Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (4): 1-11.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1095
GUO Hui-yan(), DONG Xue, AN Meng-nan, XIA Zi-hao(), WU Yuan-hua()
Received:
2023-11-21
Online:
2024-04-26
Published:
2024-04-30
Contact:
XIA Zi-hao, WU Yuan-hua
E-mail:2022200149@stu.syau.edu.cn;zihao8337@syau.edu.cn;wuyh09@syau.edu.cn
GUO Hui-yan, DONG Xue, AN Meng-nan, XIA Zi-hao, WU Yuan-hua. Research Progress in the Functions of Key Enzymes of Ubiquitination Modification in Plant Stress Responses[J]. Biotechnology Bulletin, 2024, 40(4): 1-11.
Species | Number of E2 genes | Reference |
---|---|---|
Dimocarpus longan | 40 | [ |
Glycine max | 71 | [ |
Maninot esculenta | 62 | [ |
Oryza sativa | 48 | [ |
Ricinus communis | 33 | [ |
Solanum lycopersicum | 59 | [ |
Solanum tuberosum | 57 | [ |
Sorghum bicolor | 53 | [ |
Zea mays | 75 | [ |
Table 1 Number of E2 genes in different plant species
Species | Number of E2 genes | Reference |
---|---|---|
Dimocarpus longan | 40 | [ |
Glycine max | 71 | [ |
Maninot esculenta | 62 | [ |
Oryza sativa | 48 | [ |
Ricinus communis | 33 | [ |
Solanum lycopersicum | 59 | [ |
Solanum tuberosum | 57 | [ |
Sorghum bicolor | 53 | [ |
Zea mays | 75 | [ |
E3的类型 E3 type | 结构特征 Structural feature | 与底物的结合方式 Binding mode |
---|---|---|
HECT | 单亚基(具有HECT结构域) | 先与被E2激活的泛素结合形成E3-泛素硫酯中间体,最后再将泛素转移到靶标蛋白上 |
RING | 单亚基(具有RING结构域,在结构域核心具有与锌离子结合的保守半胱氨酸和组氨酸残基) | 不与泛素结合,直接将泛素从E2-泛素复合体转移到底物上 |
U-box | 单亚基(具有U-box结构域) | 不与泛素结合,直接将泛素从E2-泛素复合体转移到底物上 |
CRL | 多亚基(由Cullin蛋白、RING-box蛋白和底物募集蛋白组成) | RING-box蛋白与E2-泛素复合体识别结合,Cullin蛋白发挥支架作用 |
Table 2 Classification of E3 in plants
E3的类型 E3 type | 结构特征 Structural feature | 与底物的结合方式 Binding mode |
---|---|---|
HECT | 单亚基(具有HECT结构域) | 先与被E2激活的泛素结合形成E3-泛素硫酯中间体,最后再将泛素转移到靶标蛋白上 |
RING | 单亚基(具有RING结构域,在结构域核心具有与锌离子结合的保守半胱氨酸和组氨酸残基) | 不与泛素结合,直接将泛素从E2-泛素复合体转移到底物上 |
U-box | 单亚基(具有U-box结构域) | 不与泛素结合,直接将泛素从E2-泛素复合体转移到底物上 |
CRL | 多亚基(由Cullin蛋白、RING-box蛋白和底物募集蛋白组成) | RING-box蛋白与E2-泛素复合体识别结合,Cullin蛋白发挥支架作用 |
物种Species | E3连接酶E3 ligase | 类型Type | 靶标Target | 功能Function | 参考文献Reference |
---|---|---|---|---|---|
Arabidopsis thaliana | AtATL31、AtATL6 | RING | 未知 | 负调控耐盐性 | [ |
AtPUB25、AtPUB26 | U-box | AtICE1 | 负调控耐寒性 | [ | |
AtSDR | SCF | 未知 | 负调控耐旱性,正调控耐盐性 | [ | |
AtAIRP5 | RING | AtGELP22、AtGELP23 | 正调控耐旱性 | [ | |
Capsicum annuum | CaAIRE1 | RING | CaAITP1 | 正调控耐旱性 | [ |
Cucumis sativus | CsCHYR1 | RING | CsATAF1 | 正调控耐旱性 | [ |
Glycine max | GmPUB21 | U-box | 未知 | 负调控耐旱性 | [ |
Ipomoea batatas | IbATL38 | RING | 未知 | 正调控耐盐性 | [ |
Malus pumila | MdPUB23 | U-box | MdICE1 | 负调控耐寒性 | [ |
Oryza sativa | OsRF1 | RING | OsPP2C | 正调控耐旱性和耐盐性 | [ |
OsRINGzf1 | RING | OsPIP2 | 正调控耐旱性 | [ | |
OsPUB41 | U-box | OsCLC6 | 负调控耐旱性 | [ | |
OsSIRP4 | RING | OsPEX11 | 负调控耐盐性 | [ | |
OsATL38 | RING | OsGF14d | 负调控耐寒性 | [ | |
