Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (5): 269-279.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1032
Previous Articles Next Articles
JIANG Wen-ping1,2(), RAN Qiu-ping1,2, LIU Jia-shu1,2, ZHANG Hui-min1,2, ZHANG Di1,2, JIANG Zheng-bing1,2, LI Hua-nan1,2()
Received:
2023-11-02
Online:
2024-05-26
Published:
2024-06-13
Contact:
LI Hua-nan
E-mail:1828269638@qq.com;huananli@hubu.edu.cn
JIANG Wen-ping, RAN Qiu-ping, LIU Jia-shu, ZHANG Hui-min, ZHANG Di, JIANG Zheng-bing, LI Hua-nan. Effects of Carbohydrate-binding Modules on the Enzymatic Properties of Xylanase[J]. Biotechnology Bulletin, 2024, 40(5): 269-279.
代号Code name | 名称 Name | 生物信息数据库GenBank | 来源 Source | ||
---|---|---|---|---|---|
菌属 Genus | 酶 Enzyme | ||||
1 | CBM1 1号 | BAD01163.1 | Trametes hirsuta | Endoglucanase | |
2 | CBM1 2号 | AAF35251.1 | T. versicolor | Cellobiohydrolase | |
3 | CBM1 3号 | CAM98445.1 | Acremonium thermophilum | Cellulose 1,4-beta-cellobiosidase | |
4 | CBM1 4号 | CAA83846.1 | Trichoderma reesei | Endo-1,4-beta-glucanase V | |
5 | CBM1 5号 | CAA37878.1 | T. viride | Cellobiohydrolase | |
6 | CBM1 6号 | AAQ21383.1 | T. viride | Endoglucanase III | |
7 | CBM1 7号 | AAQ76092.1 | T. viride | Eellobiohydrolase I | |
8 | CBM1 8号 | AAQ76094.1 | T. viride | Cellobiohydrolase II | |
1# | CBM4 | AF039030.1 | Hungateiclostridium thermocellum JW20 | Cellulose 1,4-beta-cellobiosidase | |
2# | CBM3 1号 | ABN54273.1 | H. thermocellum ATCC 27405 | Cellulosome anchoring protein cohesin region | |
3# | CBM3 2号 | ABN51281.1 | H. thermocellum ATCC 27405 | Glycoside hydrolase family 9 | |
4# | CBM2 | AAB42115.1 | Thermobifida fusca YX | Beta-1,4-endoglucanase precursor |
Table 1 Introduction to different types of CBM
代号Code name | 名称 Name | 生物信息数据库GenBank | 来源 Source | ||
---|---|---|---|---|---|
菌属 Genus | 酶 Enzyme | ||||
1 | CBM1 1号 | BAD01163.1 | Trametes hirsuta | Endoglucanase | |
2 | CBM1 2号 | AAF35251.1 | T. versicolor | Cellobiohydrolase | |
3 | CBM1 3号 | CAM98445.1 | Acremonium thermophilum | Cellulose 1,4-beta-cellobiosidase | |
4 | CBM1 4号 | CAA83846.1 | Trichoderma reesei | Endo-1,4-beta-glucanase V | |
5 | CBM1 5号 | CAA37878.1 | T. viride | Cellobiohydrolase | |
6 | CBM1 6号 | AAQ21383.1 | T. viride | Endoglucanase III | |
7 | CBM1 7号 | AAQ76092.1 | T. viride | Eellobiohydrolase I | |
8 | CBM1 8号 | AAQ76094.1 | T. viride | Cellobiohydrolase II | |
