Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (4): 335-344.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0945
LIU Shuang(
), JIANG Zhou, ZHAO Shuai, ZHAO Lei-zhen, HUANG Feng, ZHOU Jia, QU Jian-hang(
)
Received:2024-09-27
Online:2025-04-26
Published:2025-04-25
Contact:
QU Jian-hang
E-mail:liushuanghaut@outlook.com;qjh_bata@163.com
LIU Shuang, JIANG Zhou, ZHAO Shuai, ZHAO Lei-zhen, HUANG Feng, ZHOU Jia, QU Jian-hang. Screening, Identification, and Fermentation Optimization of a Protease-producing Bacterial Strain[J]. Biotechnology Bulletin, 2025, 41(4): 335-344.
水平 Level | 因素 Factor | ||||
|---|---|---|---|---|---|
| A pH | B菜粕浓度 Rapeseed meal concentration/(g·L-1) | C NaCl浓度 NaCl concentration/(g·L-1) | |||
| -1 | 5 | 1 | 0.5 | ||
| 0 | 7 | 5 | 1 | ||
| 1 | 9 | 10 | 5 | ||
Table 1 Response surface design for the optimization of fermentation conditions
水平 Level | 因素 Factor | ||||
|---|---|---|---|---|---|
| A pH | B菜粕浓度 Rapeseed meal concentration/(g·L-1) | C NaCl浓度 NaCl concentration/(g·L-1) | |||
| -1 | 5 | 1 | 0.5 | ||
| 0 | 7 | 5 | 1 | ||
| 1 | 9 | 10 | 5 | ||
编号 Number | 水解圈直径Diameter of hydrolysis ring (D)/mm | 菌落直径 Diameter of colony (d)/mm | 圈径比Ring diameter ratio (D/d) | 编号 Number | 水解圈直径 Diameter of hydrolysis ring (D)/mm | 菌落直径 Diameter of colony (d)/mm | 圈径比Ring diameter ratio (D/d) |
|---|---|---|---|---|---|---|---|
| P-6 | 20 | 11 | 1.8 | P-18 | 12 | 6 | 2.0 |
| P-7 | 11 | 6 | 1.8 | P-25 | 18 | 7 | 2.6 |
| P-8 | 13 | 6 | 2.7 | P-34 | 24 | 5 | 4.8 |
| P-9 | 12 | 5 | 2.4 | P-35 | 20 | 10 | 2.0 |
| P-12 | 14 | 6 | 2.3 | P-36 | 14 | 7 | 2.0 |
| P-13 | 20 | 5 | 4.0 | P-37 | 10 | 5 | 2.0 |
| P-14 | 12 | 6 | 2.0 | P-133 | 20 | 4 | 5.0 |
| P-15 | 10 | 6 | 1.7 |
Table 2 Results of preliminary screening of proteinase-producing strains
编号 Number | 水解圈直径Diameter of hydrolysis ring (D)/mm | 菌落直径 Diameter of colony (d)/mm | 圈径比Ring diameter ratio (D/d) | 编号 Number | 水解圈直径 Diameter of hydrolysis ring (D)/mm | 菌落直径 Diameter of colony (d)/mm | 圈径比Ring diameter ratio (D/d) |
|---|---|---|---|---|---|---|---|
| P-6 | 20 | 11 | 1.8 | P-18 | 12 | 6 | 2.0 |
| P-7 | 11 | 6 | 1.8 | P-25 | 18 | 7 | 2.6 |
| P-8 | 13 | 6 | 2.7 | P-34 | 24 | 5 | 4.8 |
| P-9 | 12 | 5 | 2.4 | P-35 | 20 | 10 | 2.0 |
| P-12 | 14 | 6 | 2.3 | P-36 | 14 | 7 | 2.0 |
| P-13 | 20 | 5 | 4.0 | P-37 | 10 | 5 | 2.0 |
| P-14 | 12 | 6 | 2.0 | P-133 | 20 | 4 | 5.0 |
| P-15 | 10 | 6 | 1.7 |
Fig. 3 Phylogenetic tree of strain P-133 based on the 16S rRNA gene sequencesCode in parentheses is GenBank accession number of the strain. The numbers of branch nodes are bootstrap values (<50 not displayed). The data of the scale is the evolutionary distance
Fig. 5 Optimization of fermentation medium for strain P-133Different lowercase letters, uppercase letters and numbers, indicate significant differences in acid protease activity, neutral protease activity and alkaline protease activity (P<0.05). The same below
