, 2020, 46(1): 1-8. |
Liu XX, Chang RZ, Guan RX, et al. Establishment of screening method for salt tolerant soybean at emergence stage and screening of tolerant germplasm[J]. Acta Agron Sin, 2020, 46(1): 1-8.
doi: 10.3724/SP.J.1006.2020.94062 URL |
|
[32] | 吴政霖, 章有知. PEG模拟干旱胁迫下外源生长调节剂对大豆生理生化指标的影响[J]. 湖北农业科学, 2019, 58(6): 16-19, 23. |
Wu ZL, Zhang YZ. Effects of exogenous auxin on physiological and biochemical characteristics of soybean under PEG simulated drought stress[J]. Hubei Agric Sci, 2019, 58(6): 16-19, 23. | |
[33] | 鲍智娟. 脱落酸和水杨酸处理大豆对其幼苗抗冷性影响的研究[J]. 白城师范学院学报, 2015, 29(11): 37-42. |
Bao Z. Research on the cold resistance of soybean seedlings processed by abscisic acid and salicylic acid[J]. J Baicheng Norm Univ, 2015, 29(11): 37-42. | |
[34] | 包乌日娜, 张冬梅, 周波, 等. PEG胁迫对杂交大豆开花期生理特性的影响[J]. 内蒙古民族大学学报: 自然科学版, 2018, 33(1): 62-67. |
Bao WRN, Zhang DM, Zhou B, et al. Effects of PEG stress on physiological characteristics of hybrid soybean at flowering stage[J]. J Inn Mong Univ Natl Nat Sci, 2018, 33(1): 62-67. | |
[35] | 赵霞, 曹改萍, 王敏, 等. 高效液相色谱法测定大豆维生素E方法的优化[J]. 山西农业科学, 2020, 48(4): 520-526. |
Zhao X, Cao GP, Wang M, et al. Optimization of determination methods of soybean vitamin E by high performance liquid chromatography[J]. J Shanxi Agric Sci, 2020, 48(4): 520-526. | |
[36] | 彭嬿雯, 王波, 刘阿静, 等. 超高效合相色谱(UPC2)技术快速测定植物油中的维生素A和维生素E[J]. 中国油脂, 2022, 47(1): 147-152. |
Peng YW, Wang B, Liu AJ, et al. Rapid determination of vitamin A and vitamin E in vegetable oil based on ultra high performance convergence chromatography(UPC2)[J]. China Oils Fats, 2022, 47(1): 147-152. | |
[37] | 郑世英, 萧蓓蕾, 金桂芳. NaCl胁迫对野生大豆和栽培大豆叶绿素及光合特性的影响[J]. 大豆科学, 2013, 32(4): 486-489. |
Zheng SY, Xiao BL, Jin GF. Effect of NaCl stress on chlorophyll content and photosynthetic characteristics of Glycine soja and Glycine max[J]. Soybean Sci, 2013, 32(4): 486-489. | |
[38] |
赵如皓, 丁俊男, 于少鹏, 等. NaCl胁迫对野生大豆幼苗生理及叶绿素荧光特性的影响[J]. 中国农学通报, 2022, 38(14): 23-29.
doi: 10.11924/j.issn.1000-6850.casb2021-0670 |
Zhao RH, Ding JN, Yu SP, et al. Effects of NaCl stress on physiological and chlorophyll fluorescence properties of wild soybean seedlings[J]. Chin Agric Sci Bull, 2022, 38(14): 23-29.
