Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (4): 12-22.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1091
Previous Articles Next Articles
CHEN Ying-ying(), WU Ding-jie, LIU Yuan, ZHANG Hang, LIU Yan-jiao, WANG Jing-yu, LI Rui-li()
Received:
2023-11-20
Online:
2024-04-26
Published:
2024-04-30
Contact:
LI Rui-li
E-mail:yychen@bjfu.edu.cn;liruili@bifu.edu.cn
CHEN Ying-ying, WU Ding-jie, LIU Yuan, ZHANG Hang, LIU Yan-jiao, WANG Jing-yu, LI Rui-li. Recent Advances in 14-3-3 Proteins and Their Functions in Plant[J]. Biotechnology Bulletin, 2024, 40(4): 12-22.
植物生长Plant growth | 物种Species | 名称Name | 功能Function | 参考文献Reference |
---|---|---|---|---|
营养生长 | 拟南芥 | 14-3- 3μ | 突变后抑制根的伸长并促进根部叶绿体积累 | [ |
拟南芥 | 14-3-3λ/κ | 正调控光形态建成 | [ | |
拟南芥 | 14-3-3λ/κ | 双突变体的叶片衰老延迟 | [ | |
拟南芥 | 14-3-3λ | 突变体在黑暗中有更长的黄化下胚轴 | [ | |
番茄 | TFT6 | 参与蓝光诱导脱黄化 | [ | |
拟南芥 | 14-3-3ε | 参与向光性生长 | [ | |
拟南芥 | 14-3-3Ω | 影响下胚轴的向光弯曲 | [ | |
生殖生长 | 水稻 | GF14c | 诱导植物成花转变 | [ |
芒果 | MiGF6A/6B | 促进开花 | [ | |
棉花 | GhGRF3/6/9/15 | 抑制开花 | [ | |
棉花 | GhGRF14 | 促进开花 | [ | |
梭梭 | HaFT-1 | 促进种子萌发 | [ | |
拟南芥 | 14-3-3λ/κ | 增加种子含油量 | [ | |
水稻 | GF14f | 负调控籽粒灌浆过程 | [ |
Table 1 14-3-3 proteins involved in plant growth
植物生长Plant growth | 物种Species | 名称Name | 功能Function | 参考文献Reference |
---|---|---|---|---|
营养生长 | 拟南芥 | 14-3- 3μ | 突变后抑制根的伸长并促进根部叶绿体积累 | [ |
拟南芥 | 14-3-3λ/κ | 正调控光形态建成 | [ | |
拟南芥 | 14-3-3λ/κ | 双突变体的叶片衰老延迟 | [ | |
拟南芥 | 14-3-3λ | 突变体在黑暗中有更长的黄化下胚轴 | [ | |
番茄 | TFT6 | 参与蓝光诱导脱黄化 | [ | |
拟南芥 | 14-3-3ε | 参与向光性生长 | [ | |
拟南芥 | 14-3-3Ω | 影响下胚轴的向光弯曲 | [ | |
生殖生长 | 水稻 | GF14c | 诱导植物成花转变 | [ |
芒果 | MiGF6A/6B | 促进开花 | [ | |
棉花 | GhGRF3/6/9/15 | 抑制开花 | [ | |
棉花 | GhGRF14 | 促进开花 | [ | |
梭梭 | HaFT-1 | 促进种子萌发 | [ | |
拟南芥 | 14-3-3λ/κ | 增加种子含油量 | [ | |
水稻 | GF14f | 负调控籽粒灌浆过程 | [ |
[1] |
Moore BW, Perez VJ, Gehring M. Assay and regional distribution of a soluble protein characteristic of the nervous system[J]. J Neurochem, 1968, 15(4): 265-272.
pmid: 4966699 |
[2] |
DeLille JM, Sehnke PC, Ferl RJ. The Arabidopsis 14-3-3 family of signaling regulators[J]. Plant Physiol, 2001, 126(1): 35-38.
doi: 10.1104/pp.126.1.35 pmid: 11351068 |
[3] |
Lu G, DeLisle AJ, de Vetten NC, et al. Brain proteins in plants: an Arabidopsis homolog to neurotransmitter pathway activators is part of a DNA binding complex[J]. Proc Natl Acad Sci USA, 1992, 89(23): 11490-11494.