1# | CBM4 | AF039030.1 | Hungateiclostridium thermocellum JW20 | Cellulose 1,4-beta-cellobiosidase | |
2# | CBM3 1号 | ABN54273.1 | H. thermocellum ATCC 27405 | Cellulosome anchoring protein cohesin region | |
3# | CBM3 2号 | ABN51281.1 | H. thermocellum ATCC 27405 | Glycoside hydrolase family 9 | |
4# | CBM2 | AAB42115.1 | Thermobifida fusca YX | Beta-1,4-endoglucanase precursor |
引物 Primers | 序列 Sequence(5'-3') |
---|---|
pET23a-F | gctagcatgactggtggacagcaaatgggt |
pET23a-R | gtatatctccttcttaaagttaaacaaaattatttctagagggaaaccgtt |
sfgfp-sumo-F | aactttaagaaggagatatacatgcatcatcaccatcaccatatggtgagcaagggc |
sfgfp-sumo-R1 | ctgccgcttaccgtcctgctgtccaccaatctgttctctgtgagc |
sfgfp-sumo-R2 | accgcactggccccagacggctccaccaatctgttctctgtg |
sfgfp-sumo-R3 | tctttcatacaaaaggtcgtTtccaccaatctgttctctgtgagcctc |
xyn-F | gctcacagagaacagattggtggacagcaggacggtaagcggcag |
xyn-R | tttgctgtccaccagtcatgctagccatcagccgctgaccgtgatgttcga |
cbm1-xyn-F | cacagagaacagattggtggagccgtctggggccagtgcggt |
cbm1-xyn-R | gctgtccaccagtcatgctagctcagccgctgaccgtgat |
cbm4-xyn-F | gaggctcacagagaacagattggtggaAacgaccttttgtatgaaaga |
cbm4-xyn-R | tccaccagtcatgctagctcagccgctgaccgtgatgttcga |
xyn-cbm1-R | tttgctgtccaccagtcatgctagcctggcactgcgagtagt |
xyn-cbm4-R | tttgctgtccaccagtcatgctagcaggatcgtagagagatacatcatcaagg |
cbm1-F | ggcggtggtgggtcgggtggcggtggctcggccgtctggggccag |
cbm1-R | accgcactggccccagacggctccaccaatctgttctctgtg |
cbm4-F | ggcggtggtgggtcgggtggcggtggctcgAacgaccttttgtat |
cbm4-R | cgacccaccaccgcccgagccaccgccaccaggatcgtagagagatac |
Table 2 Primer sequences for constructing fusion genes
引物 Primers | 序列 Sequence(5'-3') |
---|---|
pET23a-F | gctagcatgactggtggacagcaaatgggt |
pET23a-R | gtatatctccttcttaaagttaaacaaaattatttctagagggaaaccgtt |
sfgfp-sumo-F | aactttaagaaggagatatacatgcatcatcaccatcaccatatggtgagcaagggc |
sfgfp-sumo-R1 | ctgccgcttaccgtcctgctgtccaccaatctgttctctgtgagc |
sfgfp-sumo-R2 | accgcactggccccagacggctccaccaatctgttctctgtg |
sfgfp-sumo-R3 | tctttcatacaaaaggtcgtTtccaccaatctgttctctgtgagcctc |
xyn-F | gctcacagagaacagattggtggacagcaggacggtaagcggcag |
xyn-R | tttgctgtccaccagtcatgctagccatcagccgctgaccgtgatgttcga |
cbm1-xyn-F | cacagagaacagattggtggagccgtctggggccagtgcggt |
cbm1-xyn-R | gctgtccaccagtcatgctagctcagccgctgaccgtgat |
cbm4-xyn-F | gaggctcacagagaacagattggtggaAacgaccttttgtatgaaaga |
cbm4-xyn-R | tccaccagtcatgctagctcagccgctgaccgtgatgttcga |
xyn-cbm1-R | tttgctgtccaccagtcatgctagcctggcactgcgagtagt |