doi: 10.11924/j.issn.1000-6850.casb2021-0670 |
|
[39] | 侯鹏浩, 杨万明, 杜维俊, 等. 不同程度盐胁迫对大豆苗期生物量及生理指标的影响[J]. 大豆科学, 2020, 39(3): 422-430. |
Hou PH, Yang WM, Du WJ, et al. Effects of different degree salt stress on biomass and physiological indexes of soybean seedling[J]. Soybean Sci, 2020, 39(3): 422-430. | |
[40] | 于磊, 刘宗林, 徐宗艺, 等. NaCl胁迫对大豆生理特征的影响[J]. 安徽农业科学, 2019, 47(24): 39-41. |
Yu L, Liu ZL, Xu ZY, et al. Physiological characteristics of soybean under NaCl stress[J]. J Anhui Agric Sci, 2019, 47(24): 39-41. | |
[41] | 谢祝捷, 姜东, 戴廷波, 等. 植物的糖信号及其对碳氮代谢基因的调控[J]. 植物生理学通讯, 2002, 38(4): 399-405. |
Xie ZJ, Jiang D, Dai TB, et al. Sugar signaling in plants and their regulation of carbon and nitrogen metabolism genes[J]. Plant Physiol Commun, 2002, 38(4): 399-405. | |
[42] | 马莉, 陈丽梅, 刘迪秋, 等. 植物丝氨酸羟甲基转移酶及其生理作用研究进展[J]. 安徽农业科学, 2008, 36(4): 1357-1359, 1404. |
Ma L, Chen LM, Liu DQ, et al. Research progresses on the molecular properties and physiological functions of plant serine hydroxymethyltransferase[J]. J Anhui Agric Sci, 2008, 36(4): 1357-1359, 1404. | |
[43] | 石鹏, 曹红星, 李东霞, 等. 油棕等植物γ-生育酚甲基转移酶的生物信息学分析[J]. 热带作物学报, 2015, 36(2): 308-315. |
Shi P, Cao HX, Li DX, et al. Bioinformatics analysis of γ-tocopherol methyltransferase from plants including oil palm(Elaeis guineensis jacq.)[J]. Chin J Trop Crops, 2015, 36(2): 308-315. | |
[44] | 邹礼平, 高和平. 棉花γ-生育酚甲基转移酶基因全长cDNA的克隆与序列分析[J]. 江苏农业学报, 2009, 25(3): 490-493. |
Zou LP, Gao HP. Cloning and sequence analysis of γ-tocopherol methyltransferase(γ-TMT)cDNA from cotton(Gossypium hirsutum)[J]. Jiangsu J Agric Sci, 2009, 25(3): 490-493. | |
[45] |
石广成, 杨万明, 杜维俊, 等. 大豆耐盐种质的筛选及其耐盐生理特性分析[J]. 生物技术通报, 2022, 38(4): 174-183.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0843 |
Shi GC, Yang WM, Du WJ, et al. Screening of salt-tolerant soybean germplasm and physiological characteristics analysis of its salt tolerance[J]. Biotechnol Bull, 2022, 38(4): 174-183. | |
[46] | 马灵玉, 王广超, 张曦, 等. 拟南芥子叶发育过程中叶绿体特征的量化及分布分析[J]. 电子显微学报, 2021, 40(3): 270-278. |
Ma LY, Wang GC, Zhang X, et al. Quantification and distribution analysis of cotyledonal chloroplasts during seeding development in Arabidopsis[J]. J Chin Electron Microsc Soc, 2021, 40(3): 270-278. | |
[47] | 邓丽娜. 光调控下叶绿体发育的变化[D]. 北京: 北京林业大学, 2007. |
Deng LN. Changes of chloroplast development under light regulation[D]. Beijing: Beijing Forestry University, 2007. | |
[48] | 许基磊, 汪兴中, 范吉标. 盐胁迫诱导野大豆生理和光合作用的变化[J]. 植物科学学报, 2022, 40(6): 829-838. |
Xu JL, Wang XZ, Fan JB. Changes in physiology and photosynthesis of Glycine soja Sieb. et Zucc. induced by salt stress[J]. Plant Sci J, 2022, 40(6): 829-838. | |
[49] |
Zhang CX, Gai Y, Wang WQ, et al. Construction and analysis of a plant transformation binary vector pBDGG harboring a bi-directional promoter fusing dual visible reporter genes[J]. J Genet Genom, 2008, 35(4): 245-249.
