Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (11): 61-73.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0139
Previous Articles Next Articles
CHEN Guang-xia1(), LI Xiu-jie1, JIANG Xi-long1, SHAN Lei2, ZHANG Zhi-chang3, LI Bo1()
Received:
2023-02-16
Online:
2023-11-26
Published:
2023-12-20
Contact:
LI Bo
E-mail:cguangxia2004@126.com;sdtalibo@163.com
CHEN Guang-xia, LI Xiu-jie, JIANG Xi-long, SHAN Lei, ZHANG Zhi-chang, LI Bo. Research Progress in Plant Small Signaling Peptides Involved in Abiotic Stress Response[J]. Biotechnology Bulletin, 2023, 39(11): 61-73.
类别 Classification | 基因 Gene | 功能 Function | 物种 Species | 参考文献Reference |
---|---|---|---|---|
胞外非分泌型小肽Extracellular non-secretory small peptides | Systemin系统素 | 植物免疫反应Plant immune response | 番茄Tomato | [ |
AtPep1内源多肽 | 抗病原菌防御Anti-pathogen defense | 拟南 Arabidopsis | [ | |
胞内非分泌型小肽Intracellular non-secretory small peptides | ENOD40 | 植物固氮过程Plant nitrogen fixation process | 豆类Legumes | [ |
PLS(Polaris) | 根生长Root growth | 拟南芥Arabidopsis | [ | |
ROT4/DVL1 | 极性细胞增殖Polar cells proliferation | 拟南芥Arabidopsis | [ | |
胞外翻译后修饰分泌型小肽 Extracellular post-translationally modified secretory small peptides | CLE(CLAVATA3/Embryo Surrounding Region-Related) | 分生组织分化Meristem differentiation | 拟南芥Arabidopsis | [ |
TDIF | 木质部导管分化Xylem vessel differentiation | 拟南芥Arabidopsis | [ | |
PSK(植物硫肽素Phytosulfokine) | 植物生长发育和免疫应答Plant growth and development and immune response | 水稻Rice | [ | |
PSY1(八氢番茄红素合成酶Phytoene synthase) | 细胞增殖和膨胀Cell proliferation and expansion | 拟南芥Arabidopsis | [ | |
CEP(C端编码的肽C-terminally encode peptide) | 植物发育Plant development | 拟南芥Arabidopsis | [ | |
RGF1 | 根分生组织生长Root meristem growth | 拟南芥Arabidopsis | [ | |
IDA(花序缺乏脱落Inflorescence deficient in abscission) | 花器官脱落Abscission of floral organs | 拟南芥Arabidopsis | [ | |
CLE-RS1(CLAVATA3/ESR-related-root signal1) | 根结瘤Root nodulation | 豆类Legumes | [ | |
胞外富含半胱氨酸分泌型小肽 Extracellular cysteine-rich peptides secretory small peptides | PDFs植物防御素 | 植物先天免疫 Plant innate immunity | 拟南芥Arabidopsis | [ |
RALF(快速碱化因子Rapid alkalinization factor) | 细胞快速碱性化Cells rapid alkalization | 拟南芥Arabidopsis | [ | |
TPD1(Tapetum determinant l) | 绒毡层细胞命运决定Tapetal cell fate determination | 拟南芥Arabidopsis | [ | |
LURE | 花粉管导向Pollen tube guidance | 拟南芥Arabidopsis | [ | |
EA1(Egg apparatus 1) | 花粉管的形成Formation of pollen tube | 玉米Maize | [ | |
EPF(表皮模式因子Epidermal patterning factor) | 气孔发育Plant tomatal development | 拟南芥Arabidopsis | [ | |
LAT52 | 花粉萌发Pollen germination | 拟南芥Arabidopsis | [ | |
STOMAGEN气孔蛋白 | 气孔形成Stomatal formation | 拟南芥Arabidopsis | [ |
Table 1 Systematic classification of plant small signaling peptides and relevant functions of genes