pmid: 1454838 |
[4] |
Laughner B, Lawrence SD, Ferl RJ. Two tomato fruit homologs of 14-3-3 mammalian brain proteins[J]. Plant Physiol, 1994, 105(4): 1457-1458.
doi: 10.1104/pp.105.4.1457 pmid: 7972510 |
[5] |
de Vetten NC, Ferl RJ. Two genes encoding GF14(14-3-3)proteins in Zea mays. Structure, expression, and potential regulation by the G-box binding complex[J]. Plant Physiol, 1994, 106(4): 1593-1604.
pmid: 7846163 |
[6] |
Chen Z, Fu H, Liu D, et al. A NaCl-regulated plant gene encoding a brain protein homology that activates ADP ribosyltransferase and inhibits protein kinase C[J]. Plant J, 1994, 6(5): 729-740.
doi: 10.1046/j.1365-313x.1994.6050729.x pmid: 8000427 |
[7] |
Stanković B, Garić-Stanković A, Smith CM, et al. Isolation, sequencing, and analysis of a 14-3-3 brain protein homolog from pea(Pisum sativum L.)[J]. Plant Physiol, 1995, 107(4): 1481-1482.
doi: 10.1104/pp.107.4.1481 pmid: 7770545 |
[8] |
Moorhead G, Douglas P, Morrice N, et al. Phosphorylated nitrate reductase from spinach leaves is inhibited by 14-3-3 proteins and activated by fusicoccin[J]. Curr Biol, 1996, 6(9): 1104-1113.
doi: 10.1016/s0960-9822(02)70677-5 pmid: 8805370 |
[9] |
de Boer AH, Gao J. Plant 14-3-3 proteins as spiders in a web of phosphorylation[J]. Protoplasma, 2013, 250(2): 425-440.
doi: 10.1007/s00709-012-0437-z pmid: 22926776 |
[10] |
Catalá R, López-Cobollo R, Mar Castellano M, et al. The Arabidopsis 14-3-3 protein rare cold inducible 1a links low-temperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation[J]. Plant Cell, 2014, 26(8): 3326-3342.
doi: 10.1105/tpc.114.127605 URL |
[11] |
Gampala SS, Kim TW, He JX, et al. An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis[J]. Dev Cell, 2007, 13(2): 177-189.
doi: 10.1016/j.devcel.2007.06.009 URL |
[12] | He FY, Duan SG, Jian YQ, et al. Genome-wide identification and gene expression analysis of the 14-3-3 gene family in potato(Solanum tuberosum L.)[J]. BMC Genomics, 2022, 23(1): 811. |
[13] |
Chevalier D, Morris ER, Walker JC. 14-3-3 and FHA domains mediate phosphoprotein interactions[J]. Annu Rev Plant Biol, 2009, 60: 67-91.
doi: 10.1146/annurev.arplant.59.032607.092844 pmid: 19575580 |
[14] | Tian FX, Wang T, Xie YL, et al. Genome-wide identification, classification, and expression analysis of 14-3-3 gene family in Populus[J]. PLoS One, 2015, 10(4): e0123225. |
[15] | Zuo XY, Wang SX, Xiang W, et al. Genome-wide identification of the 14-3-3 gene family and its participation in floral transition by interacting with TFL1/FT in apple[J]. BMC Genomics, 2021, 22(1): 41. |
[16] | Cheng C, Wang Y, Chai FM, et al. Genome-wide identification and characterization of the 14-3-3 family in Vitis vinifera L. during berry development and cold- and heat-stress response[J]. BMC Genomics, 2018, 19(1): 579. |
[17] | Xia LM, He XH, Huang X, et al. Genome-wide identification and expression analysis of the 14-3-3 gene family in mango(Mangifera indica L.)[J]. Int J Mol Sci, 2022, 23(3): 1593. |
[18] | Liang YF, Ma F, Zhang RL, et al. Genome-wide identification and characterization of tomato 14-3-3(SlTFT)genes and functional analysis of SlTFT6 under heat stress[J]. Physiol Plant, 2023, 175(2): e13888. |
[19] | Lyu SH, Chen GX, Pan DM, et al. Molecular analysis of 14-3-3 genes in Citrus sinensis and their responses to different stresses[J]. Int J Mol Sci, 2021, 22(2): 568. |
[20] |
Visconti S, D’Ambrosio C, Fiorillo A, et al. Overexpression of 14-3-3 proteins enhances cold tolerance and increases levels of stress-responsive proteins of Arabidopsis plants[J]. Plant Sci, 2019, 289: 110215.
