Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (2): 109-119.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0770
Previous Articles Next Articles
LI Xue(), LI Rong-ou, KONG Mei-yi, HUANG Lei()
Received:
2023-08-09
Online:
2024-02-26
Published:
2024-03-13
Contact:
HUANG Lei
E-mail:huaxuehuagong12@126.com;huanglei@tjut.edu.cn
LI Xue, LI Rong-ou, KONG Mei-yi, HUANG Lei. The Growth Promoting Effect of Bacillus amyloliquefaciens SQ-2 on Rice[J]. Biotechnology Bulletin, 2024, 40(2): 109-119.
Fig. 1 Phosphorus dissolution of Bacillus amyloliquefaciens SQ-2 in inorganic phosphorus medium A: Phosphate solubilization zones of B. amyloliquefaciens SQ-2 on inorganic phosphorus solid medium; B: phosphorus dissolution amount, pH and bacterial growth ability(1×107)of B. amyloliquefaciens SQ-2 in inorganic phosphorus liquid medium
Fig. 2 Scanning electron micrograph of potassium feldspar after inoculation with B. amyloliquefaciens SQ-2 A: Potassium feldspar control group(2 μm). B: Morphology of potassium feldspar after inoculation with B. amyloliquefaciens SQ-2(2 μm). C: Potassium feldspar control group(1 μm). D: Morphology of potassium feldspar after inoculation with B. amyloliquefaciens SQ-2(1 μm)
处理 Treatment | 根干重 Dry weight of root/g | 茎干重 Dry weight of stem/g | 根鲜重 Fresh weight of root/g | 茎鲜重 Fresh weight of stem/g | 茎粗 Stem thickness/mm | 株高 Height/cm |
---|---|---|---|---|---|---|
CK | 0.03±0.001c | 0.03±0.001c | 0.32±0.014b | 0.34±0.012ab | 0.53±0.020ab | 4.92±0.060ab |
S1 | 0.03±0.003c | 0.03±0.002bc | 0.32±0.002b | 0.28±0.010b | 0.59±0.020ab | 5.28±0.177ab |
S2 | 0.05±0.003a | 0.04±0.003a | 0.52±0.005a | 0.40±0.026a | 0.62±0.007a | 5.63±0.003a |
S3 | 0.04±0.002ab | 0.04±0.001ab | 0.42±0.033ab | 0.34±0.019ab | 0.60±0.007ab | 5.71±0.253a |
S4 | 0.04±0.003ab | 0.04±0.001abc | 0.42±0.007ab | 0.36±0.017ab | 0.50±0.033b | 5.58±0.167a |
S5 | 0.04±0.002bc | 0.03±0.001c | 0.40±0.024b | 0.27±0.004b | 0.52±0.010b | 4.54±0.180b |
Table 1 Effects of B. amyloliquefaciens SQ-2 at different inoculum concentrations on the dry and fresh weight, stem length, and stem diameter of hydroponic rice
处理 Treatment | 根干重 Dry weight of root/g | 茎干重 Dry weight of stem/g | 根鲜重 Fresh weight of root/g | 茎鲜重 Fresh weight of stem/g | 茎粗 Stem thickness/mm | 株高 Height/cm |
---|---|---|---|---|---|---|
CK | 0.03±0.001c | 0.03±0.001c | 0.32±0.014b | 0.34±0.012ab | 0.53±0.020ab | 4.92±0.060ab |
S1 | 0.03±0.003c | 0.03±0.002bc | 0.32±0.002b | 0.28±0.010b | 0.59±0.020ab | 5.28±0.177ab |
S2 | 0.05±0.003a | 0.04±0.003a | 0.52±0.005a | 0.40±0.026a | 0.62±0.007a | 5.63±0.003a |
S3 | 0.04±0.002ab | 0.04±0.001ab | 0.42±0.033ab | 0.34±0.019ab | 0.60±0.007ab | 5.71±0.253a |
S4 | 0.04±0.003ab | 0.04±0.001abc | 0.42±0.007ab | 0.36±0.017ab | 0.50±0.033b | 5.58±0.167a |
S5 | 0.04±0.002bc | 0.03±0.001c | 0.40±0.024b | 0.27±0.004b | 0.52±0.010b | 4.54±0.180b |
处理 Treatment | 根干重 Dry weight of root/g | 茎干重 Dry weight of stem/g | 根鲜重 Fresh weight of root/g | 茎鲜重 Fresh weight of stem/g | 茎粗 Stem thickness/mm | 株高 Height/cm |
---|---|---|---|---|---|---|