xyn-cbm4-R | tttgctgtccaccagtcatgctagcaggatcgtagagagatacatcatcaagg |
cbm1-F | ggcggtggtgggtcgggtggcggtggctcggccgtctggggccag |
cbm1-R | accgcactggccccagacggctccaccaatctgttctctgtg |
cbm4-F | ggcggtggtgggtcgggtggcggtggctcgAacgaccttttgtat |
cbm4-R | cgacccaccaccgcccgagccaccgccaccaggatcgtagagagatac |
Fig. 1 SDS-PAGE analysis of different types of CBM and adsorption capacity on beech xylan A: SDS-PAGE analysis of pure protein(M: Protein molecular standards; 1-8: family CBM1; 1#: CBM4; 2#: CBM3 family No. 1; 3#: CBM3 family No. 2; 4#: CBM2). B: Adsorption capacity of different types of CBM on beech xylan. The error line in the figure indicates the standard deviation. The same below
Fig. 2 SDS-PAGE analysis of fusion enzyme A: SDS-PAGE analysis of crude supernatant enzyme solution. B: Pure enzyme SDS-PAGE analysis. C: ULP1 enzyme acts on SUMO, cleaves fusion protein, and SDS-PAGE analysis of SFGFP-SUMO and target protein
金属离子和化学试剂 Metal ion and chemical reagent | 相对酶活Relative enzyme activity/% | ||
---|---|---|---|
XYN | CBM1-XYN | ||
FeCl3 | 92.6±1.67 | 101.9±5.07 | |
NaCl | 95.4±4.14 | 109.6±3.29 | |
CaCl2 | 93.4±1.84 | 106.8±7.74 | |
MnSO4 | 73.1±1.89 | 92.6±1.22 | |
KCl | 101.7±4.14 | 104.9±2.85 | |
FeSO4 | 75.3±0.66 | 81±2.11 | |
CoCl2 | 98.8±1.71 | 101.4±1.13 | |
MgCl2 | 94.8±2.20 | 108.7±1.66 | |
(NH4)2SO4 | 98.4±1.45 | 101±1.02 |
Table 3 Effect of metal ions and chemical reagents on enzyme activity
金属离子和化学试剂 Metal ion and chemical reagent | 相对酶活Relative enzyme activity/% | ||
---|---|---|---|
XYN | CBM1-XYN | ||
FeCl3 | 92.6±1.67 | 101.9±5.07 | |
NaCl | 95.4±4.14 | 109.6±3.29 | |
CaCl2 | 93.4±1.84 | 106.8±7.74 | |
MnSO4 | 73.1±1.89 | 92.6±1.22 | |
KCl | 101.7±4.14 | 104.9±2.85 | |
FeSO4 | 75.3±0.66 | 81±2.11 | |
CoCl2 | 98.8±1.71 | 101.4±1.13 | |
MgCl2 | 94.8±2.20 | 108.7±1.66 | |
(NH4)2SO4 | 98.4±1.45 | 101±1.02 |
酶 Enzyme | Vmax /(mg·mL-1· min-1) | Km /(mg· mL-1) | Kcat/Km /(mL· mg-1·min-1) |
---|---|---|---|
XYN | 1.564 7 | 0.012 5 | 335.879 9 |
CBM1-XYN | 2.842 5 | 0.009 5 | 891.909 0 |
Table 4 Dynamics parameters of XYN and CBM1-XYN
酶 Enzyme | Vmax /(mg·mL-1· min-1) | Km /(mg· mL-1) | Kcat/Km /(mL· mg-1·min-1) |
---|---|---|---|
XYN | 1.564 7 | 0.012 5 | 335.879 9 |
CBM1-XYN | 2.842 5 | 0.009 5 | 891.909 0 |
[1] |
Zoghlami A, Paës G. Lignocellulosic biomass: understanding recalcitrance and predicting hydrolysis[J]. Front Chem, 2019, 7: 874.