doi: 10.1016/j.plantsci.2019.110215 URL |
[21] | Yu ZP, Ma JX, Zhang MY, et al. Auxin promotes hypocotyl elongation by enhancing BZR1 nuclear accumulation in Arabidopsis[J]. Sci Adv, 2023, 9(1): eade2493. |
[22] |
Xu WF, Jia LG, Shi WM, et al. The Tomato 14-3-3 protein TFT4 modulates H+ efflux, basipetal auxin transport, and the PKS5-J3 pathway in the root growth response to alkaline stress[J]. Plant Physiol, 2013, 163(4): 1817-1828.
doi: 10.1104/pp.113.224758 URL |
[23] |
Ren YR, Yang YY, Zhang R, et al. MdGRF11, an apple 14-3-3 protein, acts as a positive regulator of drought and salt tolerance[J]. Plant Sci, 2019, 288: 110219.
doi: 10.1016/j.plantsci.2019.110219 URL |
[24] |
Zhu YQ, Kuang W, Leng J, et al. The apple 14-3-3 gene MdGRF6 negatively regulates salt tolerance[J]. Front Plant Sci, 2023, 14: 1161539.
doi: 10.3389/fpls.2023.1161539 URL |
[25] |
Camoni L, Visconti S, Aducci P, et al. 14-3-3 proteins in plant hormone signaling: doing several things at once[J]. Front Plant Sci, 2018, 9: 297.
doi: 10.3389/fpls.2018.00297 pmid: 29593761 |
[26] |
Bai MY, Zhang LY, Gampala SS, et al. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice[J]. Proc Natl Acad Sci USA, 2007, 104(34): 13839-13844.
doi: 10.1073/pnas.0706386104 URL |
[27] |
Gao XY, Zhang JQ, Cai G, et al. qGL3/OsPPKL1 induces phosphorylation of 14-3-3 protein OsGF14b to inhibit OsBZR1 function in brassinosteroid signaling[J]. Plant Physiol, 2022, 188(1): 624-636.
doi: 10.1093/plphys/kiab484 URL |
[28] |
Chen YX, Zhou XJ, Chang S, et al. Calcium-dependent protein kinase 21 phosphorylates 14-3-3 proteins in response to ABA signaling and salt stress in rice[J]. Biochem Biophys Res Commun, 2017, 493(4): 1450-1456.
doi: 10.1016/j.bbrc.2017.09.166 URL |
[29] | Sun J, Zhang GC, Cui ZB, et al. Regain flood adaptation in rice through a 14-3-3 protein OsGF14h[J]. Nat Commun, 2022, 13(1): 5664. |
[30] |
Ishida S, Yuasa T, Nakata M, et al. A tobacco calcium-dependent protein kinase, CDPK1, regulates the transcription factor repression of shoot growth in response to gibberellins[J]. Plant Cell, 2008, 20(12): 3273-3288.
doi: 10.1105/tpc.107.057489 pmid: 19106376 |
[31] |
Keicher J, Jaspert N, Weckermann K, et al. Arabidopsis 14-3-3 epsilon members contribute to polarity of PIN auxin carrier and auxin transport-related development[J]. eLife, 2017, 6: e24336.
doi: 10.7554/eLife.24336 URL |
[32] |
Huang Y, Wang WS, Yu H, et al. The role of 14-3-3 proteins in plant growth and response to abiotic stress[J]. Plant Cell Rep, 2022, 41(4): 833-852.