CK | 0.07±0.001bc | 0.03±0.001b | 0.81±0.038bc | 0.43±0.004c | 0.72±0.023bc | 10.99±0.243c |
S1 | 0.06±0.001c | 0.03±0.001b | 0.74±0.031c | 0.42±0.006c | 0.64±0.003c | 11.85±0.180c |
S2 | 0.08±0.002abc | 0.03±0.001b | 0.94±0.022abc | 0.42±0.005c | 0.72±0.043bc | 11.34±0.013c |
S3 | 0.09±0.002ab | 0.03±0.001b | 0.99±0.017ab | 0.46±0.001bc | 0.77±0.037abc | 10.67±0.067c |
S4 | 0.10±0.001a | 0.04±0.002b | 1.11±0.001a | 0.51±0.037ab | 0.87±0.107ab | 12.32±0.377c |
S5 | 0.10±0.005a | 0.05±0.001a | 1.16±0.009a | 0.58±0.003a | 0.94±0.001a | 12.24±0.493c |
Table 2 Effects of B. amyloliquefaciens SQ-2 at different inoculum concentrations on the dry and fresh weight, stem length, and stem thickness of soil cultured rice
处理 Treatment | 根干重 Dry weight of root/g | 茎干重 Dry weight of stem/g | 根鲜重 Fresh weight of root/g | 茎鲜重 Fresh weight of stem/g | 茎粗 Stem thickness/mm | 株高 Height/cm |
---|---|---|---|---|---|---|
CK | 0.07±0.001bc | 0.03±0.001b | 0.81±0.038bc | 0.43±0.004c | 0.72±0.023bc | 10.99±0.243c |
S1 | 0.06±0.001c | 0.03±0.001b | 0.74±0.031c | 0.42±0.006c | 0.64±0.003c | 11.85±0.180c |
S2 | 0.08±0.002abc | 0.03±0.001b | 0.94±0.022abc | 0.42±0.005c | 0.72±0.043bc | 11.34±0.013c |
S3 | 0.09±0.002ab | 0.03±0.001b | 0.99±0.017ab | 0.46±0.001bc | 0.77±0.037abc | 10.67±0.067c |
S4 | 0.10±0.001a | 0.04±0.002b | 1.11±0.001a | 0.51±0.037ab | 0.87±0.107ab | 12.32±0.377c |
S5 | 0.10±0.005a | 0.05±0.001a | 1.16±0.009a | 0.58±0.003a | 0.94±0.001a | 12.24±0.493c |
Fig. 3 Effects of B. amyloliquefaciens SQ-2 on soil cultured rice under different bacterial inoculum concentrations A-F indicates adding different concentration of bacteria; A: 3×108; B: 108; C: 106; D: 104; E: 102; F: 0(CFU/mL)
Fig. 4 Effects of B. amyloliquefaciens SQ-2 at different concentrations on nitrogen, phosphorus, potassium, pH and enzyme activity in soil The different lowercase letters indicate significant differences (P < 0.05)
Fig. 5 Correlation between soil nutrient composition, soil enzyme activity, and pH after inoculation with B. amyloliquefaciens SQ-2(n=18) *P<0.05; ** P<0.01; *** P<0.001
Fig. 6 Shannon dilution curve and Venn plot of B. amylo-liquefaciens SQ-2 A: Alpha diversity index Shannon dilution curve. B: Venn plot of rhizosphere soil microbiota of inoculated Bacillus amyloliquefaciens SQ-2 and control group. CK as the control group, S5 at 3×108 CFU/mL concentration. The same below
Fig. 8 Analysis of bacterial community composition in rice rhizosphere soil A: Phylum classification of bacteria in rice rhizosphere soil. B: Class classification of bacteria in rice rhizosphere soil
[1] |
刘广超, 叶青, 车永梅, 等. 烟草根际高效解磷菌的筛选鉴定及促生作用研究[J]. 生物技术通报, 2022, 38(8): 179-187.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1511 |
Liu GC, Ye Q, Che YM, et al. Screening and identification of high-efficiency phosphate solubilizing bacteria in tobacco rhizosphere and its growth-promoting effects[J]. Biotechnol Bull, 2022, 38(8): 179-187. | |
[2] |
George TS, Hinsinger P, Turner BL. Phosphorus in soils and plants - facing phosphorus scarcity[J]. Plant Soil, 2016, 401(1/2): 1-6.