类别 Classification | 基因 Gene | 功能 Function | 物种 Species | 参考文献Reference |
---|---|---|---|---|
胞外非分泌型小肽Extracellular non-secretory small peptides | Systemin系统素 | 植物免疫反应Plant immune response | 番茄Tomato | [ |
AtPep1内源多肽 | 抗病原菌防御Anti-pathogen defense | 拟南 Arabidopsis | [ | |
胞内非分泌型小肽Intracellular non-secretory small peptides | ENOD40 | 植物固氮过程Plant nitrogen fixation process | 豆类Legumes | [ |
PLS(Polaris) | 根生长Root growth | 拟南芥Arabidopsis | [ | |
ROT4/DVL1 | 极性细胞增殖Polar cells proliferation | 拟南芥Arabidopsis | [ | |
胞外翻译后修饰分泌型小肽 Extracellular post-translationally modified secretory small peptides | CLE(CLAVATA3/Embryo Surrounding Region-Related) | 分生组织分化Meristem differentiation | 拟南芥Arabidopsis | [ |
TDIF | 木质部导管分化Xylem vessel differentiation | 拟南芥Arabidopsis | [ | |
PSK(植物硫肽素Phytosulfokine) | 植物生长发育和免疫应答Plant growth and development and immune response | 水稻Rice | [ | |
PSY1(八氢番茄红素合成酶Phytoene synthase) | 细胞增殖和膨胀Cell proliferation and expansion | 拟南芥Arabidopsis | [ | |
CEP(C端编码的肽C-terminally encode peptide) | 植物发育Plant development | 拟南芥Arabidopsis | [ | |
RGF1 | 根分生组织生长Root meristem growth | 拟南芥Arabidopsis | [ | |
IDA(花序缺乏脱落Inflorescence deficient in abscission) | 花器官脱落Abscission of floral organs | 拟南芥Arabidopsis | [ | |
CLE-RS1(CLAVATA3/ESR-related-root signal1) | 根结瘤Root nodulation | 豆类Legumes | [ | |
胞外富含半胱氨酸分泌型小肽 Extracellular cysteine-rich peptides secretory small peptides | PDFs植物防御素 | 植物先天免疫 Plant innate immunity | 拟南芥Arabidopsis | [ |
RALF(快速碱化因子Rapid alkalinization factor) | 细胞快速碱性化Cells rapid alkalization | 拟南芥Arabidopsis | [ | |
TPD1(Tapetum determinant l) | 绒毡层细胞命运决定Tapetal cell fate determination | 拟南芥Arabidopsis | [ | |
LURE | 花粉管导向Pollen tube guidance | 拟南芥Arabidopsis | [ | |
EA1(Egg apparatus 1) | 花粉管的形成Formation of pollen tube | 玉米Maize | [ | |
EPF(表皮模式因子Epidermal patterning factor) | 气孔发育Plant tomatal development | 拟南芥Arabidopsis | [ | |
LAT52 | 花粉萌发Pollen germination | 拟南芥Arabidopsis | [ | |
STOMAGEN气孔蛋白 | 气孔形成Stomatal formation | 拟南芥Arabidopsis | [ |
[1] |
Sun KJ, Wook JB, Jungmook K. Signaling peptides regulating abiotic stress responses in plants[J]. Front Plant Sci, 2021, 12: 704490.
doi: 10.3389/fpls.2021.704490 URL |
[2] |
Xie HP, Zhao W, Li WL, et al. Small signaling peptides mediate plant adaptions to abiotic environmental stress[J]. Planta, 2022, 255(4): 72.
doi: 10.1007/s00425-022-03859-6 pmid: 35218440 |
[3] |
Olsson V, Joos L, Zhu SS, et al. Look closely, the beautiful may be small: precursor-derived peptides in plants[J]. Annu Rev Plant Biol, 2019, 70: 153-186.
doi: 10.1146/annurev-arplant-042817-040413 pmid: 30525926 |
[4] |
Zhang HY, Zhang H, Lin JX. Systemin-mediated long-distance systemic defense responses[J]. New Phytol, 2020, 226(6): 1573-1582.