doi: 10.1007/s00299-021-02803-4 |
[33] |
Mayfield JD, Paul AL, Ferl RJ. The 14-3-3 proteins of Arabidopsis regulate root growth and chloroplast development as components of the photosensory system[J]. J Exp Bot, 2012, 63(8): 3061-3070.
doi: 10.1093/jxb/ers022 pmid: 22378945 |
[34] |
Song PY, Yang ZD, Guo C, et al. 14-3-3 proteins regulate photomorphogenesis by facilitating light-induced degradation of PIF3[J]. New Phytol, 2023, 237(1): 140-159.
doi: 10.1111/nph.v237.1 URL |
[35] |
Qi H, Lei X, Wang Y, et al. 14-3-3 proteins contribute to autophagy by modulating SINAT-mediated degradation of ATG13[J]. Plant Cell, 2022, 34(12): 4857-4876.
doi: 10.1093/plcell/koac273 URL |
[36] |
Zhao SS, Zhao YX, Guo Y. 14-3-3 λ protein interacts with ADF1 to regulate actin cytoskeleton dynamics in Arabidopsis[J]. Sci China Life Sci, 2015, 58(11): 1142-1150.
doi: 10.1007/s11427-015-4897-1 URL |
[37] |
Hloušková P, Černý M, Kořínková N, et al. Affinity chromatography revealed 14-3-3 interactome of tomato(Solanum lycopersicum L.) during blue light-induced de-etiolation[J]. J Proteomics, 2019, 193: 44-61.
doi: S1874-3919(18)30446-9 pmid: 30583044 |
[38] | Sullivan S, Waksman T, Paliogianni D, et al. Regulation of plant phototropic growth by NPH3/RPT2-like substrate phosphorylation and 14-3-3 binding[J]. Nat Commun, 2021, 12(1): 6129. |
[39] | Reuter L, Schmidt T, Manishankar P, et al. Light-triggered and phosphorylation-dependent 14-3-3 association with NON-PHOTOTROPIC HYPOCOTYL 3 is required for hypocotyl phototropism[J]. Nat Commun, 2021, 12(1): 6128. |
[40] |
Taoka KI, Ohki I, Tsuji H, et al. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen[J]. Nature, 2011, 476(7360): 332-335.
doi: 10.1038/nature10272 |
[41] |
Tsuji H, Nakamura H, Taoka KI, et al. Functional diversification of FD transcription factors in rice, components of florigen activation complexes[J]. Plant Cell Physiol, 2013, 54(3): 385-397.
doi: 10.1093/pcp/pct005 pmid: 23324168 |
[42] |
Xia LM, He XH, Hu WL, et al. Overexpression of the mango MiGF6A and MiGF6B genes promotes early flowering in transgenic Arabidopsis plants[J]. Sci Hortic, 2023, 318: 112074.
doi: 10.1016/j.scienta.2023.112074 URL |
[43] |
Liu H, Huang XZ, Ma B, et al. Components and functional diversification of florigen activation complexes in cotton[J]. Plant Cell Physiol, 2021, 62(10): 1542-1555.
doi: 10.1093/pcp/pcab107 pmid: 34245289 |
[44] | Sang N, Liu H, Ma B, et al. Roles of the 14-3-3 gene family in cotton flowering[J]. BMC Plant Biol, 2021, 21(1): 162. |
[45] |
Pan R, Ren WJ, Liu SS, et al. Ectopic over-expression of HaFT-1, a 14-3-3 protein from Haloxylon ammodendron, enhances acquired thermotolerance in transgenic Arabidopsis[J]. Plant Mol Biol, 2023, 112(4-5): 261-277.
doi: 10.1007/s11103-023-01361-5 |
[46] |
Ma W, Kong Q, Mantyla JJ, et al. 14-3-3 protein mediates plant seed oil biosynthesis through interaction with AtWRI1[J]. Plant J, 2016, 88(2): 228-235.
doi: 10.1111/tpj.2016.88.issue-2 URL |
[47] |
Zhang ZX, Zhao H, Huang FL, et al. The 14-3-3 protein GF14f negatively affects grain filling of inferior spikelets of rice(Oryza sativa L.)[J]. Plant J, 2019, 99(2): 344-358.