方差来源 Source of variance | 平方和 Sum of squares | 自由度 Freedom | 均方 Mean | F值 F value | P值 P value | 显著性 Significance |
|---|---|---|---|---|---|---|
| pH | 64 659.717 | 4 | 16 164.929 | 1 349.359 | 1.30×10-13 | ** |
| 菜粕浓度 | 21 586.241 | 6 | 3 597.707 | 203.065 | 8.62×10-13 | ** |
| NaCl浓度 | 20 247.864 | 6 | 3 374.644 | 126.434 | 2.24×10-11 | ** |
| 装液量 | 2 923.535 | 5 | 584.707 | 208.34 | 3.15×10-11 | ** |
| 温度 | 53 335.824 | 4 | 13 333.96 | 349.142 | 1.08×10-10 | ** |
| 接种量 | 1 205.128 | 4 | 301.282 | 64.771 | 4.12×10-7 | ** |
| 可溶性淀粉浓度 | 3 331.388 | 6 | 555.231 | 4.269 | 0.012 | * |
Table 3 Analysis of variance in IBM SPSS statistics
方差来源 Source of variance | 平方和 Sum of squares | 自由度 Freedom | 均方 Mean | F值 F value | P值 P value | 显著性 Significance |
|---|---|---|---|---|---|---|
| pH | 64 659.717 | 4 | 16 164.929 | 1 349.359 | 1.30×10-13 | ** |
| 菜粕浓度 | 21 586.241 | 6 | 3 597.707 | 203.065 | 8.62×10-13 | ** |
| NaCl浓度 | 20 247.864 | 6 | 3 374.644 | 126.434 | 2.24×10-11 | ** |
| 装液量 | 2 923.535 | 5 | 584.707 | 208.34 | 3.15×10-11 | ** |
| 温度 | 53 335.824 | 4 | 13 333.96 | 349.142 | 1.08×10-10 | ** |
| 接种量 | 1 205.128 | 4 | 301.282 | 64.771 | 4.12×10-7 | ** |
| 可溶性淀粉浓度 | 3 331.388 | 6 | 555.231 | 4.269 | 0.012 | * |
| Test number | A | B | C | Y/(U·mL-1) |
|---|---|---|---|---|
| 1 | 1 | -1 | 0 | 38.43 |
| 2 | -1 | 1 | 0 | 129.26 |
| 3 | 0 | 0 | 0 | 144.55 |
| 4 | 1 | 0 | 1 | 145.14 |
| 5 | 0 | 0 | 0 | 170.45 |
| 6 | 1 | 1 | 0 | 115.7 |
| 7 | 0 | 0 | 0 | 159.06 |
| 8 | -1 | 0 | -1 | 89.69 |
| 9 | 0 | 0 | 0 | 149.34 |
| 10 | -1 | 0 | 1 | 81.90 |
| 11 | -1 | -1 | 0 | 17.51 |
| 12 | 0 | 1 | 1 | 147.61 |
| 13 | 0 | 0 | 0 | 140.501 |
| 14 | 0 | 1 | -1 | 152.94 |
| 15 | 1 | 0 | -1 | 95.91 |
| 16 | 0 | -1 | -1 | 72.67 |
| 17 | 0 | -1 | 1 | 75.88 |
Table 4 Box-Behnken design and test results
| Test number | A | B | C | Y/(U·mL-1) |
|---|---|---|---|---|
| 1 | 1 | -1 | 0 | 38.43 |
| 2 | -1 | 1 | 0 | 129.26 |
| 3 | 0 | 0 | 0 | 144.55 |
| 4 | 1 | 0 | 1 | 145.14 |
| 5 | 0 | 0 | 0 | 170.45 |
| 6 | 1 | 1 | 0 | 115.7 |
| 7 | 0 | 0 | 0 | 159.06 |
| 8 | -1 | 0 | -1 | 89.69 |
| 9 | 0 | 0 | 0 | 149.34 |
| 10 | -1 | 0 | 1 | 81.90 |
| 11 | -1 | -1 | 0 | 17.51 |
| 12 | 0 | 1 | 1 | 147.61 |
| 13 | 0 | 0 | 0 | 140.501 |
| 14 | 0 | 1 | -1 | 152.94 |
| 15 | 1 | 0 | -1 | 95.91 |
| 16 | 0 | -1 | -1 | 72.67 |
| 17 | 0 | -1 | 1 | 75.88 |
| 来源Source | 平方和 Sum of square | 自由度 Freedom | 均方 Mean | F值 F value | P值 P value | 显著性Significance |
|---|---|---|---|---|---|---|
| 模型 | 31 171.60 | 9 | 3 463.51 | 26.81 | 0.000 1 | ** |
| A | 1 462.82 | 1 | 1 462.82 | 11.32 | 0.012 0 | * |
| B | 10 789.03 | 1 | 10 789.03 | 83.50 | <0.000 1 | ** |
| C | 171.86 | 1 | 171.86 | 1.33 | 0.286 6 | |
| AB | 308.14 | 1 | 308.14 | 2.38 | 0.166 4 | |
| AC | 1 216.09 | 1 | 1 216.09 | 9.41 | 0.018 1 | * |
| BC | 122.90 | 1 | 122.90 | 0.951 2 | 0.361 9 | |