doi: 10.1111/nph.16495 pmid: 32083726 |
[5] |
Hirakawa Y. CLAVATA3, a plant peptide controlling stem cell fate in the meristem[J]. Peptides, 2021, 142: 170579.
doi: 10.1016/j.peptides.2021.170579 URL |
[6] |
Fletcher JC. Recent advances in Arabidopsis CLE peptide signaling[J]. Trends Plant Sci, 2020, 25(10): 1005-1016.
doi: 10.1016/j.tplants.2020.04.014 URL |
[7] |
Aggarwal S, Kumar A, Jain M, et al. C-terminally encoded peptides(CEPs)are potential mediators of abiotic stress response in plants[J]. Physiol Mol Biol Plants, 2020, 26(10): 2019-2033.
doi: 10.1007/s12298-020-00881-4 |
[8] |
Hammes UZ. Novel roles for phytosulfokine signalling in plant-pathogen interactions[J]. Plant Cell Environ, 2016, 39(7): 1393-1395.
doi: 10.1111/pce.v39.7 URL |
[9] |
McCubbin AG, Kao T. Molecular recognition and response in pollen and pistil interactions[J]. Annu Rev Cell Dev Biol, 2000, 16: 333-364.
pmid: 11031240 |
[10] |
Zhong S, Li L, Wang ZJ, et al. RALF peptide signaling controls the polytubey block in Arabidopsis[J]. Science, 2022, 375(6578): 290-296.
doi: 10.1126/science.abl4683 URL |
[11] |
Yamada M, Han XW, Benfey PN. RGF1 controls root meristem size through ROS signalling[J]. Nature, 2020, 577(7788): 85-88.
doi: 10.1038/s41586-019-1819-6 |
[12] | Kenny FN, Drymoussi Z, Delaine-Smith R, et al. Tissue stiffening promotes keratinocyte proliferation through activation of epidermal growth factor signaling[J]. J Cell Sci, 2018, 131(10): jcs215780. |
[13] |
Kosentka PZ, Overholt A, Maradiaga R, et al. EPFL signals in the boundary region of the SAM restrict its size and promote leaf initiation[J]. Plant Physiol, 2019, 179(1): 265-279.
doi: 10.1104/pp.18.00714 pmid: 30409857 |
[14] |
Okuda S. Molecular mechanisms of plant peptide binding to receptors[J]. Peptides, 2021, 144: 170614.
doi: 10.1016/j.peptides.2021.170614 URL |
[15] |
Cheng W, Wang ZT, Xu F, et al. Genome-wide identification of LRR-RLK family in Saccharum and expression analysis in response to biotic and abiotic stress[J]. Curr Issues Mol Biol, 2021, 43(3): 1632-1651.
doi: 10.3390/cimb43030116 pmid: 34698114 |
[16] |
Li XX, Salman A, Guo C, et al. Identification and characterization of LRR-RLK family genes in potato reveal their involvement in peptide signaling of cell fate decisions and biotic/abiotic stress responses[J]. Cells, 2018, 7(9): 120.
doi: 10.3390/cells7090120 URL |
[17] | 蔺欢, 王俊娟, 孙振婷, 等. 植物小分子肽的研究进展[J]. 西北植物学报, 2021, 41(1): 168-180. |
Lin H, Wang JJ, Sun ZT, et al. The research progress of plant small molecular peptides[J]. Acta Bot Boreali Occidentalia Sin, 2021, 41(1): 168-180. | |
[18] | 孙翔, 程丽军, 刘志文, 等. 小肽激素调控植物生殖发育的研究进展[J]. 自然杂志, 2021, 43(2): 105-111. |
Sun X, Cheng LJ, Liu ZW, et al. Peptides regulators in plant reproduction[J]. Chin J Nat, 2021, 43(2): 105-111.
doi: 10.3969/j.issn.0253-9608.2021.02.004 |
|
[19] |
Safaeizadeh M, Boller T. Differential and tissue-specific activation pattern of the AtPROPEP and AtPEPR genes in response to biotic and abiotic stress in Arabidopsis thaliana[J]. Plant Signal Behav, 2019, 14(5): e1590094.