doi: 10.1111/tpj.2019.99.issue-2 URL |
[48] |
Pertl H, Rittmann S, Schulze WX, et al. Identification of lily pollen 14-3-3 isoforms and their subcellular and time-dependent expression profile[J]. Biol Chem, 2011, 392(3): 249-262.
doi: 10.1515/BC.2011.026 pmid: 21291338 |
[49] |
Ho SL, Huang LF, Lu CG, et al. Sugar starvation- and GA-inducible calcium-dependent protein kinase 1 feedback regulates GA biosynthesis and activates a 14-3-3 protein to confer drought tolerance in rice seedlings[J]. Plant Mol Biol, 2013, 81(4-5): 347-361.
doi: 10.1007/s11103-012-0006-z URL |
[50] | Liu JP, Sun XJ, Liao WC, et al. Involvement of OsGF14b adaptation in the drought resistance of rice plants[J]. Rice, 2019, 12(1): 82. |
[51] |
Jiang W, Tong T, Li W, et al. Molecular evolution of plant 14-3-3 proteins and function of Hv14-3-3A in stomatal regulation and drought tolerance[J]. Plant Cell Physiol, 2023, 63(12): 1857-1872.
doi: 10.1093/pcp/pcac034 URL |
[52] | Han YY, Lou X, Zhang WR, et al. Arbuscular mycorrhizal fungi enhanced drought resistance of Populus cathayana by regulating the 14-3-3 family protein genes[J]. Microbiol Spectr, 2022, 10(3): e0245621. |
[53] |
Gao J, de Boer MH, et al. Ion homeostasis and metabolome analysis of Arabidopsis 14-3-3 quadruple mutants to salt stress[J]. Front Plant Sci, 2021, 12: 697324.
doi: 10.3389/fpls.2021.697324 URL |
[54] |
Wang NN, Shi YY, Jiang Q, et al. A 14-3-3 protein positively regulates rice salt tolerance by stabilizing phospholipase C1[J]. Plant Cell Environ, 2023, 46(4): 1232-1248.
doi: 10.1111/pce.14520 URL |
[55] | Yang ZJ, Wang CW, Xue Y, et al. Calcium-activated 14-3-3 proteins as a molecular switch in salt stress tolerance[J]. Nat Commun, 2019, 10(1): 1199. |
[56] |
Zhang Y, Zhao HY, Zhou SY, et al. Expression of TaGF14b, a 14-3-3 adaptor protein gene from wheat, enhances drought and salt tolerance in transgenic tobacco[J]. Planta, 2018, 248(1): 117-137.
doi: 10.1007/s00425-018-2887-9 pmid: 29616395 |
[57] | Shao WN, Chen W, Zhu XG, et al. Genome-wide identification and characterization of wheat 14-3-3 genes unravels the role of TaGRF6-a in salt stress tolerance by binding MYB transcription factor[J]. Int J Mol Sci, 2021, 22(4): 1904. |
[58] |
Cui LH, Min HJ, Yu SG, et al. OsATL38 mediates mono-ubiquitination of the 14-3-3 protein OsGF14d and negatively regulates the cold stress response in rice[J]. J Exp Bot, 2022, 73(1): 307-323.
doi: 10.1093/jxb/erab392 URL |
[59] |
Liu ZY, Jia YX, Ding YL, et al. Plasma membrane CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune CBF signaling during cold response[J]. Mol Cell, 2017, 66(1): 117-128.e5.
doi: S1097-2765(17)30131-4 pmid: 28344081 |
[60] | Wiese AJ, Steinbachová L, Timofejeva L, et al. Arabidopsis bZIP18 and bZIP52 accumulate in nuclei following heat stress where they regulate the expression of a similar set of genes[J]. Int J Mol Sci, 2021, 22(2): 530. |
[61] |
Dobrá J, Černý M, Štorchová H, et al. The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis[J]. Plant Sci, 2015, 231: 52-61.
