Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (5): 261-268.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0010
Previous Articles Next Articles
ZHANG Jia-hua1(), ZHANG Hui-mei1, MA Xi-xi1, SUN Yan-sen1, LI Ruo-bing1, LI Ning-xing1, CAI Xue-peng2, QIAO Jun1, MENG Qing-ling1()
Received:
2024-01-04
Online:
2024-05-26
Published:
2024-04-19
Contact:
MENG Qing-ling
E-mail:zhangjiahua0309@163.com;xjmqlqj@163.com
ZHANG Jia-hua, ZHANG Hui-mei, MA Xi-xi, SUN Yan-sen, LI Ruo-bing, LI Ning-xing, CAI Xue-peng, QIAO Jun, MENG Qing-ling. Degradation of Nematodes by Chitinase AO-492 from Arthrospora oligospora[J]. Biotechnology Bulletin, 2024, 40(5): 261-268.
引物名称 Primer name | 引物序列 Primer sequence(5'-3') | 产物大小 Product size/bp |
---|---|---|
492-F 492-R 492-ZF 492-ZR | ATGAGATCTCTGTTTCTACGAG TCAACAGTCTCTCGGCAGTAAG GCTACGTAATGCATCATCATCATCATCATAGATCTCTGTTTCTACGA GCGGCCGCTCAACAGTCTCTCGGCAGTAAG | 1 620 1 654 |
Table 1 Primers’ information used in this study
引物名称 Primer name | 引物序列 Primer sequence(5'-3') | 产物大小 Product size/bp |
---|---|---|
492-F 492-R 492-ZF 492-ZR | ATGAGATCTCTGTTTCTACGAG TCAACAGTCTCTCGGCAGTAAG GCTACGTAATGCATCATCATCATCATCATAGATCTCTGTTTCTACGA GCGGCCGCTCAACAGTCTCTCGGCAGTAAG | 1 620 1 654 |
Fig. 1 PCR amplification of AO-492 gene of A. oligospora Xj-2 strain M: DL2000 DNA marker; 1: negative control; 2-3: amplified products of AO-492 gene
Fig. 4 Identification of recombinant plasmid pPIC9K-AO492 by double-nzyme digestion M: DL8000 DNA marker; 1: undigested pPIC9K-AO492; 2-3: double-enzyme digested products of pPIC9K-AO492
Fig. 5 Screening of recombinant yeast strains A: MD plate; B: YPD medium containing 1 mg/mL G418; C: YPD medium containing 2 mg/mL G418; D: YPD medium containing 3 mg/mL G418
Fig. 6 Identification of recombinant protein ReAO-Z492 by SDS-PAGE (A) and Western blot (B) M: Protein molecular quality standard ; 1: culture supernatant of pPIC9K empty vector induced by methanol for 72 h ; 2-6: culture supernatants induced by methanol for 24,48,72,96 and 120 h, respectively. (B) 1-2: Purified and concentrated ReAO-Z492
Fig. 7 Determination of relative enzymatic activity of recombinant chitinase AO-492 A: NAG standard curve. B: The effect of different pH on the activity of AO-492. C: The effect of different temperatures on the activity of AO-492. D: The effect of different metal ions on the activity of AO-492. * * * * indicates P ≤ 0.0001, ns indicates P > 0.05
Fig. 8 Degradation effect of ReAO-Z492 on C. elegans Control: A1-A3: C. elegans were treated with inactivated ReAO-Z492 for 0, 3, and 6 h. Experimentl: B1-B3, C1-C3 and D1-D3: C. elegans were treated with ReAO-Z492 for 0, 3, and 6 h. The arrow refers to the part of the body wall degradation of nematodes
Fig. 9 Degradation effect of ReAO-Z492 on C. elegans eggs Control: A1-A3: C. elegans eggs were treated with inactivated ReAO-Z492 for 0, 6, and 12 h. Experiment: B1-B3: C. elegans eggs were treated with ReAO-Z492 for 0, 6, and 12 h. The arrow refers to the degradation part of egg shell
[1] | Freitas LA, Savegnago RP, Menegatto LS, et al. Cluster analysis to explore additive-genetic patterns for the identification of sheep resistant, resilient and susceptible to gastrointestinal nematodes[J]. Vet Parasitol, 2022, 301: 109640. |
[2] | Hou B, Yong R, Wuen JY, et al. Positivity rate investigation and anthelmintic resistance analysis of gastrointestinal nematodes in sheep and cattle in Ordos, China[J]. Animals, 2022, 12(7): 891. |
[3] | Mendoza-de Gives P, Braga FR, de Araújo JV. Nematophagous fungi, an extraordinary tool for controlling ruminant parasitic nematodes and other biotechnological applications[J]. Biocontrol Sci Technol, 2022, 32(7): 777-793. |
[4] | Zhang F, Boonmee S, Monkai J, et al. Drechslerella daliensis and D.xiaguanensis(Orbiliales, Orbiliaceae), two new nematode-trapping fungi from Yunnan, China[J]. Biodivers Data J, 2022, 10: e96642. |
[5] | Niu XM, Zhang KQ. Arthrobotrys oligospora: a model organism for understanding the interaction between fungi and nematodes[J]. Mycology, 2011, 2(2): 59-78. |
[6] |
Huang XW, Zhao NH, Zhang KQ. Extracellular enzymes serving as virulence factors in nematophagous fungi involved in infection of the host[J]. Res Microbiol, 2004, 155(10): 811-816.