doi: 10.1080/15592324.2019.1590094 URL |
[20] |
Staehelin C, Charon C, Boller T, et al. Medicago truncatula plants overexpressing the early nodulin gene enod40 exhibit accelerated mycorrhizal colonization and enhanced formation of arbuscules[J]. PNAS, 2001, 98(26): 15366-15371.
pmid: 11752473 |
[21] |
Charon C, Johansson C, Kondorosi E, et al. enod40 induces dedifferentiation and division of root cortical cells in legumes[J]. PNAS, 1997, 94(16): 8901-8906.
doi: 10.1073/pnas.94.16.8901 pmid: 11038563 |
[22] |
Liu JL, Rowe J, Lindsey K. Hormonal crosstalk for root development: a combined experimental and modeling perspective[J]. Front Plant Sci, 2014, 5: 116.
doi: 10.3389/fpls.2014.00116 pmid: 24734037 |
[23] |
Ikeuchi M, Yamaguchi T, Kazama T, et al. ROTUNDIFOLIA4 regulates cell proliferation along the body axis in Arabidopsis shoot[J]. Plant Cell Physiol, 2011, 52(1): 59-69.
doi: 10.1093/pcp/pcq138 pmid: 20826883 |
[24] |
Yang SH, Bai JP, Wang JH. TDIF peptides regulate root growth by affecting auxin homeostasis and PINs expression in Arabidopsis thaliana[J]. Planta, 2020, 251(6): 109.
doi: 10.1007/s00425-020-03406-1 |
[25] |
Tost AS, Kristensen A, Olsen LI, et al. The PSY peptide family-expression, modification and physiological implications[J]. Genes, 2021, 12(2): 218.
doi: 10.3390/genes12020218 URL |
[26] |
Santiago J, Brandt B, Wildhagen M, et al. Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission[J]. eLife, 2016, 5: e15075.
doi: 10.7554/eLife.15075 URL |
[27] |
Yoro E, Nishida H, Ogawa-Ohnishi M, et al. PLENTY, a hydroxyproline O-arabinosyltransferase, negatively regulates root nodule symbiosis in Lotus japonicus[J]. J Exp Bot, 2019, 70(2): 507-517.
doi: 10.1093/jxb/ery364 URL |
[28] |
Carvalho AD, Gomes VM. Plant defensins and defensin-like peptides - biological activities and biotechnological applications[J]. Curr Pharm Des, 2011, 17(38): 4270-4293.
doi: 10.2174/138161211798999447 URL |
[29] |
Yang SL, Xie LF, Mao HZ, et al. Tapetum determinant1 is required for cell specialization in the Arabidopsis anther[J]. Plant Cell, 2003, 15(12): 2792-2804.
doi: 10.1105/tpc.016618 URL |
[30] |
Takeuchi H. The role of diverse LURE-type cysteine-rich peptides as signaling molecules in plant reproduction[J]. Peptides, 2021, 142: 170572.
doi: 10.1016/j.peptides.2021.170572 URL |
[31] |
Gray-Mitsumune M, Matton DP. The Egg apparatus 1 gene from maize is a member of a large gene family found in both monocots and dicots[J]. Planta, 2006, 223(3): 618-625.
pmid: 16341706 |
[32] |
Tang WH, Ezcurra I, Muschietti J, et al. A cysteine-rich extracellular protein, LAT52, interacts with the extracellular domain of the pollen receptor kinase LePRK2[J]. Plant Cell, 2002, 14(9): 2277-2287.
doi: 10.1105/tpc.003103 pmid: 12215520 |
[33] |
Sugano SS, Shimada T, Imai Y, et al. Stomagen positively regulates stomatal density in Arabidopsis[J]. Nature, 2010, 463(7278): 241-244.
doi: 10.1038/nature08682 |
[34] |
Murphy E, Smith S, De Smet I. Small signaling peptides in Arabidopsis development: how cells communicate over a short distance[J]. Plant Cell, 2012, 24(8): 3198-3217.
doi: 10.1105/tpc.112.099010 URL |
[35] |
Furumizu C, Aalen RB. Peptide signaling through leucine-rich repeat receptor kinases: insight into land plant evolution[J]. New Phytol, 2023, 238(3): 977-982.