doi: 10.1016/j.plantsci.2014.11.005 pmid: 25575991 |
[62] | 李芳, 滕建晒, 陈宣钦. 14-3-3蛋白参与植物应答非生物胁迫的研究进展[J]. 植物科学学报, 2018, 36(3): 459-469. |
Li F, Teng JS, Chen XQ. Research progress on the 14-3-3 protein involved in plant responses to abiotic stress[J]. Plant Sci J, 2018, 36(3): 459-469. | |
[63] |
Cai JS, Cai WW, Huang XY, et al. Ca14-3-3 interacts with CaWRKY58 to positively modulate pepper response to low-phosphorus starvation[J]. Front Plant Sci, 2021, 11: 607878.
doi: 10.3389/fpls.2020.607878 URL |
[64] |
Xu WF, Shi WM, Jia LG, et al. TFT6 and TFT7, two different members of tomato 14-3-3 gene family, play distinct roles in plant adaption to low phosphorus stress[J]. Plant Cell Environ, 2012, 35(8): 1393-1406.
doi: 10.1111/pce.2012.35.issue-8 URL |
[65] |
Yuan W, Zhang DP, Song T, et al. Arabidopsis plasma membrane H+-ATPase genes AHA2 and AHA7 have distinct and overlapping roles in the modulation of root tip H+ efflux in response to low-phosphorus stress[J]. J Exp Bot, 2017, 68(7): 1731-1741.
doi: 10.1093/jxb/erx040 pmid: 28369625 |
[66] |
Zhu FY, Chen MX, Chan WL, et al. SWATH-MS quantitative proteomic investigation of nitrogen starvation in Arabidopsis reveals new aspects of plant nitrogen stress responses[J]. J Proteomics, 2018, 187: 161-170.
doi: 10.1016/j.jprot.2018.07.014 URL |
[67] | 冯倩, 陈永富, 姚银安, 等. 烟草异源过表达胡杨PeGRF6/8a对不同逆境的响应[J]. 应用与环境生物学报, 2019, 25(3): 665-671. |
Feng Q, Chen YF, Yao YA, et al. Response of heterologous overexpression of Populus euphratica PeGRF6/8a in tobacco under different stresses[J]. Chin J Appl Environ Biol, 2019, 25(3): 665-671. | |
[68] | 孙熔谦, 晋欢欢, 张静, 等. 植物14-3-3蛋白结构与功能的研究进展[J]. 福建农林大学学报:自然科学版, 2023: 1-8. http://kns.cnki.net/kcms/detail/35.1255.S.20230516.0918.002.html. |
Sun RQ, Jin HH, Zhang J, et al. Research progress in the structure and function of plant 14-3-3 proteins[J]. Journal of Fujian Agriculture and Forestry University Natural Science Edition, 2023: 1-8. http://kns.cnki.net/kcms/detail/35.1255.S.20230516.0918.002.html. | |
[69] |
吴静, 王媛媛, 王丹妮, 等. 刚毛柽柳ThGRF2基因的克隆和渗透胁迫应答分析[J]. 植物研究, 2022, 42(6): 1044-1051.
doi: 10.7525/j.issn.1673-5102.2022.06.014 |
Wu J, Wang YY, Wang DN, et al. Cloning and osmotic stress response analysis of ThGRF2 from Tamarix hispida[J]. Bull Bot Res, 2022, 42(6): 1044-1051. | |
[70] |
Yao H, Li XY, Peng L, et al. Binding of 14-3-3κ to ADF4 is involved in the regulation of hypocotyl growth and response to osmotic stress in Arabidopsis[J]. Plant Sci, 2022, 320: 111261.
doi: 10.1016/j.plantsci.2022.111261 URL |
[71] | Li MY, Ren LC, Xu BY, et al. Genome-wide identification, phylogeny, and expression analyses of the 14-3-3 family reveal their involvement in the development, ripening, and abiotic stress response in banana[J]. Front Plant Sci, 2016, 7: 1442. |
[72] |
Liang CJ, Ma YJ, Li LR. Comparison of plasma membrane H+-ATPase response to acid rain stress between rice and soybean[J]. Environ Sci Pollut Res Int, 2020, 27(6): 6389-6400.
doi: 10.1007/s11356-019-07285-2 |
[73] |
He YC, Wu JJ, Lv B, et al. Involvement of 14-3-3 protein GRF9 in root growth and response under polyethylene glycol-induced water stress[J]. J Exp Bot, 2015, 66(8): 2271-2281.