doi: 10.3389/fchem.2019.00874 pmid: 31921787 |
[2] | Madhavan A, Arun KB, Sindhu R, et al. Design and genome engineering of microbial cell factories for efficient conversion of lignocellulose to fuel[J]. Bioresour Technol, 2023, 370: 128555. |
[3] | Liu YJ, Wang J, Bao CL, et al. Characterization of a novel GH10 xylanase with a carbohydrate binding module from Aspergillus sulphureus and its synergistic hydrolysis activity with cellulase[J]. Int J Biol Macromol, 2021, 182: 701-711. |
[4] |
Nguyen STC, Freund HL, Kasanjian J, et al. Function, distribution, and annotation of characterized cellulases, xylanases, and chitinases from CAZy[J]. Appl Microbiol Biotechnol, 2018, 102(4): 1629-1637.
doi: 10.1007/s00253-018-8778-y pmid: 29359269 |
[5] |
Moreira LRS, Filho EXF. Insights into the mechanism of enzymatic hydrolysis of xylan[J]. Appl Microbiol Biotechnol, 2016, 100(12): 5205-5214.
doi: 10.1007/s00253-016-7555-z pmid: 27112349 |
[6] | Rahmani N, Kahar P, Lisdiyanti P, et al. GH-10 and GH-11 Endo-1, 4-β-xylanase enzymes from Kitasatospora sp. produce xylose and xylooligosaccharides from sugarcane bagasse with no xylose inhibition[J]. Bioresour Technol, 2019, 272: 315-325. |
[7] | You S, Li J, Zhang F, et al. Loop engineering of a thermostable GH10 xylanase to improve low-temperature catalytic performance for better synergistic biomass-degrading abilities[J]. Bioresour Technol, 2021, 342: 125962. |
[8] | Joshi JB, Priyadharshini R, Uthandi S. Glycosyl hydrolase 11(xynA)gene with xylanase activity from thermophilic bacteria isolated from thermal springs[J]. Microb Cell Fact, 2022, 21(1): 62. |
[9] | Xiong K, Yan ZX, Liu JY, et al. Inter domain interactions influence the substrate affinity and hydrolysis product specificity of xylanase from Streptomyces chartreusis L1105[J]. Ann Microbiol, 2020, 70(1): 1-12. |
[10] | Li JF, Wang CJ, Hu D, et al. Engineering a family 27 carbohydrate-binding module into an Aspergillus usamii β-mannanase to perfect its enzymatic properties[J]. J Biosci Bioeng, 2017, 123(3): 294-299. |
[11] |
Boraston AB, Revett TJ, Boraston CM, et al. Structural and thermodynamic dissection of specific mannan recognition by a carbohydrate binding module, TmCBM27[J]. Structure, 2003, 11(6): 665-675.
pmid: 12791255 |
[12] | Liu LW, Zeng LY, Wang SY, et al. Activity and thermostability increase of xylanase following transplantation with modules sub-divided from hyper-thermophilic CBM9_1-2[J]. Process Biochem, 2012, 47(5): 853-857. |
[13] | Wang HL, Qi XH, Gao S, et al. Biochemical characterization of an engineered bifunctional xylanase/feruloyl esterase and its synergistic effects with cellulase on lignocellulose hydrolysis[J]. Bioresour Technol, 2022, 355: 127244. |
[14] | Li XQ, Xia JL, Zhu XY, et al. Construction and characterization of bifunctional cellulases: Caldicellulosiruptor-sourced endoglucanase, CBM, and exoglucanase for efficient degradation of lignocellulose[J]. Biochem Eng J, 2019, 151: 107363. |
[15] | Shi QC, Abdel-Hamid AM, Sun ZY, et al. Carbohydrate-binding modules facilitate the enzymatic hydrolysis of lignocellulosic biomass: releasing reducing sugars and dissociative lignin available for producing biofuels and chemicals[J]. Biotechnol Adv, 2023, 65: 108126. |
[16] | Mandal A, Thakur A, Goyal A. Role of carbohydrate binding modules, CBM3A and CBM3B in stability and catalysis by a β-1, 4 endoglucanase, AtGH9C-CBM3A-CBM3B from Acetivibrio thermocellus ATCC 27405[J]. Int J Biol Macromol, 2023, 242(Pt 4): 125164. |
[17] | Zhou JL, Harindintwali JD, Yang WH, et al. Engineering of a chitosanase fused to a carbohydrate-binding module for continuous production of desirable chitooligosaccharides[J]. Carbohydr Polym, 2021, 273: 118609. |
[18] | Lombard V, Golaconda Ramulu H, Drula E, et al. The carbohydrate-active enzymes database(CAZy)in 2013[J]. Nucleic Acids Res, 2014, 42(Database issue): D490-D495. |
[19] | Kang DH, You SK, Joo YC, et al. Synergistic effect of the enzyme complexes comprising agarase, carrageenase and neoagarobiose hydrolase on degradation of the red algae[J]. Bioresour Technol, 2018, 250: 666-672. |
[20] |
Chalak A, Villares A, Moreau C, et al. Influence of the carbohydrate-binding module on the activity of a fungal AA9 lytic polysaccharide monooxygenase on cellulosic substrates[J]. Biotechnol Biofuels, 2019, 12: 206.