doi: 10.1111/nph.18827 pmid: 36811171 |
[36] |
Mishra D, Suri GS, Kaur G, et al. Comprehensive analysis of structural, functional, and evolutionary dynamics of Leucine Rich Repeats-RLKs in Thinopyrum elongatum[J]. Int J Biol Macromol, 2021, 183: 513-527.
doi: 10.1016/j.ijbiomac.2021.04.137 pmid: 33933540 |
[37] |
Man J, Gallagher JP, Bartlett M. Structural evolution drives diversification of the large LRR-RLK gene family[J]. New Phytol, 2020, 226(5): 1492-1505.
doi: 10.1111/nph.16455 pmid: 31990988 |
[38] |
Mou SL, Zhang XX, Han ZF, et al. CLE42 binding induces PXL2 interaction with SERK2[J]. Protein Cell, 2017, 8(8): 612-617.
doi: 10.1007/s13238-017-0435-1 pmid: 28677102 |
[39] |
Schlegel J, Denay G, Wink R, et al. Control of Arabidopsis shoot stem cell homeostasis by two antagonistic CLE peptide signalling pathways[J]. eLife, 2021, 10: e70934.
doi: 10.7554/eLife.70934 URL |
[40] |
Okamoto S, Ohnishi E, Sato S, et al. Nod factor/nitrate-induced CLE genes that drive HAR1-mediated systemic regulation of nodulation[J]. Plant Cell Physiol, 2009, 50(1): 67-77.
doi: 10.1093/pcp/pcn194 pmid: 19074184 |
[41] |
Lee JS, Hnilova M, Maes M, et al. Competitive binding of antagonistic peptides fine-tunes stomatal patterning[J]. Nature, 2015, 522(7557): 439-443.
doi: 10.1038/nature14561 |
[42] |
Ge ZX, Zhao YL, Liu MC, et al. LLG2/3 are Co-receptors in BUPS/ANX-RALF signaling to regulate Arabidopsis pollen tube integrity[J]. Curr Biol, 2019, 29(19): 3256-3265.e5.
doi: 10.1016/j.cub.2019.08.032 URL |
[43] |
Tang WH, Kelley D, Ezcurra I, et al. LeSTIG1, an extracellular binding partner for the pollen receptor kinases LePRK1 and LePRK2, promotes pollen tube growth in vitro[J]. Plant J, 2004, 39(3): 343-353.
doi: 10.1111/tpj.2004.39.issue-3 URL |
[44] |
Song W, Liu L, Wang JZ, et al. Signature motif-guided identification of receptors for peptide hormones essential for root meristem growth[J]. Cell Res, 2016, 26(6): 674-685.
doi: 10.1038/cr.2016.62 pmid: 27229311 |
[45] |
Schulze-Muth P, Irmler S, Schröder G, et al. Novel type of receptor-like protein kinase from a higher plant(Catharanthus roseus): cDNA, gene, intramolecular autophosphorylation, and identification of a threonine important for auto- and substrate phosphorylation[J]. J Biol Chem, 1996, 271(43): 26684-26689.
doi: 10.1074/jbc.271.43.26684 pmid: 8900145 |
[46] |
Takahashi G, Betsuyaku S, Okuzumi N, et al. An evolutionarily conserved coreceptor gene is essential for CLAVATA signaling in Marchantia polymorpha[J]. Front Plant Sci, 2021, 12: 657548.
doi: 10.3389/fpls.2021.657548 URL |
[47] | Somssich M, Ma QJ, Weidtkamp-Peters S, et al. Real-time dynamics of peptide ligand-dependent receptor complex formation in planta[J]. Sci Signal, 2015, 8(388): ra76. |
[48] |
Sun YD, Lei L, Macho A, et al. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex[J]. Science, 2013, 342(6158): 624-628.
doi: 10.1126/science.1243825 URL |
[49] |
Pfister A, Barberon M, Alassimone J, et al. A receptor-like kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects[J]. eLife, 2014, 3: e03115.