| A2 | 7 969.72 | 1 | 7 969.72 | 61.68 | 0.000 1 | ** |
| B2 | 6 347.18 | 1 | 6 347.18 | 49.12 | 0.000 2 | ** |
| C2 | 326.71 | 1 | 326.71 | 2.53 | 0.155 8 | |
| 残差 | 904.44 | 7 | 129.21 | |||
| 失拟项 | 322.52 | 3 | 107.51 | 0.739 0 | 0.581 5 | 不显著 |
| 纯误差 | 581.91 | 4 | 145.48 | |||
| 总和 | 32 076.04 | 16 |
Table 5 Analysis of variance via the quadratic regression equation
| 来源Source | 平方和 Sum of square | 自由度 Freedom | 均方 Mean | F值 F value | P值 P value | 显著性Significance |
|---|---|---|---|---|---|---|
| 模型 | 31 171.60 | 9 | 3 463.51 | 26.81 | 0.000 1 | ** |
| A | 1 462.82 | 1 | 1 462.82 | 11.32 | 0.012 0 | * |
| B | 10 789.03 | 1 | 10 789.03 | 83.50 | <0.000 1 | ** |
| C | 171.86 | 1 | 171.86 | 1.33 | 0.286 6 | |
| AB | 308.14 | 1 | 308.14 | 2.38 | 0.166 4 | |
| AC | 1 216.09 | 1 | 1 216.09 | 9.41 | 0.018 1 | * |
| BC | 122.90 | 1 | 122.90 | 0.951 2 | 0.361 9 | |
| A2 | 7 969.72 | 1 | 7 969.72 | 61.68 | 0.000 1 | ** |
| B2 | 6 347.18 | 1 | 6 347.18 | 49.12 | 0.000 2 | ** |
| C2 | 326.71 | 1 | 326.71 | 2.53 | 0.155 8 | |
| 残差 | 904.44 | 7 | 129.21 | |||
| 失拟项 | 322.52 | 3 | 107.51 | 0.739 0 | 0.581 5 | 不显著 |
| 纯误差 | 581.91 | 4 | 145.48 | |||
| 总和 | 32 076.04 | 16 |
| 1 | Research QY. 2024年全球蛋白酶行业总体规模、主要企业国内外市场占有率及排名 [M]. 北京: 恒州博智, 2024. |
| Research QY. The overall scale of the global protease industry, the domestic and foreign market share and ranking of major companies in 2024 [M]. Beijing: QYResearch, 2024. | |
| 2 | Song P, Zhang X, Wang SH, et al. Microbial proteases and their applications [J]. Front Microbiol, 2023, 14: 1236368. |
| 3 | Razzaq A, Shamsi S, Ali A, et al. Microbial proteases applications [J]. Front Bioeng Biotechnol, 2019, 7: 110. |
| 4 | 张雯姝. 产蛋白酶菌株的ARTP诱变及其降解蛋白质代谢通路分析 [D]. 大连: 辽宁师范大学, 2023. |
| Zhang WS. Mutation of protease-producing strain by ARTP and analysis of its metabolic pathway for degrading protein [D]. Dalian: Liaoning Normal University, 2023. | |
| 5 | Jisha VN, Smitha RB, Pradeep S, et al. Versatility of microbial proteases [J]. Adv Enzyme Res, 2013, 1(3): 39-51. |
| 6 | Banerjee S, Maiti TK, Roy RN. Enzyme producing insect gut microbes: an unexplored biotechnological aspect [J]. Crit Rev Biotechnol, 2022, 42(3): 384-402. |
| 7 | Matkawala F, Nighojkar S, Kumar A, et al. Microbial alkaline serine proteases: Production, properties and applications [J]. World J Microbiol Biotechnol, 2021, 37(4): 63. |
| 8 | Hasan MJ, Haque P, Rahman MM. Protease enzyme based cleaner leather processing: a review [J]. J Clean Prod, 2022, 365: 132826. |
| 9 | 赵华, 任青霞, 张敏, 等. 酒曲中高产蛋白酶菌株的筛选及其发酵培养基优化 [J]. 中国酿造, 2023, 42(5): 157-164. |
| Zhao H, Ren QX, Zhang M, et al. Screening and fermentation medium optimization of high-yield protease-producing strain from Jiuqu [J]. China Brew, 2023, 42(5): 157-164. | |
| 10 | 贾仲昕, 赵佳男, 季芳, 等. 高产中性蛋白酶芽孢杆菌的筛选鉴定及酶学性质研究 [J]. 黑龙江畜牧兽医, 2023(1): 106-112, 132. |