doi: 10.1093/jxb/erv149 pmid: 25873671 |
[74] | Guo JF, Chai XQ, Mei YC, et al. Acetylproteomics analyses reveal critical features of lysine-ε-acetylation in Arabidopsis and a role of 14-3-3 protein acetylation in alkaline response[J]. Stress Biol, 2022, 2(1): 1. |
[75] | 程雨果, 魏炳峥, 李春霞, 等. 水稻PR1基因响应生物胁迫的表达模式[J]. 分子植物育种, 2023: 1-24. http://kns.cnki.net/kcms/detail/46.1068.s.20230619.1458.002.html. |
Cheng YG, Wei BZ, Li CX, et al. Expression patterns of rice PR1 family genes in response to biotic stresses[J]. Mol Plant Breed, 2023: 1-24. http://kns.cnki.net/kcms/detail/46.1068.s.20230619.1458.002.html. | |
[76] |
Dong XJ, Feng F, Li YJ, et al. 14-3-3 proteins facilitate the activation of MAP kinase cascades by upstream immunity-related kinases[J]. Plant Cell, 2023, 35(6): 2413-2428.
doi: 10.1093/plcell/koad088 URL |
[77] | Gao ZY, Zhang DL, Wang XL, et al. Coat proteins of necroviruses target 14-3-3a to subvert MAPKKKα-mediated antiviral immunity in plants[J]. Nat Commun, 2022, 13(1): 716. |
[78] |
Kaundal A, Ramu VS, Oh S, et al. GENERAL CONTROL NONREPRESSIBLE4 degrades 14-3-3 and the RIN4 complex to regulate stomatal aperture with implications on nonhost disease resistance and drought tolerance[J]. Plant Cell, 2017, 29(9): 2233-2248.
doi: 10.1105/tpc.17.00070 URL |
[79] |
Deb S, Ghosh P, Patel HK, et al. Interaction of the Xanthomonas effectors XopQ and XopX results in induction of rice immune responses[J]. Plant J, 2020, 104(2): 332-350.
doi: 10.1111/tpj.v104.2 URL |
[80] |
Deb S, Gupta MK, Patel HK, et al. Xanthomonas oryzae pv. oryzae XopQ protein suppresses rice immune responses through interaction with two 14-3-3 proteins but its phospho-null mutant induces rice immune responses and interacts with another 14-3-3 protein[J]. Mol Plant Pathol, 2019, 20(7): 976-989.
doi: 10.1111/mpp.2019.20.issue-7 URL |
[81] |
Lu L, Diao ZJ, Yang DW, et al. The 14-3-3 protein GF14c positively regulates immunity by modulating the protein homoeostasis of the GRAS protein OsSCL7 in rice[J]. Plant Cell Environ, 2022, 45(4): 1065-1081.
doi: 10.1111/pce.v45.4 URL |
[82] |
Liu Q, Yang JY, Zhang SH, et al. OsGF14b positively regulates panicle blast resistance but negatively regulates leaf blast resistance in rice[J]. Mol Plant Microbe Interact, 2016, 29(1): 46-56.
doi: 10.1094/MPMI-03-15-0047-R URL |
[83] |
Liu Q, Yang JY, Zhang SH, et al. OsGF14e positively regulates panicle blast resistance in rice[J]. Biochem Biophys Res Commun, 2016, 471(1): 247-252.