doi: 10.1007/s11104-016-2846-9 URL |
[3] |
Park JH, Bolan N, Megharaj M, et al. Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil[J]. J Hazard Mater, 2011, 185(2/3): 829-836.
doi: 10.1016/j.jhazmat.2010.09.095 URL |
[4] | 黄国勤, 王兴祥, 钱海燕, 等. 施用化肥对农业生态环境的负面影响及对策[J]. 生态环境, 2004, 13(4): 656-660. |
Huang GQ, Wang XX, Qian HY, et al. Negative impact of inorganic fertilizes application on agricultural environment and its countermeasures[J]. Ecol Environ Sci, 2004, 13(4): 656-660. | |
[5] |
Mahiwal S, Pandey GK. Potassium: a vital nutrient mediating stress tolerance in plants[J]. J Plant Biochem Biotechnol, 2022, 31(4): 705-719.
doi: 10.1007/s13562-022-00775-4 |
[6] |
Zhang M, Jin ZH, Zhang X, et al. Alleviation of Cd phytotoxicity and enhancement of rape seedling growth by plant growth-promoting bacterium Enterobacter sp. Zm-123[J]. Environ Sci Pollut Res Int, 2020, 27(26): 33192-33203.
doi: 10.1007/s11356-020-09558-7 |
[7] | 马欣, 成妍, 马蓉丽. 植物根围促生细菌促生机制研究进展[J]. 山东农业科学, 2019, 51(5): 148-154. |
Ma X, Cheng Y, Ma RL. Research progress of growth-promoting mechanisms of plant growth-promoting rhizobacteria[J]. Shandong Agric Sci, 2019, 51(5): 148-154. | |
[8] | 贾峥嵘, 郝佳丽, 郝艳芳, 等. 四种芽孢杆菌菌剂对甘薯不同时期产量及品质的影响[J]. 作物杂志, 2023(1): 170-175. |
Jia ZR, Hao JL, Hao YF, et al. Effects of four Bacillus species on yield and quality of sweet potato at different stages[J]. Crops, 2023(1): 170-175. | |
[9] | 周童晖, 卜建超, 张皓珊, 等. 巨菌草根际高效解磷菌的筛选[J]. 福建农林大学学报: 自然科学版, 2023, 52(1): 26-32. |
Zhou TH, Bu JC, Zhang HS, et al. Isolation and characterization of highly efficient phosphate-solubilizing bacteria colonizing Cenchrus fungigraminus rhizosphere[J]. J Fujian Agric For Univ Nat Sci Ed, 2023, 52(1): 26-32. | |
[10] | 张慧洁, 刘俊琢, 吴永红. 藻、菌配合施用对水稻土磷有效性及微生物群落的影响[J]. 土壤学报, 2022, 59(5): 1369-1377. |
Zhang HJ, Liu JZ, Wu YH. Effects of combined application of algae and bacteria on paddy soil phosphorus availability and microbial community[J]. Acta Pedol Sin, 2022, 59(5): 1369-1377. | |
[11] |
Saadouli I, Mosbah A, Ferjani R, et al. The impact of the inoculation of phosphate-solubilizing bacteria Pantoea agglomerans on phosphorus availability and bacterial community dynamics of a semi-arid soil[J]. Microorganisms, 2021, 9(8): 1661.