Populus euphratica | PalPUB79 | U-box | PalWRKY77 | 正调控耐旱性 | [ |
Solanum nigrum | StATL2 | RING | StCBF1、StCBF2 | 负调控耐寒性 | [ |
Triticum aestivum | TaSDIR1 | RING | TaWRKY29 | 正调控耐旱性 | [ |
TaSADR1 | RING | 未知 | 负调控耐旱性 | [ | |
TaPUB2、TaPUB3 | U-box | 未知 | 正调控耐旱性 | [ | |
TaPUB4 | U-box | 未知 | 正调控耐旱性 | [ | |
Vitis vinifera | VyRCHC114 | RING | 未知 | 正调控耐旱性 | [ |
Table 3 Functions of E3 in plant resistance to abiotic stresses
物种Species | E3连接酶E3 ligase | 类型Type | 靶标Target | 功能Function | 参考文献Reference |
---|---|---|---|---|---|
Arabidopsis thaliana | AtATL31、AtATL6 | RING | 未知 | 负调控耐盐性 | [ |
AtPUB25、AtPUB26 | U-box | AtICE1 | 负调控耐寒性 | [ | |
AtSDR | SCF | 未知 | 负调控耐旱性,正调控耐盐性 | [ | |
AtAIRP5 | RING | AtGELP22、AtGELP23 | 正调控耐旱性 | [ | |
Capsicum annuum | CaAIRE1 | RING | CaAITP1 | 正调控耐旱性 | [ |
Cucumis sativus | CsCHYR1 | RING | CsATAF1 | 正调控耐旱性 | [ |
Glycine max | GmPUB21 | U-box | 未知 | 负调控耐旱性 | [ |
Ipomoea batatas | IbATL38 | RING | 未知 | 正调控耐盐性 | [ |
Malus pumila | MdPUB23 | U-box | MdICE1 | 负调控耐寒性 | [ |
Oryza sativa | OsRF1 | RING | OsPP2C | 正调控耐旱性和耐盐性 | [ |
OsRINGzf1 | RING | OsPIP2 | 正调控耐旱性 | [ | |
OsPUB41 | U-box | OsCLC6 | 负调控耐旱性 | [ | |
OsSIRP4 | RING | OsPEX11 | 负调控耐盐性 | [ | |
OsATL38 | RING | OsGF14d | 负调控耐寒性 | [ | |
Populus euphratica | PalPUB79 | U-box | PalWRKY77 | 正调控耐旱性 | [ |
Solanum nigrum | StATL2 | RING | StCBF1、StCBF2 | 负调控耐寒性 | [ |
Triticum aestivum | TaSDIR1 | RING | TaWRKY29 | 正调控耐旱性 | [ |
TaSADR1 | RING | 未知 | 负调控耐旱性 | [ | |
TaPUB2、TaPUB3 | U-box | 未知 | 正调控耐旱性 | [ | |
TaPUB4 | U-box | 未知 | 正调控耐旱性 | [ | |
Vitis vinifera | VyRCHC114 | RING | 未知 | 正调控耐旱性 | [ |
物种Species | E3连接酶E3 ligase | 类型Type | 靶标Target | 功能Function | 参考文献Reference |
---|---|---|---|---|---|
Arabidopsis thaliana | AtMUSE16 | RING | AtRPS2 | 正调控免疫反应 | [ |
AtPUB4 | U-box | AtCERK1 | 正调控活性氧产生 | [ | |
AtKEG | RING | AtMKK4、AtMKK5 | 正调控免疫反应 | [ | |
Glycine max | GmSAUL1 | U-box | 未知 | 负调控抗大豆花叶病毒 | [ |
Nicotiana tabacum | NtRFP1 | RING | βC1 | 正调控抗中国番茄黄曲叶病毒侵染 | [ |
NtRNF217 | RING | 未知 | 正调控过氧化氢酶和过氧化物酶活性 | [ | |
Nicotiana benthamiana | NbubE3R1 | RING | αa | 正调控抗竹花叶病毒侵染 | [ |
NbSKP1 | SCF | βC1 | 负调控抗木尔坦棉花曲叶病毒侵染 | [ | |
NbSKP1 | SCF | P22 | 负调控抗番茄褪绿病毒侵染 | [ | |
Oryza sativa | OsMEL | RING | OsSHMT1 | 正调控广谱抗病性 | [ |
OsAPIP10 | RING | OsVOZ1、OsVOZ2 | 正调控广谱抗病性 | [ | |
OsSKP1 | SCF | P7-2 | 负调控抗黑条矮缩病毒侵染 | [ | |
OsPUB73 | U-box | OsVQ25 | 正调控抗稻瘟病和白叶枯病 | [ | |
OsPIE3 | U-box | OsPID2 | 负调控抗稻瘟病 | [ | |
OsAPIP6 | RING | OsCATC | 负调控免疫反应 | [ | |
Triticum aestivum | TaE3UBQ | U-box | ZtSSP2 | 负调控抗小麦叶枯病菌侵染 | [ |
Zea mays | ZmMIEL1 | RING | ZmMYB83 | 负调控过敏性坏死反应 | [ |
Table 4 Functions of E3 in plant resistance to biotic stresses
物种Species | E3连接酶E3 ligase | 类型Type | 靶标Target | 功能Function | 参考文献Reference |
---|---|---|---|---|---|
Arabidopsis thaliana | AtMUSE16 | RING | AtRPS2 | 正调控免疫反应 | [ |
AtPUB4 | U-box | AtCERK1 | 正调控活性氧产生 | [ | |