| Jia ZX, Zhao JN, Ji F, et al. Study on screening, identification and enzymatic properties of high neutral protease-producing Bacillus [J]. Heilongjiang Anim Sci Vet Med, 2023(1): 106-112, 132. | |
| 11 | 刘晓艳, 封健, 韩傲, 等. 高产中/碱性蛋白酶的枯草芽孢杆菌W1菌株的筛选及条件优化 [J]. 现代食品科技, 2020, 36(4): 157-163. |
| Liu XY, Feng J, Han A, et al. Isolation and optimization of Bacillus subtilis W1 strain with high neutral/alkaline protease activity [J]. Mod Food Sci Technol, 2020, 36(4): 157-163. | |
| 12 | Cui HX, Yang MY, Wang LP, et al. Identification of a new marine bacterial strain SD8 and optimization of its culture conditions for producing alkaline protease [J]. PLoS One, 2015, 10(12): e0146067. |
| 13 | 李娜, 附俊杰, 刘军, 等. 一株产中性蛋白酶菌株的筛选及其发酵产酶条件优化 [J]. 食品工业科技, 2023, 44(1): 189-199. |
| Li N, Fu JJ, Liu J, et al. Screening of A neutral protease-producing strain and optimization of fermentation conditions [J]. Sci Technol Food Ind, 2023, 44(1): 189-199. | |
| 14 | 朱祥杰, 王震, 苑志欣, 等. 海洋芽孢杆菌N11-8产蛋白酶的发酵条件优化 [J]. 渔业科学进展, 2018, 39(6): 155-163. |
| Zhu XJ, Wang Z, Yuan ZX, et al. Optimization of fermentation conditions of Bacillus sp. N11-8 on the production of protease PBN11-8 [J]. Prog Fish Sci, 2018, 39(6): 155-163. | |
| 15 | Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water [J]. Appl Environ Microbiol, 1985, 49(1): 1-7. |
| 16 | 侯泽林. 从土壤中筛选碱性蛋白酶产生菌及产酶条件优化研究 [D]. 哈尔滨: 东北农业大学, 2021. |
| Hou ZL. Screening alkaline protease-producing bacteria from soil and optimization of enzyme-producing conditions [D]. Harbin: Northeast Agricultural University, 2021. | |
| 17 | 冯璨, 马香, 刘柱, 等. 海南近海水域产碱性蛋白酶菌株的分离筛选及发酵条件优化 [J]. 微生物学通报, 2022, 49(10): 4291-4304. |
| Feng C, Ma X, Liu Z, et al. Isolation and screening of alkaline protease-producing strains from Hainan offshore areas and optimization of the fermentation conditions [J]. Microbiol China, 2022, 49(10): 4291-4304. | |
| 18 | Qu JH, Fu YH, Li XD, et al. Brevundimonas lutea sp. nov., isolated from lake sediment [J]. Int J Syst Evol Microbiol, 2019, 69(5): 1417-1422. |
| 19 | Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms [J]. Mol Biol Evol, 2018, 35(6): 1547-1549. |
| 20 | Berkman SJ, Roscoe EM, Bourret JC. Comparing self-directed methods for training staff to create graphs using Graphpad Prism [J]. J Appl Behav Anal, 2019, 52(1): 188-204. |
| 21 | 陈茏. 产蛋白酶菌株的筛选及酶学性质的研究 [D]. 南昌: 南昌大学, 2020. |
| Chen L. Screening of protease-producing strains and study on enzymatic properties [D]. Nanchang: Nanchang University, 2020. | |
| 22 | Zhang Y, Hu JM, Zhang Q, et al. Enhancement of alkaline protease production in recombinant Bacillus licheniformis by response surface methodology [J]. Bioresour Bioprocess, 2023, 10(1): 27. |
| 23 | 强济宇. 碱性蛋白酶耐盐芽孢杆菌DS5的筛选、鉴定和性质研究 [D]. 太原: 山西大学, 2023. |
| Qiang JY. Screening, identification and characterization of Bacillus halotolerans DS5 with alkaline protease production [D]. Taiyuan: Shanxi University, 2023. | |