doi: 10.3390/microorganisms9081661 URL |
[12] | 宋倩倩, 李苏冉, 胡宇辰, 等. 一株解淀粉芽孢杆菌胞外多糖的分离纯化及其抗氧化性研究[J]. 天津理工大学学报, 2022, 38(5): 27-36. |
Song QQ, Li SR, Hu YC, et al. Research on isolation, purification and antioxidant activity of exopolysaccharide from Bacillus amyloliquefaciens[J]. J Tianjin Univ Technol, 2022, 38(5): 27-36. | |
[13] | 胡秀月, 吴庆华, 黄保成, 等. 钼蓝比色法测定不同种质何首乌磷脂的含量[J]. 大众科技, 2014, 16(5): 92-94. |
Hu XY, Wu QH, Huang BC, et al. Determination of phospholipid in different germplasm of Polygonum multiflorum by molybdenum blue colorimetry[J]. Pop Sci Technol, 2014, 16(5): 92-94. | |
[14] | 张小红, 马绍英, 李胜, 等. 接种根瘤菌对重茬豌豆土壤养分及酶活性的影响[J]. 土壤通报, 2022, 53(6): 1360-1367. |
Zhang XH, Ma SY, Li S, et al. Effects of Rhizobium inoculation on soil nutrients and enzyme activities of continuous crop pea[J]. Chin J Soil Sci, 2022, 53(6): 1360-1367. | |
[15] | 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986. |
Guan SY. Soil enzyme and its research method[M]. Beijing: Agricultural Press, 1986. | |
[16] | 杨剑虹, 王成林, 代亨林. 土壤农化分析与环境监测[M]. 北京: 中国大地出版社, 2008: 26-75. |
Yang JH, Wang CL, Dai HL. Soil agrochemical analysis and environmental monitoring[M]. Beijing: China Land Press, 2008: 26-75. | |
[17] | 黄昆鹏, 董昆乐, 李芳芳, 等. 烟草抗病嫁接对根际土壤微生物多样性的影响[J]. 江苏农业科学, 2023, 51(20): 239-247. |
Huang KP, Dong KL, Li FF, et al. Impacts of disease-resistant grafting on microbial diversity in rhizosphere soil of tobacco[J]. Jiangsu Agric Sci, 2023, 51(20): 239-247. | |
[18] |
Li ZK, Chen YL, Ling AF, et al. Effects of biocontrol agents application on soil bacterial community and the quality of tobacco[J]. Curr Microbiol, 2022, 79(11): 320.
doi: 10.1007/s00284-022-02937-y pmid: 36121540 |
[19] | 朱培淼, 杨兴明, 徐阳春, 等. 高效解磷细菌的筛选及其对玉米苗期生长的促进作用[J]. 应用生态学报, 2007, 18(1): 107-112. |
Zhu PM, Yang XM, Xu YC, et al. High effective phosphate-solubilizing bacteria: their isolation and promoting effect on corn seedling growth[J]. Chin J Appl Ecol, 2007, 18(1): 107-112. | |
[20] |
徐红云, 吕俊, 于存. 根际溶磷伯克霍尔德菌Paraburkholderia spp.对马尾松苗的促生作用[J]. 生物技术通报, 2023, 39(6): 274-285.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-1226 |
Xu HY, Lv J, Yu C. Growth promoting of Pinus massoniana seedlings regulated by rhizosphere phosphate-solubilizing Paraburkholderia spp[J]. Biotechnol Bull, 2023, 39(6): 274-285. | |
[21] |
Rawat P, Das S, Shankhdhar D, et al. Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake[J]. J Soil Sci Plant Nutr, 2021, 21(1): 49-68.
doi: 10.1007/s42729-020-00342-7 |
[22] | 马莹, 程莹莹, 石孝均, 等. 溶磷菌在磷素循环和生态农业中的作用与其生物肥料应用[J]. 微生物学报, 2023, 63(12):4502-4521. |
Ma Y, Cheng YY, Shi XJ, et al. Phosphorus-solubilizing bacteria: roles in phosphorus cycling and ecological agriculture and application as potential biofertilizers[J]. Acta Microbiol Sin, 2023, 63(12):4502-4521. | |
[23] |
Xing PF, Zhao YB, Guan DW, et al. Effects of Bradyrhizobium co-inoculated with Bacillus and Paenibacillus on the structure and functional genes of soybean rhizobacteria community[J]. Genes, 2022, 13(11): 1922.