doi: 10.7554/eLife.03115 URL |
[50] |
Bücherl CA, Jarsch IK, Schudoma C, et al. Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains[J]. eLife, 2017, 6: e25114.
doi: 10.7554/eLife.25114 URL |
[51] |
Tang J, Han ZF, Sun YD, et al. Structural basis for recognition of an endogenous peptide by the plant receptor kinase PEPR1[J]. Cell Res, 2015, 25(1): 110-120.
doi: 10.1038/cr.2014.161 pmid: 25475059 |
[52] |
Shinohara H, Mori A, Yasue N, et al. Identification of three LRR-RKs involved in perception of root meristem growth factor in Arabidopsis[J]. PNAS, 2016, 113(14): 3897-3902.
doi: 10.1073/pnas.1522639113 pmid: 27001831 |
[53] |
Zhang HQ, Lin XY, Han ZF, et al. Crystal structure of PXY-TDIF complex reveals a conserved recognition mechanism among CLE peptide-receptor pairs[J]. Cell Res, 2016, 26(5): 543-555.
doi: 10.1038/cr.2016.45 pmid: 27055373 |
[54] |
Morita J, Kato K, Nakane T, et al. Crystal structure of the plant receptor-like kinase TDR in complex with the TDIF peptide[J]. Nat Commun, 2016, 7: 12383.
doi: 10.1038/ncomms12383 pmid: 27498761 |
[55] |
Guo XL, Wang JY, Gardner M, et al. Identification of cyst nematode B-type CLE peptides and modulation of the vascular stem cell pathway for feeding cell formation[J]. PLoS Pathog, 2017, 13(2): e1006142.
doi: 10.1371/journal.ppat.1006142 URL |
[56] |
Kondo Y, Ito T, Nakagami H, et al. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling[J]. Nat Commun, 2014, 5: 3504.
doi: 10.1038/ncomms4504 pmid: 24662460 |
[57] |
Wang JZ, Li HJ, Han ZF, et al. Allosteric receptor activation by the plant peptide hormone phytosulfokine[J]. Nature, 2015, 525(7568): 265-268.
doi: 10.1038/nature14858 |
[58] |
Brookbank BP, Patel J, Gazzarrini S, et al. Role of basal ABA in plant growth and development[J]. Genes, 2021, 12(12): 1936.
doi: 10.3390/genes12121936 URL |
[59] |
Lim CW, Baek W, Jung J, et al. Function of ABA in stomatal defense against biotic and drought stresses[J]. Int J Mol Sci, 2015, 16(7): 15251-15270.
doi: 10.3390/ijms160715251 pmid: 26154766 |
[60] |
Takahashi F, Suzuki T, Osakabe Y, et al. A small peptide modulates stomatal control via abscisic acid in long-distance signalling[J]. Nature, 2018, 556(7700): 235-238.
doi: 10.1038/s41586-018-0009-2 |
[61] |
Zhang LS, Shi X, Zhang YT, et al. CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in Arabidopsis thaliana[J]. Plant Cell Environ, 2019, 42(3): 1033-1044.
doi: 10.1111/pce.v42.3 URL |
[62] |
Smith S, Zhu SS, Joos L, et al. The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis[J]. Mol Cell Proteom, 2020, 19(8): 1248-1262.
doi: 10.1074/mcp.RA119.001826 URL |
[63] |
Kumpf RP, Shi CL, Larrieu A, et al. Floral organ abscission peptide IDA and its HAE/HSL2 receptors control cell separation during lateral root emergence[J]. PNAS, 2013, 110(13): 5235-5240.
doi: 10.1073/pnas.1210835110 pmid: 23479623 |
[64] |
Zhu QK, Shao YM, Ge ST, et al. A MAPK cascade downstream of IDA-HAE/HSL2 ligand-receptor pair in lateral root emergence[J]. Nat Plants, 2019, 5(4): 414-423.