doi: 10.1186/s13068-019-1548-y pmid: 31508147 |
[21] | Liu T, Zhang Y, Lu XM, et al. Binding affinity of family 4 carbohydrate binding module on cellulose films of nanocrystals and nanofibrils[J]. Carbohydr Polym, 2021, 251: 116725. |
[22] | Lee JP, Shin ES, Cho MY, et al. Roles of carbohydrate-binding module(CBM)of an endo-β-1, 4-glucanase(Cel5L)from Bacillus sp. KD1014 in thermostability and small-substrate hydrolyzing activity[J]. J Microbiol Biotechnol, 2018, 28(12): 2036-2045. |
[23] | Thongekkaew J, Ikeda H, Masaki K, et al. Fusion of cellulose binding domain from Trichoderma reesei CBHI to Cryptococcus sp. S-2 cellulase enhances its binding affinity and its cellulolytic activity to insoluble cellulosic substrates[J]. Enzyme Microb Technol, 2013, 52(4/5): 241-246. |
[24] | Pan RH, Hu YM, Long LK, et al. Extra carbohydrate binding module contributes to the processivity and catalytic activity of a non-modular hydrolase family 5 endoglucanase from Fomitiporia mediterranea MF3/22[J]. Enzyme Microb Technol, 2016, 91: 42-51. |
[25] | Hu YM, Li HN, Ran QP, et al. Effect of carbohydrate binding modules alterations on catalytic activity of glycoside hydrolase family 6 exoglucanase from Chaetomium thermophilum to cellulose[J]. Int J Biol Macromol, 2021, 191: 222-229. |
[26] | Tajwar R, Shahid S, Zafar R, et al. Impact of orientation of carbohydrate binding modules family 22 and 6 on the catalytic activity of Thermotoga maritima xylanase XynB[J]. Enzyme Microb Technol, 2017, 106: 75-82. |
[27] | Rooijakkers BJM, Arola S, Velagapudi R, et al. Different effects of carbohydrate binding modules on the viscoelasticity of nanocellulose gels[J]. Biochem Biophys Rep, 2020, 22: 100766. |
[28] | Li H, Lu ZJ, Hao MS, et al. Family 92 carbohydrate-binding modules specific for β-1, 6-glucans increase the thermostability of a bacterial chitinase[J]. Biochimie, 2023, 212: 153-160. |
[29] | Kurniati A, Puspaningsih NNT, Putri KDA, et al. Heterologous fusion gene expression and characterization of a novel carbohydrate binding module(Cbm36)to laccase(Lcc2)[J]. Biocatal Agric Biotechnol, 2022, 42: 102377. |
[30] | Hoffmam ZB, Zanphorlin LM, Cota J, et al. Xylan-specific carbohydrate-binding module belonging to family 6 enhances the catalytic performance of a GH11 endo-xylanase[J]. N Biotechnol, 2016, 33(4): 467-472. |
[31] | Khan MIM, Sajjad M, Sadaf S, et al. The nature of the carbohydrate binding module determines the catalytic efficiency of xylanase Z of Clostridium thermocellum[J]. J Biotechnol, 2013, 168(4): 403-408. |
[32] |
Yang A, Cheng JS, Liu M, et al. Sandwich fusion of CBM9_2 to enhance xylanase thermostability and activity[J]. Int J Biol Macromol, 2018, 117: 586-591.
