Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (4): 130-138.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0969
Previous Articles Next Articles
CHEN Chun-lin(), LI Bai-xue, LI Jin-ling, DU Qing-jie, LI Meng, XIAO Huai-juan()
Received:
2023-10-18
Online:
2024-04-26
Published:
2024-04-30
Contact:
XIAO Huai-juan
E-mail:ccl980401@163.com;xhj234@126.com
CHEN Chun-lin, LI Bai-xue, LI Jin-ling, DU Qing-jie, LI Meng, XIAO Huai-juan. Identification and Expression Analysis of Epidermal Patterning Factor (EPF) Genes in Cucumis melo[J]. Biotechnology Bulletin, 2024, 40(4): 130-138.
基因Gene | 序列号Sequence ID | 蛋白长度Protein length/aa | 分子量Molecular mass/kD | 等电点pI | 亚细胞定位Subcellular localization |
---|---|---|---|---|---|
CmEPF1 | MELO3C019934 | 117 | 13 284.50 | 8.85 | 叶绿体Chloroplast |
CmEPF2 | MELO3C028633 | 95 | 10 118.80 | 8.48 | 叶绿体Chloroplast |
CmEPFL1 | MELO3C013075 | 115 | 12 993.08 | 8.95 | 叶绿体Chloroplast |
CmEPFL2 | MELO3C011120 | 153 | 17 572.13 | 9.44 | 细胞核Nucleus |
CmEPFL3 | MELO3C007746 | 134 | 14 956.48 | 8.88 | 质膜Plasma membrane |
CmEPFL4 | MELO3C007667 | 131 | 14 680.19 | 9.67 | 叶绿体Chloroplast |
CmEPFL5 | MELO3C021111 | 114 | 12 973.17 | 9.69 | 叶绿体Chloroplast |
CmEPFL6 | MELO3C014284 | 108 | 11 965.11 | 9.36 | 叶绿体Chloroplast |
CmEPFL7 | MELO3C017882 | 107 | 12 057.17 | 9.17 | 质膜Plasma membrane |
CmEPFL8 | MELO3C031683 | 152 | 17 238.58 | 6.58 | 叶绿体Chloroplast |
CmEPFL9 | MELO3C029250 | 122 | 13 519.80 | 9.13 | 叶绿体Chloroplast |
Table 1 Basic information of 11 melon CmEPFs genes
基因Gene | 序列号Sequence ID | 蛋白长度Protein length/aa | 分子量Molecular mass/kD | 等电点pI | 亚细胞定位Subcellular localization |
---|---|---|---|---|---|
CmEPF1 | MELO3C019934 | 117 | 13 284.50 | 8.85 | 叶绿体Chloroplast |
CmEPF2 | MELO3C028633 | 95 | 10 118.80 | 8.48 | 叶绿体Chloroplast |
CmEPFL1 | MELO3C013075 | 115 | 12 993.08 | 8.95 | 叶绿体Chloroplast |
CmEPFL2 | MELO3C011120 | 153 | 17 572.13 | 9.44 | 细胞核Nucleus |
CmEPFL3 | MELO3C007746 | 134 | 14 956.48 | 8.88 | 质膜Plasma membrane |
CmEPFL4 | MELO3C007667 | 131 | 14 680.19 | 9.67 | 叶绿体Chloroplast |
CmEPFL5 | MELO3C021111 | 114 | 12 973.17 | 9.69 | 叶绿体Chloroplast |
CmEPFL6 | MELO3C014284 | 108 | 11 965.11 | 9.36 | 叶绿体Chloroplast |
CmEPFL7 | MELO3C017882 | 107 | 12 057.17 | 9.17 | 质膜Plasma membrane |
CmEPFL8 | MELO3C031683 | 152 | 17 238.58 | 6.58 | 叶绿体Chloroplast |
CmEPFL9 | MELO3C029250 | 122 | 13 519.80 | 9.13 | 叶绿体Chloroplast |
Fig. 1 Phylogenetic analysis of EPF protein in melon and Arabidopsis Red, green, and blue indicates EPF proteins from Arabidopsis, rice, and melon, respectively