doi: 10.1038/s41477-019-0396-x pmid: 30936437 |
[65] |
Stührwohldt N, Bühler E, Sauter M, et al. Phytosulfokine(PSK)precursor processing by subtilase SBT3.8 and PSK signaling improve drought stress tolerance in Arabidopsis[J]. J Exp Bot, 2021, 72(9): 3427-3440.
doi: 10.1093/jxb/erab017 pmid: 33471900 |
[66] |
Reichardt S, Piepho HP, Stintzi A, et al. Peptide signaling for drought-induced tomato flower drop[J]. Science, 2020, 367(6485): 1482-1485.
doi: 10.1126/science.aaz5641 pmid: 32217727 |
[67] |
Liu ZY, Hou SG, Rodrigues O, et al. Phytocytokine signalling reopens stomata in plant immunity and water loss[J]. Nature, 2022, 605(7909): 332-339.
doi: 10.1038/s41586-022-04684-3 |
[68] |
Li XM, Han HP, Chen M, et al. Overexpression of OsDT11, which encodes a novel cysteine-rich peptide, enhances drought tolerance and increases ABA concentration in rice[J]. Plant Mol Biol, 2017, 93(1): 21-34.
doi: 10.1007/s11103-016-0544-x URL |
[69] |
Endo S, Shinohara H, Matsubayashi Y, et al. A novel pollen-pistil interaction conferring high-temperature tolerance during reproduction via CLE45 signaling[J]. Curr Biol, 2013, 23(17): 1670-1676.
doi: 10.1016/j.cub.2013.06.060 pmid: 23910659 |
[70] |
Haj-Amor Z, Araya T, Kim DG, et al. Soil salinity and its associated effects on soil microorganisms, greenhouse gas emissions, crop yield, biodiversity and desertification: a review[J]. Sci Total Environ, 2022, 843: 156946.
doi: 10.1016/j.scitotenv.2022.156946 URL |
[71] |
Nakaminami K, Okamoto M, Higuchi-Takeuchi M, et al. AtPep3 is a hormone-like peptide that plays a role in the salinity stress tolerance of plants[J]. PNAS, 2018, 115(22): 5810-5815.
doi: 10.1073/pnas.1719491115 pmid: 29760074 |
[72] |
Yamaguchi Y, Huffaker A, Bryan AC, et al. PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis[J]. Plant Cell, 2010, 22(2): 508-522.
doi: 10.1105/tpc.109.068874 URL |
[73] |
Chien PS, Nam HG, Chen YR. A salt-regulated peptide derived from the CAP superfamily protein negatively regulates salt-stress tolerance in Arabidopsis[J]. J Exp Bot, 2015, 66(17): 5301-5313.
doi: 10.1093/jxb/erv263 URL |
[74] |
Zhao CZ, Jiang W, Zayed O, et al. The LRXs-RALFs-FER module controls plant growth and salt stress responses by modulating multiple plant hormones[J]. Natl Sci Rev, 2020, 8(1): nwaa149.
doi: 10.1093/nsr/nwaa149 URL |
[75] |
Ohkubo Y, Tanaka M, Tabata R, et al. Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition[J]. Nat Plants, 2017, 3: 17029.
doi: 10.1038/nplants.2017.29 pmid: 28319056 |
[76] |
Delay C, Chapman K, Taleski M, et al. CEP3 levels affect starvation-related growth responses of the primary root[J]. J Exp Bot, 2019, 70(18): 4763-4774.
doi: 10.1093/jxb/erz270 pmid: 31173100 |
[77] |
Araya T, Miyamoto M, Wibowo J, et al. CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner[J]. PNAS, 2014, 111(5): 2029-2034.
doi: 10.1073/pnas.1319953111 pmid: 24449877 |
[78] |
Ma DC, Endo S, Betsuyaku S, et al. CLE2 regulates light-dependent carbohydrate metabolism in Arabidopsis shoots[J]. Plant Mol Biol, 2020, 104(6): 561-574.
doi: 10.1007/s11103-020-01059-y |
[79] |
Gutiérrez-Alanís D, Yong-Villalobos L, Jiménez-Sandoval P, et al. Phosphate starvation-dependent iron mobilization induces CLE14 expression to trigger root meristem differentiation through CLV2/PEPR2 signaling[J]. Dev Cell, 2017, 41(5): 555-570.e3.