doi: S0141-8130(18)30844-4 pmid: 29852224 |
[33] | Xu WX, Liu YJ, Ye YX, et al. C-Terminal carbohydrate-binding module 9_2 fused to the N-terminus of GH11 xylanase from Aspergillus niger[J]. Biotechnol Lett, 2016, 38(10): 1739-1745. |
[34] |
Li Q, Sun BG, Jia HY, et al. Engineering a xylanase from Streptomyce rochei L10904 by mutation to improve its catalytic characteristics[J]. Int J Biol Macromol, 2017, 101: 366-372.
doi: S0141-8130(17)30498-1 pmid: 28356235 |
[35] | Wu QH, Zhang CN, Zhu WJ, et al. Improved thermostability, acid tolerance as well as catalytic efficiency of Streptomyces rameus L2001 GH11 xylanase by N-terminal replacement[J]. Enzyme Microb Technol, 2023, 162: 110143. |
[36] |
Han YJ, Gao PX, Yu WG, et al. Thermostability enhancement of chitosanase CsnA by fusion a family 5 carbohydrate-binding module[J]. Biotechnol Lett, 2017, 39(12): 1895-1901.
doi: 10.1007/s10529-017-2406-2 pmid: 28748352 |
[37] | Sari B, Faiz O, Genc B, et al. New xylanolytic enzyme from Geobacillus galactosidasius BS61 from a geothermal resource in Turkey[J]. Int J Biol Macromol, 2018, 119: 1017-1026. |
[38] | van Dyk JS, Sakka M, Sakka K, et al. Characterisation of the multi-enzyme complex xylanase activity from Bacillus licheniformis SVD1[J]. Enzyme Microb Technol, 2010, 47(4): 174-177. |
[39] |
Hong J, Ye XH, Zhang YH. Quantitative determination of cellulose accessibility to cellulase based on adsorption of a nonhydrolytic fusion protein containing CBM and GFP with its applications[J]. Langmuir, 2007, 23(25): 12535-12540.
doi: 10.1021/la7025686 pmid: 17988165 |
[40] | He HB, Liu JJ, Wang YT, et al. Site-directed mutagenesis of family GH10 Aspergillus fumigatus xylanase A and the interaction with Oryza sativa xylanase inhibitor protein[J]. Biocatal Agric Biotechnol, 2023, 54: 102920. |
[41] | Hong SJ, Park BR, Lee HN, et al. Carbohydrate-binding module of cycloisomaltooligosaccharide glucanotransferase from Thermoanaerobacter thermocopriae improves its cyclodextran production[J]. Enzyme Microb Technol, 2022, 157: 110023. |
[1] | PAN Ping-ping, XU Zhi-hao, ZHANG Yi-wen, LI Qing, WANG Zhong-hua. Prokaryotic Expression, Subcellular Localization and Expression Analysis of PcCHS Gene from Polygonatum cyrtonema Hua [J]. Biotechnology Bulletin, 2024, 40(5): 280-289. |
[2] | YANG Wei-jie, YANG Zhou-lin, ZHU Hao-dong, WEI Yu, LIU Jun, LIU Xun. Study on the Properties and Functions of LchAD Protein, a Key Module of Lichenysin Synthase [J]. Biotechnology Bulletin, 2024, 40(3): 322-332. |
[3] | LI Xue, LI Rong-ou, KONG Mei-yi, HUANG Lei. The Growth Promoting Effect of Bacillus amyloliquefaciens SQ-2 on Rice [J]. Biotechnology Bulletin, 2024, 40(2): 109-119. |