| 24 | 李雪, 蔡丹, 沈月, 等. 微生物来源蛋白酶的研究进展 [J]. 食品科技, 2019, 44(1): 32-36. |
| Li X, Cai D, Shen Y, et al. Research progress of microbial protease [J]. Food Sci Technol, 2019, 44(1): 32-36. | |
| 25 | 农业农村部办公厅. 关于印发《饲用豆粕减量替代三年行动方案》的通知: 农办牧 [2023] 9号 [EB/OL]. (2023-04-12)[2024-09-27]. . |
| General Office of the Ministry of Agriculture and Rural Affairs. Notice on the issuance of the "Three-year Action Plan for Reducing and Replacing Soybean Meal for Feed": Nongbanmu [2023]No.9 [EB/OL]. (2023-04-12)[2024-09-27]. . | |
| 26 | 付晓琪, 商振达, 谭占坤, 等. 发酵菜籽粕替代豆粕在动物生产中的应用研究进展 [J]. 中国畜牧杂志, 2022, 58(10): 125-129. |
| Fu XQ, Shang ZD, Tan ZK, et al. Research progress on application of replacing soybean meal with fermented rapeseed meal in animal production [J]. Chin J Anim Sci, 2022, 58(10): 125-129. | |
| 27 | Liya SM, Umesh M, Nag A, et al. Optimized production of keratinolytic proteases from Bacillus tropicus LS27 and its application as a sustainable alternative for dehairing, destaining and metal recovery [J]. Environ Res, 2023, 221: 115283. |
| 28 | 陈菲. 一株蛋白酶产生菌的鉴定、酶性质研究和表达载体构建 [D]. 郑州: 河南工业大学, 2018. |
| Chen F. Identification, characterization and expression vector construction of a protease-producing strain [D]. Zhengzhou: Henan University of Technology, 2018. | |
| 29 | 张宇洁, 王丽军, 李梦, 等. 一株产低温β-半乳糖苷酶微杆菌的筛选鉴定、产酶条件及其酶学特性 [J]. 微生物学通报, 2019, 46(3): 609-617. |
| Zhang YJ, Wang LJ, Li M, et al. Isolation and identification of a Microbacterium sp. LW106 strain producing cold-active β-galactosidase, and study on its enzyme production conditions and enzymatic properties [J]. Microbiol China, 2019, 46(3): 609-617. | |
| 30 | 梁安健, 石沁兰, 王金丽, 等. 产蛋白酶波茨坦短芽孢杆菌的鉴定及产酶条件优化 [J]. 现代食品科技, 2024, 40(5): 73-83. |
| Liang AJ, Shi QL, Wang JL, et al. Identification of a protease producing Brevibacillus borstelensis strain and optimization of enzyme production conditions [J]. Mod Food Sci Technol, 2024, 40(5): 73-83. |
| [1] | LI Wen-lan, HOU Xin-wei, LI Yan, ZHAO Rui-jun, MENG Zhao-dong, YUE Run-qing. Identification and Resistance Detection of Homozygous and Heterozygous Plants of Transgenic Maize LD05 with Resistances to Insect and Herbicide [J]. Biotechnology Bulletin, 2025, 41(4): 123-133. |
| [2] | SUN Tian-guo, YI Lan, QIN Xu-yang, QIAO Meng-xue, GU Xin-ying, HAN Yi, SHA Wei, ZHANG Mei-juan, MA Tian-yi. Genome-wide Identification of the DABB Gene Family in Brassica rapa ssp. pekinensis and Expression Analysis under Saline and Alkali Stress [J]. Biotechnology Bulletin, 2025, 41(4): 156-165. |
| [3] | WANG Tian-tian, CHANG Xue-rui, HUANG Wan-yang, HUANG Jia-xin, MIAO Ru-yi, LIANG Yan-ping, WANG Jing. Identification and Analysis of GASA Gene Family in Pepper (Capsicum annuum L.) [J]. Biotechnology Bulletin, 2025, 41(4): 166-175. |
| [4] | LIU Li, WANG Hui, GUAN Tian-shu, LI Bai-hong, YU Shu-yi. Screening the Interacting Protein of Abscisic Acid Receptor VvPYL4 and the Gene Expression of the Interacting Protein in Grape [J]. Biotechnology Bulletin, 2025, 41(4): 188-197. |