doi: 10.1016/j.bbrc.2016.02.005 URL |
[84] | Ma YM, Yang JY, Dong JF, et al. Overexpression of OsGF14f enhances quantitative leaf blast and bacterial blight resistance in rice[J]. Int J Mol Sci, 2022, 23(13): 7440. |
[1] | FU Wei, WEI Su-yun, CHEN Ying-nan. Research Progress in the Dynamic QTL Analysis of Plant Growth and Development [J]. Biotechnology Bulletin, 2024, 40(2): 9-19. |
[2] | TANG Wei-lin, KANG Qin, WANG Xia, SHEN Ming-yang, SUN Xin-jiang, WANG Ke, HOU Kai, WU Wei, XU Dong-bei. Cloning and Expression Pattern Analysis of Jasmonic Acid Receptor Gene McCOI1a in Mentha canadensis L. [J]. Biotechnology Bulletin, 2024, 40(1): 270-280. |
[3] | BI Fang-ling, ZHAO Shuang, LI Bin, LI Ai-qin, ZHANG Jian-heng, HE Pei-min. Research Progresses and Application in the Growth-promoting Effect of Symbiotic and Epiphytic Bacteria on Green Tide-causing Ulva prolifera [J]. Biotechnology Bulletin, 2024, 40(1): 32-44. |
[4] | HU Hai-lin, XU Li, LI Xiao-xu, WANG Chen-can, MEI Man, DING Wen-jing, ZHAO Yuan-yuan. Advances in the Regulation of Plant Growth, Development and Stress Physiology by Small Peptide Hormones [J]. Biotechnology Bulletin, 2023, 39(7): 13-25. |
[5] | FENG Shan-shan, WANG Lu, ZHOU Yi, WANG You-ping, FANG Yu-jie. Research Progresses on WOX Family Genes in Regulating Plant Development and Abiotic Stress Response [J]. Biotechnology Bulletin, 2023, 39(5): 1-13. |
[6] | LIU Kui, LI Xing-fen, YANG Pei-xin, ZHONG Zhao-chen, CAO Yi-bo, ZHANG Ling-yun. Functional Study and Validation of Transcriptional Coactivator PwMBF1c in Picea wilsonii [J]. Biotechnology Bulletin, 2023, 39(5): 205-216. |
[7] | XUE Jiao ZHU Qing-feng FENG Yan-zhao CHEN Pei LIU Wen-hua ZHANG Ai-xia LIU Qin-jian ZHANG Qi YU Yang. Advances in Upstream Open Reading Frame in Plant Genes [J]. Biotechnology Bulletin, 2023, 39(4): 157-165. |
[8] | WEI Ming WANG Xin-yu WU Guo-qiang ZHAO Meng. The Role of NAD-dependent Deacetylase SRT in Plant Epigenetic Inheritance Regulation [J]. Biotechnology Bulletin, 2023, 39(4): 59-70. |
[9] | SANG Tian, WANG Peng-cheng. Research Progress in Plant SUMOylation [J]. Biotechnology Bulletin, 2023, 39(3): 1-12. |
[10] | GE Yan-rui, ZHAO Ran, XU Jing, LI Ruo-fan, HU Yun-tao, LI Rui-li. Advances in the Development and Regulation of Vascular Cambium [J]. Biotechnology Bulletin, 2023, 39(3): 13-25. |
[11] | YAN Xiong-ying, WANG Zhen, WANG Xia, YANG Shi-hui. Microbial Sulfur Metabolism and Stress Resistance [J]. Biotechnology Bulletin, 2023, 39(11): 150-167. |
[12] | ZHANG Hong-hong, FANG Xiao-feng. Advances in the Regulation of Stress Sensing and Responses by Phase Separation in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 44-53. |
[13] | SUN Yu-tong, LIU De-shuai, QI Xun, FENG Mei, HUANG Xu-zheng, YAO Wen-kong. Advances in Jasmonic Acid Regulating Plant Growth and Development as Well as Stress [J]. Biotechnology Bulletin, 2023, 39(11): 99-109. |
[14] | LIU Yuan-yuan, WEI Chuan-zheng, XIE Yong-bo, TONG Zong-jun, HAN Xing, GAN Bing-cheng, XIE Bao-gui, YAN Jun-jie. Characteristics of Class II Peroxidase Gene Expression During Fruiting Body Development and Stress Response in Flammulina filiformis [J]. Biotechnology Bulletin, 2023, 39(11): 340-349. |
[15] | AN Chang, LU Lin, SHEN Meng-qian, CHEN Sheng-zhen, YE Kang-zhuo, QIN Yuan, ZHENG Ping. Research Progress of bHLH Gene Family in Plants and Its Application Prospects in Medical Plants [J]. Biotechnology Bulletin, 2023, 39(10): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||