AtKEG | RING | AtMKK4、AtMKK5 | 正调控免疫反应 | [ | |
Glycine max | GmSAUL1 | U-box | 未知 | 负调控抗大豆花叶病毒 | [ |
Nicotiana tabacum | NtRFP1 | RING | βC1 | 正调控抗中国番茄黄曲叶病毒侵染 | [ |
NtRNF217 | RING | 未知 | 正调控过氧化氢酶和过氧化物酶活性 | [ | |
Nicotiana benthamiana | NbubE3R1 | RING | αa | 正调控抗竹花叶病毒侵染 | [ |
NbSKP1 | SCF | βC1 | 负调控抗木尔坦棉花曲叶病毒侵染 | [ | |
NbSKP1 | SCF | P22 | 负调控抗番茄褪绿病毒侵染 | [ | |
Oryza sativa | OsMEL | RING | OsSHMT1 | 正调控广谱抗病性 | [ |
OsAPIP10 | RING | OsVOZ1、OsVOZ2 | 正调控广谱抗病性 | [ | |
OsSKP1 | SCF | P7-2 | 负调控抗黑条矮缩病毒侵染 | [ | |
OsPUB73 | U-box | OsVQ25 | 正调控抗稻瘟病和白叶枯病 | [ | |
OsPIE3 | U-box | OsPID2 | 负调控抗稻瘟病 | [ | |
OsAPIP6 | RING | OsCATC | 负调控免疫反应 | [ | |
Triticum aestivum | TaE3UBQ | U-box | ZtSSP2 | 负调控抗小麦叶枯病菌侵染 | [ |
Zea mays | ZmMIEL1 | RING | ZmMYB83 | 负调控过敏性坏死反应 | [ |
[1] |
Ozkaynak E, Finley D, Solomon MJ, et al. The yeast ubiquitin genes: a family of natural gene fusions[J]. EMBO J, 1987, 6(5): 1429-1439.
doi: 10.1002/j.1460-2075.1987.tb02384.x pmid: 3038523 |
[2] |
Schwartz AL, Ciechanover A. Ubiquitin-mediated protein modification and degradation[J]. Am J Respir Cell Mol Biol, 1992, 7(5): 463-468.
doi: 10.1165/ajrcmb/7.5.463 URL |
[3] |
Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction[J]. Physiol Rev, 2002, 82(2): 373-428.
doi: 10.1152/physrev.00027.2001 pmid: 11917093 |
[4] |
Adams EHG, Spoel SH. The ubiquitin-proteasome system as a transcriptional regulator of plant immunity[J]. J Exp Bot, 2018, 69(19): 4529-4537.
doi: 10.1093/jxb/ery216 pmid: 29873762 |
[5] |
Shu K, Yang WY. E3 ubiquitin ligases: ubiquitous actors in plant development and abiotic stress responses[J]. Plant Cell Physiol, 2017, 58(9): 1461-1476.
doi: 10.1093/pcp/pcx071 pmid: 28541504 |
[6] |
Xu FQ, Xue HW. The ubiquitin-proteasome system in plant responses to environments[J]. Plant Cell Environ, 2019, 42(10): 2931-2944.
doi: 10.1111/pce.v42.10 URL |
[7] |
Zientara-Rytter K, Sirko A. To deliver or to degrade - an interplay of the ubiquitin-proteasome system, autophagy and vesicular transport in plants[J]. FEBS J, 2016, 283(19): 3534-3555.
doi: 10.1111/febs.13712 pmid: 26991113 |
[8] |
Hatfield PM, Gosink MM, Carpenter TB, et al. The ubiquitin-activating enzyme(E1)gene family in Arabidopsis thaliana[J]. Plant J, 1997, 11(2): 213-226.
pmid: 9076989 |
[9] |
Takizawa M, Goto A, Watanabe Y. The tobacco ubiquitin-activating enzymes NtE1A and NtE1B are induced by tobacco mosaic virus, wounding and stress hormones[J]. Mol Cells, 2005, 19(2): 228-231.
pmid: 15879707 |
[10] |
Li GQ, Zang XN, Zhang XC, et al. Cloning of ubiquitin-activating enzyme and ubiquitin-conjugating enzyme genes from Gracilaria lemaneiformis and their activity under heat shock[J]. Gene, 2014, 538(1): 155-163.
doi: 10.1016/j.gene.2013.12.017 URL |
[11] |
Hershko A, Ciechanover A. The ubiquitin system[J]. Annu Rev Biochem, 1998, 67: 425-479.