Fig. 6 Expression analysis of CmEPFs gene in the leaves in different parts of melon L0: Heart leaf of melon; L1: melon from top to first leaf; L2: melon from top to second leaf; L3: melon from top to third leaf; L4: melon from top to fourth leaf. Different lowercase letters indicate significant difference among treatments(P<0.05). The same below
处理Treatment | 气孔密度Stomatal density/(个·mm-2) | 气孔指数Stomatal index | 气孔长度Stomatal length/μm | 气孔宽度Stomatal width/μm |
---|---|---|---|---|
L0 | 649.8±87.9 a | 0.240±0.028 a | 17.59±0.41 d | 13.48±0.33 a |
L1 | 624.1±81.14a | 0.257±0.024 a | 20.26±0.52 c | 13.26±0.57 a |
L2 | 460.4±44.6 b | 0.269±0.018 a | 21.46±0.45b c | 14.09±0.34 a |
L3 | 351.0±19.2 b | 0.282±0.011 a | 22.47±0.44 ab | 13.07±0.27 a |
L4 | 391.9±38.7 b | 0.285±0.018 a | 23.06±0.79 a | 13.54±0.33 a |
Table 2 Stomatal morphology of leaves in different parts
处理Treatment | 气孔密度Stomatal density/(个·mm-2) | 气孔指数Stomatal index | 气孔长度Stomatal length/μm | 气孔宽度Stomatal width/μm |
---|---|---|---|---|
L0 | 649.8±87.9 a | 0.240±0.028 a | 17.59±0.41 d | 13.48±0.33 a |
L1 | 624.1±81.14a | 0.257±0.024 a | 20.26±0.52 c | 13.26±0.57 a |
L2 | 460.4±44.6 b | 0.269±0.018 a | 21.46±0.45b c | 14.09±0.34 a |
L3 | 351.0±19.2 b | 0.282±0.011 a | 22.47±0.44 ab | 13.07±0.27 a |
L4 | 391.9±38.7 b | 0.285±0.018 a | 23.06±0.79 a | 13.54±0.33 a |
Fig. 8 Correlation analysis of CmEPFs gene with photosynthetic parameters, stomatal density and stomatal index * indicates that the difference between treatments is significant at P<0.05 level, ** indicates that the difference between treatments is significant at P<0.01 level
[1] | Agurla S, Gahir S, Munemasa S, et al. Mechanism of stomatal closure in plants exposed to drought and cold stress[M]// Survival Strategies in Extreme Cold and Desiccation. Singapore: Springer, 2018: 215-232. |
[2] |
罗丹丹, 王传宽, 金鹰. 植物应对干旱胁迫的气孔调节[J]. 应用生态学报, 2019, 30(12): 4333-4343.
doi: 10.13287/j.1001-9332.201912.004 |
Luo DD, Wang CK, Jin Y. Stomatal regulation of plants in response to drought stress[J]. Chin J Appl Ecol, 2019, 30(12): 4333-4343. | |
[3] |
Harrison EL, Arce Cubas L, Gray JE, et al. The influence of stomatal morphology and distribution on photosynthetic gas exchange[J]. Plant J, 2020, 101(4): 768-779.
doi: 10.1111/tpj.14560 |
[4] |
Bertolino LT, Caine RS, Gray JE. Impact of stomatal density and morphology on water-use efficiency in a changing world[J]. Front Plant Sci, 2019, 10: 225.
doi: 10.3389/fpls.2019.00225 pmid: 30894867 |
[5] |
Li YP, Li HB, Li YY, et al. Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat[J]. Crop J, 2017, 5(3): 231-239.