doi: 10.3390/genes13111922 URL |
[24] | 索雲凯, 刘丽红, 张雷, 等. 解钾菌解钾作用研究进展[J]. 当代化工, 2021, 50(4): 924-929. |
Suo YK, Liu LH, Zhang L, et al. Research progress of potassium solubilization by potassium solubilizing bacteria[J]. Contemp Chem Ind, 2021, 50(4): 924-929. | |
[25] |
Reed SC, Cleveland CC, Townsend AR. Functional ecology of free-living nitrogen fixation: a contemporary perspective[J]. Annu Rev Ecol Evol Syst, 2011, 42: 489-512.
doi: 10.1146/ecolsys.2011.42.issue-1 URL |
[26] | 徐晔, 张金池, 王广林, 等. 固氮酶的研究进展[J]. 生物学杂志, 2011, 28(4): 61-64. |
Xu Y, Zhang JC, Wang GL, et al. Advance of study on nitrogenase[J]. J Biol, 2011, 28(4): 61-64. | |
[27] | 徐云龙, 周游, 汪军, 等. 一株自生固氮菌的分离鉴定及其对不同品种香蕉的促生特性[J/OL]. 热带作物学报, 2023. https://kns.cnki.net/kcms/detail/46.1019.S.20230404.1815.006.html. |
Xu YL, Zhou Y, Wang J, et al. Isolation and identification of a nitrogen fixing bacteria and its growth promoting characteristics on different banana varieties[J/OL]. Chin J Trop Crops, 2023. https://kns.cnki.net/kcms/detail/46.1019.S.20230404.1815.006.html. | |
[28] |
王振龙, 杜江, 牛勇, 等. 若尔盖高寒补播草地燕麦根际促生菌的筛选及促生特性研究[J]. 草地学报, 2023, 31(5): 1406-1413.
doi: 10.11733/j.issn.1007-0435.2023.05.015 |
Wang ZL, Du J, Niu Y, et al. Screening and growth-promoting characteristics of plant growth-promoting rhizobacteria of oat rhizosphere in alpine reseeding grassland of zoige[J]. Acta Agrestia Sin, 2023, 31(5): 1406-1413. | |
[29] |
覃仁柳, 林刚云, 吴银秀, 等. 桑树青枯病与根际土壤肥力及微生物群落结构特征的研究[J]. 中国生物防治学报, 2021, 37(6): 1256-1264.
doi: 10.16409/j.cnki.2095-039x.2021.06.014 |
Qin RL, Lin GY, Wu YX, et al. Characteristic of soil fertility and microbial community structure in rhizosphere of bacterial wilt infected and non-infected mulberry plants[J]. Chin J Biol Contr, 2021, 37(6): 1256-1264. | |
[30] |
Mao LT, Lai LE, Lin GG, et al. Differences in rhizosphere microbiota compositions between healthy and diseased potato(Solanum tuberosum)in China[J]. Appl Ecol Env Res, 2020, 18(2): 3683-3691.
doi: 10.15666/aeer URL |
[31] |
Liu HJ, Xiong W, Zhang RF, et al. Continuous application of different organic additives can suppress tomato disease by inducing the healthy rhizospheric microbiota through alterations to the bulk soil microflora[J]. Plant Soil, 2018, 423(1): 229-240.
doi: 10.1007/s11104-017-3504-6 URL |
[32] |
Bharti N, Barnawal D, Maji D, et al. Halotolerant PGPRs prevent major shifts in indigenous microbial community structure under salinity stress[J]. Microb Ecol, 2015, 70(1): 196-208.
doi: 10.1007/s00248-014-0557-4 pmid: 25542205 |
[33] | Ganz HH, Karaoz U, Getz WM, et al. Diversity and structure of soil bacterial communities associated with vultures in an African savanna[J]. Ecosphere, 2012, 3(6): 1-18. |
[34] |
Li QA, Lei ZF, Song XZ, et al. Biochar amendment decreases soil microbial biomass and increases bacterial diversity in Moso bamboo(Phyllostachys edulis)plantations under simulated nitrogen deposition[J]. Environ Res Lett, 2018, 13(4): 044029.