pmid: 9759494 |
[12] | Jue DW, Sang XL, Liu LQ, et al. The ubiquitin-conjugating enzyme gene family in Longan(Dimocarpus longan lour.): genome-wide identification and gene expression during flower induction and abiotic stress responses[J]. Molecules, 2018, 23(3): 662. |
[13] | Zhang CY, Song L, Choudhary MK, et al. Genome-wide analysis of genes encoding core components of the ubiquitin system in soybean(Glycine max)reveals a potential role for ubiquitination in host immunity against soybean cyst nematode[J]. BMC Plant Biol, 2018, 18(1): 149. |
[14] | 贾利强. 木薯泛素结合酶的生物信息学分析[J]. 基因组学与应用生物学, 2021, 40(S2): 2765-2774. |
Jia LQ. Bioinformatics analysis of cassava ubiquitin-binding enzyme[J]. Genom Appl Biol, 2021, 40(S2): 2765-2774. | |
[15] |
Bae H, Kim WT. Classification and interaction modes of 40 rice E2 ubiquitin-conjugating enzymes with 17 rice ARM-U-box E3 ubiquitin ligases[J]. Biochem Biophys Res Commun, 2014, 444(4): 575-580.
doi: 10.1016/j.bbrc.2014.01.098 URL |
[16] | 张洪雨, 王晓宇, 段琼, 等. 蓖麻E2基因家族鉴定及生物信息学分析[J]. 内蒙古民族大学学报: 自然科学版, 2020, 35(6): 489-496. |
Zhang HY, Wang XY, Duan Q, et al. Identification and bioinformatics analysis of E2 gene family in Ricinus communis L[J]. J Inn Mong Univ Natl Nat Sci, 2020, 35(6): 489-496. | |
[17] | Sharma B, Bhatt TK. Author Correction: Genome-wide identification and expression analysis of E2 ubiquitin-conjugating enzymes in tomato[J]. Sci Rep, 2018, 8(1): 6782. |
[18] | 刘维刚. 马铃薯泛素结合酶E2基因家族鉴定和StUBC9基因克隆及功能研究[D]. 兰州: 甘肃农业大学, 2019. |
Liu WG. Genome-wide identification of ubiquitin conjugating enzymes E2 gene family and cloning and functional aanlysis of StUBC9 in potato[D]. Lanzhou: Gansu Agricultural University, 2019. | |
[19] |
Jia LQ, Zhao QF, Chen S. Evolution and expression analysis of the sorghum ubiquitin-conjugating enzyme family[J]. Funct Plant Biol, 2019, 46(3): 236-247.
doi: 10.1071/FP18184 pmid: 32172767 |
[20] | Jue DW, Sang XL, Lu SQ, et al. Genome-wide identification, phylogenetic and expression analyses of the ubiquitin-conjugating enzyme gene family in maize[J]. PLoS One, 2015, 10(11): e0143488. |
[21] | Feng H, Wang S, Dong DF, et al. Arabidopsis ubiquitin-conjugating enzymes UBC7, UBC13, and UBC14 are required in plant responses to multiple stress conditions[J]. Plants, 2020, 9(6): 723. |
[22] |
Feussner K, Feussner I, Leopold I, et al. Isolation of a cDNA coding for an ubiquitin-conjugating enzyme UBC1 of tomato—the first stress-induced UBC of higher plants[J]. FEBS Lett, 1997, 409(2): 211-215.
doi: 10.1016/s0014-5793(97)00509-7 pmid: 9202147 |
[23] | 毛卓卓, 宫宇, 史贵霞, 等. 大豆E2泛素结合酶基因GmUBC1的克隆及在拟南芥中的异源表达[J]. 遗传, 2020, 42(8): 788-798. |
Mao ZZ, Gong Y, Shi GX, et al. Cloning of the soybean E2 ubiquitin-conjugating enzyme GmUBC1 and its expression in Arabidopsis thaliana[J]. Hereditas, 2020, 42(8): 788-798. | |
[24] | 王安邦, 金志强, 刘菊华, 等. 香蕉泛素结合酶基因MaUCE2在非生物胁迫下的表达分析[J]. 生物技术通报, 2013(5): 77-80. |
Wang AB, Jin ZQ, Liu JH, et al. Expression analysis of a banana ubiquitin-conjugating enzyme gene MaUCE2 under abiotic stress[J]. Biotechnol Bull, 2013(5): 77-80. | |
[25] |
Ahn MY, Oh TR, Seo DH, et al. Arabidopsis group XIV ubiquitin-conjugating enzymes AtUBC32, AtUBC33, and AtUBC34 play negative roles in drought stress response[J]. J Plant Physiol, 2018, 230: 73-79.
doi: 10.1016/j.jplph.2018.08.010 URL |
[26] |
Cui F, Liu LJ, Zhao QZ, et al. Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance[J]. Plant Cell, 2012, 24(1): 233-244.
doi: 10.1105/tpc.111.093062 URL |
[27] |
Sun YH, Zhao J, Li XY, et al. E2 conjugases UBC1 and UBC2 regulate MYB42-mediated SOS pathway in response to salt stress in Arabidopsis[J]. New Phytol, 2020, 227(2): 455-472.