doi: 10.1016/j.cj.2017.01.001 |
[6] | 刘婧, 王宝山, 谢先芝. 植物气孔发育及其调控研究[J]. 遗传, 2011, 33(2): 131-137. |
Liu J, Wang BS, Xie XZ. Regulation of stomatal development in plants[J]. Hereditas, 2011, 33(2): 131-137. | |
[7] |
Lau OS, Bergmann DC. Stomatal development: a plant's perspective on cell polarity, cell fate transitions and intercellular communication[J]. Development, 2012, 139(20): 3683-3692.
pmid: 22991435 |
[8] | Takata N, Yokota K, Ohki S, et al. Evolutionary relationship and structural characterization of the EPF/EPFL gene family[J]. PLoS One, 2013, 8(6): e65183. |
[9] |
Uchida N, Tasaka M. Regulation of plant vascular stem cells by endodermis-derived EPFL-family peptide hormones and phloem-expressed ERECTA-family receptor kinases[J]. J Exp Bot, 2013, 64(17): 5335-5343.
doi: 10.1093/jxb/ert196 pmid: 23881395 |
[10] |
Hara K, Yokoo T, Kajita R, et al. Epidermal cell density is autoregulated via a secretory peptide, epidermal patterning factor 2 in Arabidopsis leaves[J]. Plant Cell Physiol, 2009, 50(6): 1019-1031.
doi: 10.1093/pcp/pcp068 URL |
[11] |
Lee JS, Hnilova M, Maes M, et al. Competitive binding of antagonistic peptides fine-tunes stomatal patterning[J]. Nature, 2015, 522(7557): 439-443.
doi: 10.1038/nature14561 |
[12] | Caine RS, Chater CC, Kamisugi Y, et al. An ancestral stomatal patterning module revealed in the non-vascular land plant Physcomitrella patens[J]. Development, 2016, 143(18): 3306-3314. |
[13] |
Hughes J, Hepworth C, Dutton C, et al. Reducing stomatal density in barley improves drought tolerance without impacting on yield[J]. Plant Physiol, 2017, 174(2): 776-787.
doi: 10.1104/pp.16.01844 pmid: 28461401 |
[14] |
Lu JJ, He JJ, Zhou XS, et al. Homologous genes of epidermal patterning factor regulate stomatal development in rice[J]. J Plant Physiol, 2019, 234/235: 18-27.
doi: 10.1016/j.jplph.2019.01.010 URL |
[15] | 韦葳. 玉米ZmSTOMAGEN基因的克隆及表达特性分析[D]. 南宁: 广西大学, 2013. |
Wei W. Cloning and analysis of expression characteristics of ZmSTOMAGE gene in maize[D]. Nanning: Guangxi University, 2013. | |
[16] | 陈青云. 玉米中STOMAGEN-Like基因调控气孔发育的功能研究[D]. 南宁: 广西大学, 2017. |
Chen QY. Functional analysis of STOMAGEN-like gene in regulating stomatal development in maize[D]. Nanning: Guangxi University, 2017. | |
[17] |
Caine RS, Yin XJ, Sloan J, et al. Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions[J]. New Phytol, 2019, 221(1): 371-384.
doi: 10.1111/nph.15344 pmid: 30043395 |
[18] |
Dunn J, Hunt L, Afsharinafar M, et al. Reduced stomatal density in bread wheat leads to increased water-use efficiency[J]. J Exp Bot, 2019, 70(18): 4737-4748.
doi: 10.1093/jxb/erz248 pmid: 31172183 |
[19] |
Wang YL, Xie T, Zhang CL, et al. Overexpression of the potato StEPF2 gene confers enhanced drought tolerance in Arabidopsis[J]. Plant Biotechnol Rep, 2020, 14(4): 479-490.