[4] | ZHAO Zhong-juan, YANG Kai, HU Jin-dong, WEI Yan-li, LI Ling, XU Wei-sheng, LI Ji-shun. Effects of Trichoderma harzianum ST02 on the Growth of Peppermint and Physicochemical Properties of Root Zone Soil Under Salt Stress [J]. Biotechnology Bulletin, 2022, 38(7): 224-235. |
[5] | YUAN Cun-xia, LI Yan-nan, ZHANG Xiao-chong, YANG Rui, LIU Jian-li, LI Jing-yu. Physiological and Biochemical Response Characteristics of Bacillus sp. ZJS3 Under As3+ Stress [J]. Biotechnology Bulletin, 2022, 38(7): 236-246. |
[6] | WANG Xiao-qin, HUANG Yin-ping, WANG Wei-qian, WU Ping, QUAN Shu. Expression and Purification of the MLL3SET Protein with a Site-directed Mutation of an Unnatural Amino Acid [J]. Biotechnology Bulletin, 2022, 38(3): 194-202. |
[7] | YANG Jia-hui, SUN Yu-ping, LU Ya-ning, LIU huan, LU Cun-fu, CHEN Yu-zhen. Abiotic Stress Resistance of Escherichia coli Transformed with Arabidopsis thaliana AtTERT Gene [J]. Biotechnology Bulletin, 2022, 38(2): 1-9. |
[8] | LI Zhi-hao, ZHANG Ge, MO Zhi-jie, DENG Shuai-jun, LI Jia-yi, ZHANG Hai-bo, LIU Xiao-hui, LIU Hao-bao. Effects of a Xylanase-producing Bacillus cereus on the Composition and Fermented Products of Cigar Leaves [J]. Biotechnology Bulletin, 2022, 38(2): 105-112. |
[9] | JIA Hai-hong, LI Bing-qing. Research Progress in the Post-translational Modification of Superoxide Dismutase [J]. Biotechnology Bulletin, 2022, 38(2): 237-244. |
[10] | WU Qi-man, TIAN Shi-han, LI Yun-ye, PAN Ying-jie, ZHANG Ying. Effects of Microbial Fertilizer on Cucumis sativus L. Growth,Yield and Quality [J]. Biotechnology Bulletin, 2022, 38(1): 125-131. |
[11] | YUAN Yuan, WANG Lei, SHI Ya-wei. Research Advances in Strategies for Improving the Activity of Microbial-derived Alkaline Proteases [J]. Biotechnology Bulletin, 2021, 37(5): 231-236. |
[12] | CHEN Xiao-yu, ZHANG Jian, ZHANG Xin-ya, TANG Yu-ting, SHAO Yu-chen, LUO Zhi-dan, LU Chen. A Rapid and Accurate Method for Tth DNA Polymerase Activity Assay [J]. Biotechnology Bulletin, 2021, 37(5): 281-286. |
[13] | WU Rong, CAO Jia-rui, CAO Jun, LIU Fei-xiang, YANG Meng, SU Er-zheng. Expression and Fermentation Optimization of Candida antarctica Lipase B in Escherichia coli [J]. Biotechnology Bulletin, 2021, 37(2): 138-148. |
[14] | YU Qin, MA Xian-yong, DENG Dun, WANG Yong-fei. Optimization of Indole-degrading Conditions in Pig Manure Waste Water by Enteroccus hirae IDO5 and Analysis of Its Corresponding Degradation Pathway [J]. Biotechnology Bulletin, 2021, 37(12): 113-123. |
[15] | XIE Guo-zhen, TANG Yuan, WU Yi, HUANG Li-li, TAN Zhou-jin. Effects of Total Glycosides of Qiwei Baizhu Powder on Intestinal Microbiota and Enzyme Activities in Diarrhea Mice [J]. Biotechnology Bulletin, 2021, 37(12): 124-131. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||