doi: 10.1111/nph.v227.2 URL |
[28] |
Wan XR, Mo AQ, Liu S, et al. Constitutive expression of a peanut ubiquitin-conjugating enzyme gene in Arabidopsis confers improved water-stress tolerance through regulation of stress-responsive gene expression[J]. J Biosci Bioeng, 2011, 111(4): 478-484.
doi: 10.1016/j.jbiosc.2010.11.021 URL |
[29] |
Bahmani R, Kim D, Lee BD, et al. Over-expression of tobacco UBC1 encoding a ubiquitin-conjugating enzyme increases cadmium tolerance by activating the 20S/26S proteasome and by decreasing Cd accumulation and oxidative stress in tobacco(Nicotiana tabacum)[J]. Plant Mol Biol, 2017, 94(4/5): 433-451.
doi: 10.1007/s11103-017-0616-6 URL |
[30] |
Zhou GA, Chang RZ, Qiu LJ. Overexpression of soybean ubiquitin-conjugating enzyme gene GmUBC2 confers enhanced drought and salt tolerance through modulating abiotic stress-responsive gene expression in Arabidopsis[J]. Plant Mol Biol, 2010, 72(4/5): 357-367.
doi: 10.1007/s11103-009-9575-x URL |
[31] |
Jeon EH, Pak JH, Kim MJ, et al. Ectopic expression of ubiquitin-conjugating enzyme gene from wild rice, OgUBC1, confers resistance against UV-B radiation and Botrytis infection in Arabidopsis thaliana[J]. Biochem Biophys Res Commun, 2012, 427(2): 309-314.
doi: 10.1016/j.bbrc.2012.09.048 URL |
[32] |
Liu X, Song LL, Zhang H, et al. Rice ubiquitin-conjugating enzyme OsUBC26 is essential for immunity to the blast fungus Magnaporthe oryzae[J]. Mol Plant Pathol, 2021, 22(12): 1613-1623.
doi: 10.1111/mpp.13132 URL |
[33] |
Mural RV, Liu Y, Rosebrock TR, et al. The tomato Fni3 lysine-63-specific ubiquitin-conjugating enzyme and suv ubiquitin E2 variant positively regulate plant immunity[J]. Plant Cell, 2013, 25(9): 3615-3631.
doi: 10.1105/tpc.113.117093 URL |
[34] |
Zhou BJ, Mural RV, Chen XY, et al. A subset of ubiquitin-conjugating enzymes is essential for plant immunity[J]. Plant Physiol, 2017, 173(2): 1371-1390.
doi: 10.1104/pp.16.01190 pmid: 27909045 |
[35] |
Eini O, Dogra S, Selth LA, et al. Interaction with a host ubiquitin-conjugating enzyme is required for the pathogenicity of a geminiviral DNA beta satellite[J]. Mol Plant Microbe Interact, 2009, 22(6): 737-746.
doi: 10.1094/MPMI-22-6-0737 URL |
[36] |
Imura Y, Molho M, Chuang C, et al. Cellular Ubc2/Rad6 E2 ubiquitin-conjugating enzyme facilitates tombusvirus replication in yeast and plants[J]. Virology, 2015, 484: 265-275.
doi: 10.1016/j.virol.2015.05.022 pmid: 26135843 |
[37] |
Stone SL, Callis J. Ubiquitin ligases mediate growth and development by promoting protein death[J]. Curr Opin Plant Biol, 2007, 10(6): 624-632.
doi: 10.1016/j.pbi.2007.07.010 pmid: 17851112 |
[38] |
Nguyen HC, Wang W, Xiong Y. Cullin-RING E3 ubiquitin ligases: bridges to destruction[J]. Subcell Biochem, 2017, 83: 323-347.
doi: 10.1007/978-3-319-46503-6_12 pmid: 28271482 |
[39] | Wang RY, You XM, Zhang CY, et al. An ORFeome of rice E3 ubiquitin ligases for global analysis of the ubiquitination interactome[J]. Genome Biol, 2022, 23(1): 154. |
[40] |
Du MS, Lu DP, Liu XT. The Arabidopsis ubiquitin ligases ATL31 and ATL6 regulate plant response to salt stress in an ABA-independent manner[J]. Biochem Biophys Res Commun, 2023, 685: 149156.
doi: 10.1016/j.bbrc.2023.149156 URL |
[41] |
Wang X, Zhang XY, Song CP, et al. PUB25 and PUB26 dynamically modulate ICE1 stability via differential ubiquitination during cold stress in Arabidopsis[J]. Plant Cell, 2023, 35(9): 3585-3603.
doi: 10.1093/plcell/koad159 URL |
[42] |
Li BW, Gao S, Yang ZM, et al. The F-box E3 ubiquitin ligase AtSDR is involved in salt and drought stress responses in Arabidopsis[J]. Gene, 2022, 809: 146011.
doi: 10.1016/j.gene.2021.146011 URL |
[43] |
Cho NH, Kim EY, Park K, et al. Cosuppression of AtGELP22 and AtGELP23, two ubiquitinated target proteins of RING E3 ligase AtAIRP5, increases tolerance to drought stress in Arabidopsis[J]. Plant Mol Biol, 2023, 112(6): 357-371.