doi: 10.1007/s11816-020-00627-4 |
[20] | Liu S, Jia FL, Jiao ZY, et al. Ectopic expression of secretory peptide PdEPF3 in Arabidopsis confers drought tolerance with reduced stomatal density[J]. Acta Soc Bot Pol, 2019, 88(2): 3627. |
[21] |
Uchida N, Lee JS, Horst RJ, et al. Regulation of inflorescence architecture by intertissue layer ligand-receptor communication between endodermis and phloem[J]. Proc Natl Acad Sci USA, 2012, 109(16): 6337-6342.
doi: 10.1073/pnas.1117537109 pmid: 22474391 |
[22] |
Abrash EB, Davies KA, Bergmann DC. Generation of signaling specificity in Arabidopsis by spatially restricted buffering of ligand-receptor interactions[J]. Plant Cell, 2011, 23(8): 2864-2879.
doi: 10.1105/tpc.111.086637 URL |
[23] |
Sun QX, Qu JP, Yu Y, et al. taepfl1, an epidermal patterning factor-like(epfl)secreted peptide gene, is required for stamen development in wheat[J]. Genetica, 2019, 147(2): 121-130.
doi: 10.1007/s10709-019-00061-7 |
[24] | 孙清栩, 曲继鹏, 彭正松, 等. 小麦表皮模式建成因子基因(TaEPFL1)的克隆、定位及表达分析[J]. 分子植物育种, 2018, 16(10): 3106-3112. |
Sun QX, Qu JP, Peng ZS, et al. Cloning, localization and expression analysis of epidermal pattering factor-like gene(TaEPFL1)in wheat[J]. Mol Plant Breed, 2018, 16(10): 3106-3112. | |
[25] |
撒世娟, 伍涵宇, 温媛, 等. 叶绿体特异蛋白质表达谱对本氏烟不同气孔密度的响应[J]. 生物技术通报, 2023, 39(2): 193-202.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0506 |
Sa SJ, Wu HY, Wen Y, et al. Responses of choloroplast specific protein profile to different stomatal densities in Nicotiana benthamiana[J]. Biotechnol Bull, 2023, 39(2): 193-202. | |
[26] |
Franks PJ, Doheny-Adams TW, Britton-Harper ZJ, et al. Increasing water-use efficiency directly through genetic manipulation of stomatal density[J]. New Phytol, 2015, 207(1): 188-195.
doi: 10.1111/nph.13347 pmid: 25754246 |
[27] |
Liu S, Wang CP, Jia FL, et al. Secretory peptide PdEPF2 enhances drought tolerance by modulating stomatal density and regulates ABA response in transgenic Arabidopsis thaliana[J]. Plant Cell Tiss Organ Cult, 2016, 125(3): 419-431.
doi: 10.1007/s11240-016-0957-x URL |
[28] |
Wang CP, Liu S, Dong Y, et al. PdEPF1 regulates water-use efficiency and drought tolerance by modulating stomatal density in poplar[J]. Plant Biotechnol J, 2016, 14(3): 849-860.