| [5] | SONG Jia-yi, SU Yun-li, ZHENG Xing-yan, XIA Wen-nian, YANG Dong-mei, HU Hui-zhen. Identification of the Snapdragon Expansin Gene Family and Screening of Its Genes Related to Resistance to Sclerotinia sclerotiorum [J]. Biotechnology Bulletin, 2025, 41(4): 227-242. |
| [6] | HUANG Jin-heng, HUANG Xi, ZHANG Jia-yan, ZHOU Xin-yu, LIAO Pei-ran, YANG Quan. Identification and Expression Analysis of the C3H Gene Family in Grona styracifolia across Different Varieties [J]. Biotechnology Bulletin, 2025, 41(4): 243-255. |
| [7] | SONG Shu-yi, JIANG Kai-xiu, LIU Huan-yan, HUANG Ya-cheng, LIU Lin-ya. Identification of the TCP Gene Family in Actinidia chinensis var. Hongyang and Their Expression Analysis in Fruit [J]. Biotechnology Bulletin, 2025, 41(3): 190-201. |
| [8] | CHEN Hai-min, SUN Fei, YUAN Yuan, WU Jia-wen, JIANG Hong, ZHOU Jian. The High-yield Bafilomycin A1 Strain Obtained from UV Mutagenesis and Its Medium Optimization [J]. Biotechnology Bulletin, 2025, 41(3): 51-61. |
| [9] | MA Tian-yi, XU Jia-jia, LU Wen-jing, WU Yan, SHA Wei, ZHANG Mei-juan, PENG Yi-fang. Expression Analysis and Resistance Identification of BrcGASA3 in Chinese Cabbage ‘Jinxiaotong’ Cultivar under Saline-alkali Stress [J]. Biotechnology Bulletin, 2025, 41(2): 127-138. |
| [10] | XIANG Bo-ka, ZHOU Zuan-zuan, FENG Jia-hui, XIA Chen, LI Qi, CHEN Chun. Isolation and Identification of a Fungus from Moldy Tobacco Leaf and Study on Its Mold-causing Factors [J]. Biotechnology Bulletin, 2025, 41(2): 321-330. |
| [11] | HE Cai-lin, LU Jing, GUO Hui-hui, LI Xiao-an, WU Qi. Genome-wide Identification and Expression Analysis of the MADS-box Gene Family in Quinoa [J]. Biotechnology Bulletin, 2025, 41(1): 157-172. |
| [12] | LIU Qian, MA Lian-jie, ZHANG Hui, WANG Dong, FAN Mao, LIAO Dun-xiu, ZHAO Zheng-wu, LU Wen-cai. Screening, Identification and Control Effects of Biocontrol Strain TN2 against Pepper Anthracnose [J]. Biotechnology Bulletin, 2025, 41(1): 287-297. |
| [13] | ZHANG Ya-ya, LI Pan-pan, GAO Hui-hui, JIA Chen-bo, XU Chun-yan. Exploring on the Pathogenesis of Root Rot of Lycium barbarum cv. ‘Ningqi-5' Based on the Rhizoplane Fungal Community and Pathogens Identification [J]. Biotechnology Bulletin, 2024, 40(9): 238-248. |
| [14] | YUAN Lan, HUANG Ya-nan, ZHANG Bei-ni, XIONG Yu-meng, WANG Hong-yang. High-throughput Sample Preparation Method for the Identification of Potato Ploidy Using Flow Cytometry [J]. Biotechnology Bulletin, 2024, 40(9): 141-147. |
| [15] | DU Wei, LI Zhi-min, XING Yan-ming, LIU Pu-lin, MIAO Li-hong. Screening and Identification of a Bacillus licheniformis Strain with High Electro-transfection Efficiency and Elevated Biomass [J]. Biotechnology Bulletin, 2024, 40(9): 181-189. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||