doi: 10.1016/S1673-8527(08)60034-X URL |
[50] |
Dwiyanti MS, Tetsuya Y, Masako S, et al. Genetic variation of γ-tocopherol methyltransferase gene contributes to elevated α-tocopherol content in soybean seeds[J]. BMC Plant Biol, 2011, 11(1): 152.
doi: 10.1186/1471-2229-11-152 |
[51] | 张明, 陈德富, 王永芹, 等. FAE1启动子的克隆和转γ-TMT基因大豆的获得[J]. 南开大学学报: 自然科学版, 2010, 43(6): 35-41. |
Zhang M, Chen DF, Wang YQ, et al. Cloning of fatty acid elongase 1 promoter and obtainment of γ-tocopherol methyltransferase transgenic soybean[J]. J Nankai Univ: Nat Sci Ed, 2010, 43(6): 35-41. | |
[52] |
Tewari K, Kumar V, Kumar A, et al. Molecular cloning and functional analysis of the promoter of γ-Tocopherol Methyl Transferase(γ-TMT)gene of soybean(Glycine max)[J]. 3 Biotech, 2018, 8(8): 325.
doi: 10.1007/s13205-018-1347-3 |
[53] |
Dwiyanti MS, Maruyama S, Hirono M, et al. Natural diversity of seed α-tocopherol ratio in wild soybean(Glycine soja)germplasm collection[J]. Breed Sci, 2016, 66(4): 653-657.
doi: 10.1270/jsbbs.16028 URL |
[54] |
Rani A, Kumar V, Verma SK, et al. Tocopherol content and profile of soybean: genotypic variability and correlation studies[J]. J Amer Oil Chem Soc, 2007, 84(4): 377-383.
doi: 10.1007/s11746-007-1040-x URL |
[55] |
Tata SK, Choi JY, Jung JY, et al. Laticifer tissue-specific activation of the Hevea SRPP promoter in Taraxacum brevicorniculatum and its regulation by light, tapping and cold stress[J]. Ind Crops Prod, 2012, 40: 219-224.
doi: 10.1016/j.indcrop.2012.03.012 URL |
[56] |
Zhao SP, Lu D, Yu TF, et al. Genome-wide analysis of the YABBY family in soybean and functional identification of GmYABBY10 involvement in high salt and drought stresses[J]. Plant Physiol Biochem, 2017, 119: 132-146.
doi: 10.1016/j.plaphy.2017.08.026 URL |
[57] |
Fu JY, Wang XC, Mao TF, et al. Identification and functional analysis of germin-like protein Gene family in tea plant(Camellia sinensis)[J]. Sci Hortic, 2018, 234: 166-175.
doi: 10.1016/j.scienta.2018.02.024 URL |
[58] |
Ma JT, Qiu DY, Gao HW, et al. Over-expression of a γ-tocopherol methyltransferase gene in vitamin E pathway confers PEG-simulated drought tolerance in alfalfa[J]. BMC plant biol, 2020, 20(1): 226.
doi: 10.1186/s12870-020-02424-1 pmid: 32429844 |
[59] |
Guo Y, Li D, Liu TT, et al. Effect of overexpression of γ-tocopherol methyltransferase on α-tocopherol and fatty acid accumulation and tolerance to salt stress during seed germination in Brassica napus L[J]. Int J Mol Sci, 2022, 23(24): 15933.
doi: 10.3390/ijms232415933 URL |
[60] |
Zhu QS, Zhang J, Yu HJ, et al. Maize Cd-tolerant ZmVTE4 encoding gamma-tocopherol-methyl-transferase alleviated Cd-toxicity through its product alpha-tocopherol[J]. Environmental and Experimental Botany, 2019, 158: 171-179.