doi: 10.1111/pbi.12434 pmid: 26228739 |
[29] | Mohammed U, Caine RS, Atkinson JA, et al. Rice plants overexpressing OsEPF1 show reduced stomatal density and increased root cortical aerenchyma formation[J]. Sci Rep, 2019, 9(1): 5584. |
[1] | CHEN Qiang, HUANG Xin-hui, ZHANG Zheng, ZHANG Chong, LIU Ye-fei. Effects of Melatonin on the Fruit Softening and Ethylene Synthesis of Post-harvest Oriental Melon [J]. Biotechnology Bulletin, 2024, 40(4): 139-147. |
[2] | YANG Yu-qing, TAN Juan, WANG Fang, PENG Shun-li, CHEN Jie, TAN Ming-yan, LYU Mei-yan, ZHOU Fu-yu, LIU Sheng-chuan. Research and Application Progress in Chloroplast Genome of Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2024, 40(2): 20-30. |
[3] | YIN Ming-hua, YU Huan-yuan, XIAO Xin-yi, WANG Yu-ting. Chloroplast Genomic Characterization and Phylogenetic Analysis of Colocasia esculenta L. Schoot var. cormosus cv. ‘Hongyayu’ from Jiangxi Yanshan [J]. Biotechnology Bulletin, 2023, 39(6): 233-247. |
[4] | LI Jing-rui, WANG Yu-bo, XIE Zi-wei, LI Chang, WU Xiao-lei, GONG Bin-bin, GAO Hong-bo. Identification and Expression Analysis of PIN Gene Family in Melon Under High Temperature Stress [J]. Biotechnology Bulletin, 2023, 39(5): 192-204. |
[5] | CUI Ji-jie, CAI Wen-bo, ZHUANG Qing-hui, GAO Ai-ping, HUANG Jian-feng, CHEN Ya-hui, SONG Zhi-zhong. Biological Function of Gene MiISU1 for Fe-S Cluster Assembly in Mangifera indica [J]. Biotechnology Bulletin, 2023, 39(2): 139-146. |
[6] | SA Shi-juan, WU Han-yu, WEN Yuan, CHEN Xue-na, ZHENG Rui, YAO Xin-ling. Responses of Choloroplast Specific Protein Profile to Different Stomatal Densities in Nicotiana benthamiana [J]. Biotechnology Bulletin, 2023, 39(2): 193-202. |
[7] | RUAN Hang, DUO Hao-yuan, FAN Wen-yan, LV Qing-han, JIANG Shu-jun, ZHU Sheng-wei. Role of the AtERF49 in the Responses to Salt-alkali Stress in Arabidopsis [J]. Biotechnology Bulletin, 2023, 39(1): 150-156. |
[8] | LIU Xiong-wei, LIU Chang, ZENG Xian-fa, YANG Xiao-ying, FENG Ting-ting, ZHAO Jie-hong, ZHOU Ying. Comparative and Phylogenetic Analyses of Complete Chloroplast Genomes in Ardisia crenata [J]. Biotechnology Bulletin, 2023, 39(1): 232-242. |
[9] | XU Hong-yun, ZHANG Ming-yi. AtSCL4,an Arabidopsis thaliana GRAS Transcription Factor,Negatively Modulates Plants in Response to Osmotic Stress [J]. Biotechnology Bulletin, 2022, 38(6): 129-135. |
[10] | QIAN Fang, GAO Zuo-min, HU Li-juan, WANG Hong-cheng. Characteristics of Crambe abyssinica Chloroplast Genome and Its Phylogenetic Relationship in Brassicaceae [J]. Biotechnology Bulletin, 2022, 38(6): 174-186. |
[11] | ZHU Bin, GAN Chen-chen, WANG Hong-cheng. Characteristics of the Complete Chloroplast Genome of Dendrobium thyrsiflorum and Its Phylogenetic Relationship Analysis [J]. Biotechnology Bulletin, 2021, 37(5): 38-47. |
[12] | LI Lu-ping, LIANG Da-cheng. The Subcellular Communication Driven by Reactive Oxygen Species in Plants [J]. Biotechnology Bulletin, 2021, 37(5): 165-173. |
[13] | LI Yu-hua, REN Yong-kang, ZHAO Xing-hua, LIU Jiang, HAN bin, WANG Chang-biao, TANG Zhao-hui. Research Progress on Chloroplast Genome of Major Gramineous Crops [J]. Biotechnology Bulletin, 2020, 36(11): 112-121. |
[14] | FAN Lei, DAI Dong-yang, XIONG An-ping, SHENG Yun-yan, YU Ming-zhu, QIN Ying-cong. Molecular Marker-assisted Selection in Melon Sex Expression [J]. Biotechnology Bulletin, 2019, 35(4): 195-200. |
[15] | DAI Dong-yang, YUAN Li-wei, SHENG Yun-yan, ZHENG Qun. Transcriptome Sequencing of Stamen in Muskmelon Male Sterile Lines at Different Developmental Stages [J]. Biotechnology Bulletin, 2018, 34(8): 93-100. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||