doi: 10.1007/s11103-023-01368-y |
[44] |
Baek W, Lim CW, Lee SC. Pepper E3 ligase CaAIRE1 promotes ABA sensitivity and drought tolerance by degradation of protein phosphatase CaAITP1[J]. J Exp Bot, 2021, 72(12): 4520-4534.
doi: 10.1093/jxb/erab138 pmid: 33837765 |
[45] |
Guo LQ, Cao M, Li YF, et al. RING finger ubiquitin E3 ligase CsCHYR1 targets CsATAF1 for degradation to modulate the drought stress response of cucumber through the ABA-dependent pathway[J]. Plant Physiol Biochem, 2023, 202: 107928.
doi: 10.1016/j.plaphy.2023.107928 URL |
[46] | Yang YH, Karthikeyan A, Yin JL, et al. The E3 ligase GmPUB21 negatively regulates drought and salinity stress response in soybean[J]. Int J Mol Sci, 2022, 23(13): 6893. |
[47] |
Du B, Nie N, Sun SF, et al. A novel sweetpotato RING-H2 type E3 ubiquitin ligase gene IbATL38 enhances salt tolerance in transgenic Arabidopsis[J]. Plant Sci, 2021, 304: 110802.
doi: 10.1016/j.plantsci.2020.110802 URL |
[48] |
Wang DR, Zhang XW, Xu RR, et al. Apple U-box-type E3 ubiquitin ligase MdPUB23 reduces cold-stress tolerance by degrading the cold-stress regulatory protein MdICE1[J]. Hortic Res, 2022, 9: uhac171.
doi: 10.1093/hr/uhac171 URL |
[49] |
Kim S, Park SI, Kwon H, et al. The rice abscisic acid-responsive RING finger E3 ligase OsRF1 targets OsPP2C09 for degradation and confers drought and salinity tolerance in rice[J]. Front Plant Sci, 2022, 12: 797940.
doi: 10.3389/fpls.2021.797940 URL |
[50] |
Chen SJ, Xu K, Kong DY, et al. Ubiquitin ligase OsRINGzf1 regulates drought resistance by controlling the turnover of OsPIP2;1[J]. Plant Biotechnol J, 2022, 20(9): 1743-1755.
doi: 10.1111/pbi.13857 pmid: 35587579 |
[51] |
Seo DH, Lee A, Yu SG, et al. OsPUB41, a U-box E3 ubiquitin ligase, acts as a negative regulator of drought stress response in rice(Oryza Sativa L.)[J]. Plant Mol Biol, 2021, 106(4/5): 463-477.
doi: 10.1007/s11103-021-01158-4 |
[52] |
Kim JH, Jang CS. E3 ligase, the Oryza sativa salt-induced RING finger protein 4(OsSIRP4), negatively regulates salt stress responses via degradation of the OsPEX11-1 protein[J]. Plant Mol Biol, 2021, 105(3): 231-245.
doi: 10.1007/s11103-020-01084-x |
[53] |
Cui LH, Min HJ, Yu SG, et al. OsATL38 mediates mono-ubiquitination of the 14-3-3 protein OsGF14d and negatively regulates the cold stress response in rice[J]. J Exp Bot, 2022, 73(1): 307-323.
doi: 10.1093/jxb/erab392 URL |
[54] |
Tong SF, Chen NN, Wang DY, et al. The U-box E3 ubiquitin ligase PalPUB79 positively regulates ABA-dependent drought tolerance via ubiquitination of PalWRKY77 in Populus[J]. Plant Biotechnol J, 2021, 19(12): 2561-2575.
doi: 10.1111/pbi.v19.12 URL |
[55] |
Song QP, Wang XP, Wu FC, et al. StATL2-like could affect growth and cold tolerance of plant by interacting with StCBFs[J]. Plant Cell Rep, 2022, 41(9): 1827-1841.
doi: 10.1007/s00299-022-02890-x pmid: 35732839 |
[56] |
Skubacz A, Daszkowska-Golec A, Szarejko I. The role and regulation of ABI5(ABA-insensitive 5)in plant development, abiotic stress responses and phytohormone crosstalk[J]. Front Plant Sci, 2016, 7: 1884.
doi: 10.3389/fpls.2016.01884 pmid: 28018412 |
[57] |
Sun HM, Li JT, Li X, et al. RING E3 ubiquitin ligase TaSADR1 negatively regulates drought resistance in transgenic Arabidopsis[J]. Plant Physiol Biochem, 2022, 170: 255-265.
doi: 10.1016/j.plaphy.2021.12.004 URL |
[58] |
Kim MS, Kim JH, Amoah JN, et al. Wheat(Triticum aestivum. L)Plant U-box E3 ligases TaPUB2 and TaPUB3 enhance ABA response and salt stress resistance in Arabidopsis[J]. FEBS Lett, 2022, 596(23): 3037-3050.
doi: 10.1002/feb2.v596.23 URL |
[59] |
Kim JH, Kim MS, Seo YW. Overexpression of a plant U-box gene TaPUB4 confers drought stress tolerance in Arabidopsis thaliana[J]. Plant Physiol Biochem, 2023, 196: 596-607.