doi: 10.1016/j.envexpbot.2018.11.019 URL |
[61] |
Zhu QS, Zhang J, Yu HJ, et al. Maize Cd-tolerant ZmVTE4 encoding gamma-tocopherol-methyl-transferase alleviated Cd-toxicity through its product alpha-tocopherol[J]. Environmental and Experimental Botany, 2019, 158:171-179.
doi: 10.1016/j.envexpbot.2018.11.019 URL |
[1] | DING Li, DU Ting-ting, TANG Qiong-ying, GAO Quan-xin, YI Shao-kui, YANG Guo-liang. Analyses of Endocrine Regulation and Expression of Genes Related to the Molting Signaling Pathway in the Molting Cycle of Macrobrachium rosenbergii [J]. Biotechnology Bulletin, 2023, 39(9): 300-310. |
[2] | LIU Bao-cai, CHEN Jing-ying, ZHANG Wu-jun, HUANG Ying-zhen, ZHAO Yun-qing, LIU Jian-chao, WEI Zhi-cheng. Characteristics Analysis of Seed Microrhizome Gene Expression of Polygonatum cyrtonema [J]. Biotechnology Bulletin, 2023, 39(8): 220-233. |
[3] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[4] | HU Hai-lin, XU Li, LI Xiao-xu, WANG Chen-can, MEI Man, DING Wen-jing, ZHAO Yuan-yuan. Advances in the Regulation of Plant Growth, Development and Stress Physiology by Small Peptide Hormones [J]. Biotechnology Bulletin, 2023, 39(7): 13-25. |
[5] | WANG Shuai, FENG Yu-mei, BAI Miao, DU Wei-jun, YUE Ai-qin. Functional Analysis of Soybean Gene GmHMGR Responding to Exogenous Hormones and Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(7): 131-142. |
[6] | LI Wen-chen, LIU Xin, KANG Yue, LI Wei, QI Ze-zheng, YU Lu, WANG Fang. Optimization and Application of Tobacco Rattle Virus-induced Gene Silencing System in Soybean [J]. Biotechnology Bulletin, 2023, 39(7): 143-150. |
[7] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[8] | WANG Bing, ZHAO Hui-na, YU Jing, YU Shi-zhou, LEI Bo. Research Progress in the Regulation of Plant Branch Development [J]. Biotechnology Bulletin, 2023, 39(5): 14-22. |
[9] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[10] | HOU Xiao-yuan, CHE Zheng-zheng, LI Heng-jing, DU Chong-yu, XU Qian, WANG Qun-qing. Construction of the Soybean Membrane System cDNA Library and Interaction Proteins Screening for Effector PsAvr3a [J]. Biotechnology Bulletin, 2023, 39(4): 268-276. |
[11] | GE Yan-rui, ZHAO Ran, XU Jing, LI Ruo-fan, HU Yun-tao, LI Rui-li. Advances in the Development and Regulation of Vascular Cambium [J]. Biotechnology Bulletin, 2023, 39(3): 13-25. |
[12] | YANG Chun-hong, DONG Lu, CHEN Lin, SONG Li. Characterization of Soybean VAS1 Gene Family and Its Involvement in Lateral Root Development [J]. Biotechnology Bulletin, 2023, 39(3): 133-142. |
[13] | YU Shi-xia, JIANG Yu-tong, LIN Wen-hui. Research Progress in Signals and Molecular Mechanisms of Ovule Primordia Initiation [J]. Biotechnology Bulletin, 2023, 39(2): 1-9. |
[14] | CHEN Yi-bo, YANG Wan-ming, YUE Ai-qin, WANG Li-xiang, DU Wei-jun, WANG Min. Construction of Soybean Genetic Map Based on SLAF Markers and QTL Mapping Analysis of Salt Tolerance at Seedling Stage [J]. Biotechnology Bulletin, 2023, 39(2): 70-79. |
[15] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||