pmid: 15567274 |
[7] |
Yang JK, Tian BY, Liang LM, et al. Extracellular enzymes and the pathogenesis of nematophagous fungi[J]. Appl Microbiol Biotechnol, 2007, 75(1): 21-31.
pmid: 17318531 |
[8] | Wernet N, Wernet V, Fischer R. The small-secreted cysteine-rich protein CyrA is a virulence factor participating in the attack of Caenorhabditis elegans by Duddingtonia flagrans[J]. PLoS Pathog, 2021, 17(11): e1010028. |
[9] |
Gomaa EZ. Microbial chitinases: properties, enhancement and potential applications[J]. Protoplasma, 2021, 258(4): 695-710.
doi: 10.1007/s00709-021-01612-6 pmid: 33483852 |
[10] | Qiu ST, Zhou SP, Tan Y, et al. Biodegradation and prospect of polysaccharide from crustaceans[J]. Mar Drugs, 2022, 20(5): 310. |
[11] | Le B, Yang SH. Microbial chitinases: properties, current state and biotechnological applications[J]. World J Microbiol Biotechnol, 2019, 35(9): 144. |
[12] | Yang JK, Yu Y, Li J, et al. Characterization and functional analyses of the chitinase-encoding genes in the nematode-trapping fungus Arthrobotrys oligospora[J]. Arch Microbiol, 2013, 195(7): 453-462. |
[13] | Li C, Li XP, Bai CZ, et al. A chitinase with antifungal activity from naked oat(Avena chinensis)seeds[J]. J Food Biochem, 2019, 43(2): e12713. |
[14] | Du JH, Duan S, Miao JY, et al. Purification and characterization of chitinase from Paenibacillus sp[J]. Biotechnol Appl Biochem, 2021, 68(1): 30-40. |
[15] | Meerupati T, Andersson KM, Friman E, et al. Genomic mechanisms accounting for the adaptation to parasitism in nematode-trapping fungi[J]. PLoS Genet, 2013, 9(11): e1003909. |
[16] | Yang JK, Wang L, Ji XL, et al. Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation[J]. PLoS Pathog, 2011, 7(9): e1002179. |
[17] | Chen W, Jiang X, Yang Q. Glycoside hydrolase family 18 chitinases: the known and the unknown[J]. Biotechnol Adv, 2020, 43: 107553. |
[18] | Huang QS, Xie XL, Liang G, et al. The GH18 family of chitinases: their domain architectures, functions and evolutions[J]. Glycobiology, 2012, 22(1): 23-34. |
[19] |
Houston DR, Recklies AD, Krupa JC, et al. Structure and ligand-induced conformational change of the 39-kDa glycoprotein from human articular chondrocytes[J]. J Biol Chem, 2003, 278(32): 30206-30212.
doi: 10.1074/jbc.M303371200 pmid: 12775711 |
[20] |
Tjoelker LW, Gosting L, Frey S, et al. Structural and functional definition of the human chitinase chitin-binding domain[J]. J Biol Chem, 2000, 275(1): 514-520.