doi: 10.1016/j.plaphy.2023.02.001 URL |
[60] | Yu YH, Yang SD, Bian L, et al. Identification of C3H2C3-type RING E3 ubiquitin ligase in grapevine and characterization of drought resistance function of VyRCHC114[J]. BMC Plant Biol, 2021, 21(1): 422. |
[61] | Zhao SS, Zhang QK, Liu MY, et al. Regulation of plant responses to salt stress[J]. Int J Mol Sci, 2021, 22(9): 4609. |
[62] |
Soualiou S, Duan FY, Li X, et al. Crop production under cold stress: an understanding of plant responses, acclimation processes, and management strategies[J]. Plant Physiol Biochem, 2022, 190: 47-61.
doi: 10.1016/j.plaphy.2022.08.024 URL |
[63] |
Huang Y, Li JH, Huang TT, et al. Homeostasis of Arabidopsis R protein RPS2 is negatively regulated by the RING-type E3 ligase MUSE16[J]. J Exp Bot, 2023, 74(6): 2160-2172.
doi: 10.1093/jxb/erad026 pmid: 36655859 |
[64] |
Desaki Y, Takahashi S, Sato K, et al. PUB4, a CERK1-interacting ubiquitin ligase, positively regulates MAMP-triggered immunity in Arabidopsis[J]. Plant Cell Physiol, 2019, 60(11): 2573-2583.
doi: 10.1093/pcp/pcz151 URL |
[65] |
Gao CY, Sun PW, Wang W, et al. Arabidopsis E3 ligase KEG associates with and ubiquitinates MKK4 and MKK5 to regulate plant immunity[J]. J Integr Plant Biol, 2021, 63(2): 327-339.
doi: 10.1111/jipb.v63.2 URL |
[66] | Li JM, Ye MY, Wang CF, et al. Soybean Gm SAUL1, a bona fide U-box E3 ligase, negatively regulates immunity likely through repressing the activation of Gm MPK3[J]. Int J Mol Sci, 2023, 24(7): 6240. |
[67] |
Shen QT, Hu T, Bao M, et al. Tobacco RING E3 ligase NtRFP1 mediates ubiquitination and proteasomal degradation of a geminivirus-encoded βC1[J]. Mol Plant, 2016, 9(6): 911-925.
doi: 10.1016/j.molp.2016.03.008 pmid: 27018391 |
[68] | Liu Y, Tang YM, Tan X, et al. NtRNF217, encoding a putative RBR E3 ligase protein of Nicotiana tabacum, plays an important role in the regulation of resistance to Ralstonia solanacearum infection[J]. Int J Mol Sci, 2021, 22(11): 5507. |
[69] |
Chen IH, Chang JE, Wu CY, et al. An E3 ubiquitin ligase from Nicotiana benthamiana targets the replicase of Bamboo mosaic virus and restricts its replication[J]. Mol Plant Pathol, 2019, 20(5): 673-684.
doi: 10.1111/mpp.12784 pmid: 30924604 |
[70] | Jia Q, Liu N, Xie K, et al. CLCuMuB βC1 subverts ubiquitination by interacting with NbSKP1s to enhance geminivirus infection in Nicotiana benthamiana[J]. PLoS Pathog, 2016, 12(6): e1005668. |
[71] |
Liu SJ, Wang CL, Liu XD, et al. Tomato chlorosis virus-encoded p22 suppresses auxin signalling to promote infection via interference with SKP1-Cullin-F-boxTIR1 complex assembly[J]. Plant Cell Environ, 2021, 44(9): 3155-3172.
doi: 10.1111/pce.v44.9 URL |
[72] |
Fu S, Wang K, Ma TT, et al. An evolutionarily conserved C4HC3-type E3 ligase regulates plant broad-spectrum resistance against pathogens[J]. Plant Cell, 2022, 34(5): 1822-1843.
doi: 10.1093/plcell/koac055 URL |
[73] |
Wang JY, Wang RY, Fang H, et al. Two VOZ transcription factors link an E3 ligase and an NLR immune receptor to modulate immunity in rice[J]. Mol Plant, 2021, 14(2): 253-266.
doi: 10.1016/j.molp.2020.11.005 pmid: 33186754 |
[74] |
Wang Q, Tao T, Han YH, et al. Nonstructural protein P7-2 encoded by Rice black-streaked dwarf virus interacts with SKP1, a core subunit of SCF ubiquitin ligase[J]. Virol J, 2013, 10: 325.
doi: 10.1186/1743-422X-10-325 pmid: 24176102 |
[75] | Hao ZY, Tian JF, Fang H, et al. A VQ-motif-containing protein fine-tunes rice immunity and growth by a hierarchical regulatory mechanism[J]. Cell Rep, 2022, 40(7): 111235. |
[76] |
Wang K, Li S, Chen LX, et al. E3 ubiquitin ligase OsPIE3 destabilises the B-lectin receptor-like kinase PID2 to control blast disease resistance in rice[J]. New Phytol, 2023, 237(5): 1826-1842.