doi: S1534-5807(17)30391-X pmid: 28586647 |
[80] |
Cederholm HM, Benfey PN. Distinct sensitivities to phosphate deprivation suggest that RGF peptides play disparate roles in Arabidopsis thaliana root development[J]. New Phytol, 2015, 207(3): 683-691.
doi: 10.1111/nph.13405 pmid: 25856240 |
[1] | JIANG Run-hai, JIANG Ran-ran, ZHU Cheng-qiang, HOU Xiu-li. Research Progress in Mechanisms of Microbial-enhanced Phytoremediation for Lead-contaminated Soil [J]. Biotechnology Bulletin, 2023, 39(8): 114-125. |
[2] | WANG Tian-yi, WANG Rong-huan, WANG Xia-qing, ZHANG Ru-yang, XU Rui-bin, JIAO Yan-yan, SUN Xuan, WANG Ji-dong, SONG Wei, ZHAO Jiu-ran. Research in Maize Dwarf Genes and Dwarf Breeding [J]. Biotechnology Bulletin, 2023, 39(8): 43-51. |
[3] | ZHANG Bei, REN Fu-sen, ZHAO Yang, GUO Zhi-wei, SUN Qiang, LIU He-juan, ZHEN Jun-qi, WANG Tong-tong, CHENG Xiang-jie. Advances in the Mechanism of Pepper in the Response to Heat Stress [J]. Biotechnology Bulletin, 2023, 39(7): 37-47. |
[4] | LI Yu-ling, MAO Xin, ZHANG Yuan-shuai, DONG Yuan-fu, LIU Cui-lan, DUAN Chun-hua, MAO Xiu-hong. Applications and Perspectives of Radiation Mutagenesis in Woody Plant Breeding [J]. Biotechnology Bulletin, 2023, 39(6): 12-30. |
[5] | LI Dian-dian, SU Yuan, LI Jie, XU Wen-tao, ZHU Long-jiao. Progress in Selection and Application of Antibacterial Aptamers [J]. Biotechnology Bulletin, 2023, 39(6): 126-132. |
[6] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[7] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[8] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[9] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[10] | ZHANG He-chen, YUAN Xin, GAO Jie, WANG Xiao-chen, WANG Hui-juan, LI Yan-min, WANG Li-min, FU Zhen-zhu, LI Bao-yin. Mechanism of Flower Petal Coloration and Molecular Breeding [J]. Biotechnology Bulletin, 2023, 39(5): 23-31. |
[11] | YANG Chun-hong, DONG Lu, CHEN Lin, SONG Li. Characterization of Soybean VAS1 Gene Family and Its Involvement in Lateral Root Development [J]. Biotechnology Bulletin, 2023, 39(3): 133-142. |
[12] | CUI Jun-mei, WEI Jia-ping, DONG Xiao-yun, WANG Ying, ZHENG Guo-qiang, LIU Zi-gang. PIP/PIPL: A Kind of Endogenous Plant Peptide Regulating Plant Stress Response and Development [J]. Biotechnology Bulletin, 2023, 39(3): 35-42. |
[13] | YI Xi, LIAO Hong-dong, ZHENG Jing-yuan. Research Progress in Plant Endophytic Fungi for Root-knot Nematode Control [J]. Biotechnology Bulletin, 2023, 39(3): 43-51. |
[14] | WANG Wei-chen, ZHAO Jin, HUANG Wei-yi, GUO Xin-zhu, LI Wan-ying, ZHANG Zhuo. Research Progress in Metabolites Produced by Bacillus Against Three Common Plant Pathogenic Fungi [J]. Biotechnology Bulletin, 2023, 39(3): 59-68. |
[15] | LI Kai-hang, WANG Hao-chen, CHENG Ke-xin, YANG Yan, JIN Yi, HE Xiao-qing. Genetic Mechanisms of Plant-microbiome Interaction by Genome-wide Association Analysis Study [J]. Biotechnology Bulletin, 2023, 39(2): 24-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||