doi: 10.1074/jbc.275.1.514 pmid: 10617646 |
[21] | Xie XH, Fu X, Yan XY, et al. A broad-specificity chitinase from Penicillium oxalicum k10 exhibits antifungal activity and biodegradation properties of chitin[J]. Mar Drugs, 2021, 19(7): 356. |
[22] | Suryawanshi N, Eswari JS. Purification and characterization of chitinase produced by thermophilic fungi Thermomyces lanuginosus[J]. Prep Biochem Biotechnol, 2022, 52(9): 1087-1095. |
[23] | Zargar V, Asghari M, Dashti A. A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications[J]. ChemBioEng Rev, 2015, 2(3): 204-226. |
[24] | Moussian B. Chitin: structure, chemistry and biology[M]// Targeting Chitin-containing Organisms. Singapore: Springer, 2019: 5-18. |
[25] | Tharanathan RN, Kittur FS. Chitin—the undisputed biomolecule of great potential[J]. Crit Rev Food Sci Nutr, 2003, 43(1): 61-87. |
[26] | Chen Q, Peng DL. Nematode chitin and application[M]// Targeting Chitin-containing Organisms. Singapore: Springer, 2019: 209-219. |
[27] |
Adrangi S, Faramarzi MA. From bacteria to human: a journey into the world of chitinases[J]. Biotechnol Adv, 2013, 31(8): 1786-1795.
doi: 10.1016/j.biotechadv.2013.09.012 pmid: 24095741 |
[28] | Zhong WQ, Chen Y, Gong SS, et al. Enzymological properties and nematode-degrading activity of recombinant chitinase AO-379 of Arthrobotrys oligospora[J]. Kafkas Universitesi Veteriner Fakultesi Dergisi, 2019, 25(4): 435-444. |
[29] |
贡莎莎, 孟庆玲, 乔军, 等. 少孢节丛孢菌XJ-A1几丁质酶AO-483基因的克隆及生物学活性[J]. 浙江农业学报, 2019, 31(2): 222-228.
doi: 10.3969/j.issn.1004-1524.2019.02.07 |
Gong SS, Meng QL, Qiao J, et al. Gene cloning and bioactivity analysis of chitinase gene AO-483 from Arthrobotrys oligospora XJ-A1[J]. Acta Agric Zhejiangensis, 2019, 31(2): 222-228. | |
[30] | Gong SS, Meng QL, Qiao J, et al. Biological characteristics of recombinant Arthrobotrys oligospora chitinase AO-801[J]. Korean J Parasitol, 2022, 60(5): 345-352. |
[1] | ZHANG Yao-xin, WANG Liang-jie, ZHENG Wen, XU Han-qin, ZHENG Lian, ZHONG Jing. Study on Enzyme Production of a Chitinase-producing Strain Achromobacter sp. ZWW8 by Fermentation and Its Enzymatic Characterization [J]. Biotechnology Bulletin, 2021, 37(4): 96-106. |
[2] | YUAN Liang. Influencing Factors and Formation Mechanism of CaCO3 Precipitation Induced by Microbial Carbonic Anhydrase [J]. Biotechnology Bulletin, 2020, 36(8): 79-68. |
[3] | LI Peng-hao, LIANG Yan-yu, WANG Yan-wei, GUAN Yang, PANG Wen-qiang, TIAN Ke-gong. Soluble Expression and Enzyme Activity Analysis of African Swine Fever Virus K196R and A240L Proteins [J]. Biotechnology Bulletin, 2020, 36(11): 70-75. |
[4] | YUE Xin, YANG Ai-jiang, XU Peng, HU Xia, ZHU Huan-yi, BAO Xin. Effect of Antimony on the Enzyme Activity of Danio rerio [J]. Biotechnology Bulletin, 2019, 35(6): 99-106. |
[5] | GUO Ji-ping, MA Guang, WANG Zhi-jie, QI Shan-hou, WANG Bao-mei, SU Chang-qing. Identification and Analysis of Biocontrol Proteins from a Strain of Bacillus amyloliquefaciens [J]. Biotechnology Bulletin, 2018, 34(1): 202-207. |
[6] | YANG Yu-jin, GUO Guo, WU Qin-yi, LI Yan, FU Ping, ZHANG Yong. Construction of the Recombinant Expression Plasmid and Expression Pattern of Chitinase Gene MDCII from Musca domestica [J]. Biotechnology Bulletin, 2017, 33(2): 102-108. |
[7] | LIU Pu-lin, CHENG De-yong, MIAO Li-hong. Isolation of a Chitinase-producing Strain Brevibacillus laterosporus and Its Enzymatic Properties [J]. Biotechnology Bulletin, 2016, 32(6): 174-180. |
[8] | Zhang Yuan, Zhou Guowang, Li Haitao, Liu Rongmei, Zhao Yikui, Gao Jiguo. Cloning,Expression and Enzymatic Activities of chiA73 Gene from Bacillus thuringiensis [J]. Biotechnology Bulletin, 2015, 31(8): 147-152. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||