doi: 10.1111/nph.v237.5 URL |
[77] |
You XM, Zhang F, Liu Z, et al. Rice catalase OsCATC is degraded by E3 ligase APIP6 to negatively regulate immunity[J]. Plant Physiol, 2022, 190(2): 1095-1099.
doi: 10.1093/plphys/kiac317 pmid: 35781740 |
[78] |
Karki SJ, Reilly A, Zhou BB, et al. A small secreted protein from Zymoseptoria tritici interacts with a wheat E3 ubiquitin ligase to promote disease[J]. J Exp Bot, 2021, 72(2): 733-746.
doi: 10.1093/jxb/eraa489 URL |
[79] |
Karre S, Kim SB, Samira R, et al. The maize ZmMIEL1 E3 ligase and ZmMYB83 transcription factor proteins interact and regulate the hypersensitive defence response[J]. Mol Plant Pathol, 2021, 22(6): 694-709.
doi: 10.1111/mpp.13057 pmid: 33825303 |
[1] | JIANG Lin-qi, ZHAO Jia-ying, ZHENG Fei-xiong, YAO Xin-yi, LI Xiao-xian, YU Zhen-ming. Identification and Expression Analysis of 14-3-3 Gene Family in Dendrobium officinale [J]. Biotechnology Bulletin, 2024, 40(3): 229-241. |
[2] | ZHOU Hong-dan, LUO Xiao-ping, TU Mi-xue, LI Zhong-guang. Phytomelatonin: An Emerging Signal Molecule Responding to Abiotic Stress [J]. Biotechnology Bulletin, 2024, 40(3): 41-51. |
[3] | WU Cui-cui, XIAO Shui-ping. Genome-wide Identification of HD-Zip Gene Family in Gossypium hirsutum L. and Expression Analysis in Response to Abiotic Stress [J]. Biotechnology Bulletin, 2024, 40(2): 130-145. |
[4] | XIN Qi, LI Ya-fan, YIN Zheng, ZHANG Xiao-dan, CHEN Ting, LIU Xiao-hua. Identification and Expression Analysis of the CBL-CIPK Gene Family in Sugarcane [J]. Biotechnology Bulletin, 2024, 40(2): 197-211. |
[5] | LI Ya-nan, ZHANG Hao-jie, LIANG Meng-jing, LUO Tao, LI Wang-ning, ZHANG Chun-hui, JI Chun-li, LI Run-zhi, XUE Jin-ai, CUI Hong-li. Identification and Expression Analysis of Calcium-dependent Protein Kinase(CDPK)Family in Haematococcus pluvialis [J]. Biotechnology Bulletin, 2024, 40(2): 300-312. |
[6] | ZOU Xiu-wei, YUE Jia-ni, LI Zhi-yu, DAI Liang-ying, LI Wei. Functional Analysis of Rice Heat Shock Transcription Factor HsfA2b Regulating the Resistance to Abiotic Stresses [J]. Biotechnology Bulletin, 2024, 40(2): 90-98. |
[7] | ZHANG Yi, ZHANG Xin-ru, ZHANG Jin-ke, HU Li-zong, SHANGGUAN Xin-xin, ZHENG Xiao-hong, HU Juan-juan, ZHANG Cong-cong, MU Gui-qing, LI Cheng-wei. Functional Analysis of TaMYB1 Gene in Wheat Under Cadmium Stress [J]. Biotechnology Bulletin, 2024, 40(1): 194-206. |
[8] | ZHAO Xue-ting, GAO Li-yan, WANG Jun-gang, SHEN Qing-qing, ZHANG Shu-zhen, LI Fu-sheng. Cloning and Expression of AP2/ERF Transcription Factor Gene ShERF3 in Sugarcane and Subcellular Localization of Its Encoded Protein [J]. Biotechnology Bulletin, 2023, 39(6): 208-216. |
[9] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[10] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[11] | ZHAI Ying, LI Ming-yang, ZHANG Jun, ZHAO Xu, YU Hai-wei, LI Shan-shan, ZHAO Yan, ZHANG Mei-juan, SUN Tian-guo. Heterologous Expression of Soybean Transcription Factor GmNF-YA19 Improves Drought Resistance of Transgenic Tobacco [J]. Biotechnology Bulletin, 2023, 39(5): 224-232. |
[12] | YANG Chun-hong, DONG Lu, CHEN Lin, SONG Li. Characterization of Soybean VAS1 Gene Family and Its Involvement in Lateral Root Development [J]. Biotechnology Bulletin, 2023, 39(3): 133-142. |
[13] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[14] | YE Hong, WANG Yu-kun. Research Progress in Immune Receptor Functions of Pattern-Recognition Receptor in Plants [J]. Biotechnology Bulletin, 2023, 39(12): 1-15. |
[15] | CHENG Shuang, ULAANDUU Namuun, LI Zhuo-lin, HU Hai-ling, DENG Xiao-xia, LI Yue-ming, WANG Jing-hong, LIN Ji-xiang. Research Progress in the Mechanism of Plant Photosystem II(PSII)Responsing to Abiotic Stress [J]. Biotechnology Bulletin, 2023, 39(12): 33-42. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||