doi: 10.1088/1748-9326/aab53a URL |
[35] | 周彤, 董思奇, 冯国忠, 等. 新型氮肥施用对东北黑土区玉米根际土壤固氮菌 nifH 基因多样性的影响[J/OL]. 吉林农业大学学报, 2023. https://doi.org/10.13327/j.jjlau.2023.20235. |
Zhou T, Dong SQ, Feng GZ, et al. Effect of novel nitrogen fertilizer application on nifH gene community of nitrogen-fixing bacteria in rhizosphere soil of maize in the black soil area of Northeast China[J/OL]. J Jilin Agric Univ, 2023. https://doi.org/10.13327/j.jjlau.2023.20235. |
[1] | XU Yang, ZHANG Rui-ying, DAI Liang-xiang, ZHANG Guan-chu, DING Hong, ZHANG Zhi-meng. Regulation of Nitrogen Application on Peanut Seed Germination and Spermosphere Bacterial Community Structure Under Salt Stress [J]. Biotechnology Bulletin, 2024, 40(2): 253-265. |
[2] | LEI Mei-ling, RAO Wen-hua, HU Jin-feng, YUE Qi, WU Zu-jian, FAN Guo-cheng. Bacterial Diversity and Structure in Rhizosphere Soil of Citrus Infested with Huanglongbing [J]. Biotechnology Bulletin, 2024, 40(2): 266-276. |
[3] | WANG Nan, LIAO Yong-qin, SHI Zhu-feng, SHEN Yun-xin, YANG Tong-yu, FENG Lu-yao, YI Xiao-peng, TANG Jia-cai, CHEN Qi-bin, YANG Pei-wen. Identification of Three Strains of Bacillus from the Forest Soil of Wuliang Mountain and Mining of Their Bioactivities [J]. Biotechnology Bulletin, 2024, 40(2): 277-288. |
[4] | ZHANG Chao, WANG Zi-rui, SUN Ya-li, MAO Xin-chen, TANG Jia-qi, YU Heng-xiu. Functional Study of Vitamin B1 Synthesis-related Gene OsTHIC in Rice [J]. Biotechnology Bulletin, 2024, 40(2): 99-108. |
[5] | LIN Xin-yan, ZHANG Chuan-zhong, DAI Bing, WANG Xin-heng, LIU Jian-feng, WEN Li, XU Xing-jian, FANG Jun. Advances in Genetic and Molecular Mechanisms of Pre-harvest Sprouting in Rice [J]. Biotechnology Bulletin, 2024, 40(1): 24-31. |
[6] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[7] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[8] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[9] | XIE Tian-peng, ZHANG Jia-ning, DONG Yong-jun, ZHANG Jian, JING Ming. Effect of Premature Bolting on the Rhizosphere Soil Microenvironment of Angelica sinensis [J]. Biotechnology Bulletin, 2023, 39(7): 206-218. |
[10] | LI Yu, LI Su-zhen, CHEN Ru-mei, LU Hai-qiang. Advances in the Regulation of Iron Homeostasis by bHLH Transcription Factors in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 26-36. |
[11] | LIANG Cheng-gang, WANG Yan, LI Tian, OHSUGI Ryu, AOKI Naohiro. Effect of SP1 on Panicle Architecture by Regulating Carbohydrate Remobilization [J]. Biotechnology Bulletin, 2023, 39(5): 152-159. |
[12] | ZHOU Ding-ding, LI Hui-hu, TANG Xing-yong, YU Fa-xin, KONG Dan-yu, LIU Yi. Research Progress in the Biosynthesis and Regulation of Glycyrrhizic Acid and Liquiritin [J]. Biotechnology Bulletin, 2023, 39(5): 44-53. |
[13] | YANG Mao, LIN Yu-feng, DAI Yang-shuo, PAN Su-jun, PENG Wei-ye, YAN Ming-xiong, LI Wei, WANG Bing, DAI Liang-ying. OsDIS1 Negatively Regulates Rice Drought Tolerance Through Antioxidant Pathways [J]. Biotechnology Bulletin, 2023, 39(2): 88-95. |
[14] | WEI Ting-liu, MIAO Hua-biao, WU Qian, HUANG Zun-xi. Heterologous Expression, Enzymatic Characterization of Laccase BmLac and Degradation of Gossypol by It [J]. Biotechnology Bulletin, 2023, 39(12): 320-328. |
[15] | JIANG Min-xuan, LI Kang, LUO Liang, LIU Jian-xiang, LU Hai-ping. Advances on the Expressions of Foreign Proteins in Plants [J]. Biotechnology Bulletin, 2023, 39(11): 110-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||