[1] 崔东红, 江开达. 精神分裂症的全基因关联分析研究[J]. 上海精神医学, 2011, 5(23):261-264. [2] Aranzana MJ, Kim S, Zhao K, et al. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes[J]. PloS Genetics, 2005, 1(5):e60. [3] Risch N, Merikangas K. The future of genetic studies of complex human diseases[J]. Science, 1996, 273(5281):1516-1517. [4] Hansen M, Kraft T, Ganestam S, et al. Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers[J]. Genetical Research, 2001, 77(1):61-66. [5] Klein RJ, Zeiss C, Chew EY, et al. Complement factor H polymorph-ism in age-related macular degeneration[J]. Science, 2005, 308(5720):385-389. [6] 胡艳玲. 复杂性状与基因组多位点的关联分析方法研究[D]. 上海:上海交通大学, 2009. [7] Van SK, McQueen MB, Herbert A, et al. Genomic screening and replication using the same data set in family-based association testi-ng[J]. Nature Genetics, 2005, 37(7):683-691. [8] Sham PC, Cherny SS, Purcell S, et al. Power of linkage versus ass-ociation analysis of quantitative traits, by use of variance-components models, for sibship data[J]. American Journal of Human Genetics, 2000, 66(5):1616-1630. [9] 严卫丽. 复杂疾病全基因组关联研究进展——研究设计和遗传标记[J]. 遗传, 2008, 30(4):400-406. [10] 于海霞, 肖静, 田纪春, 等. 关联分析及其在植物中的应用[J]. 基因组学和应用生物学, 2009, 28(1):187-194. [11] 金亮. 水稻关联定位群体的构建及若干品质性状的关联分析[D]. 杭州:浙江大学, 2009. [12] 李海权, 刁现民. 关联分析及其在植物研究中的应用[D]. 河北农业科学, 2010, 14(11):157-160. [13] Yang J, Ferreira T, Morris AP, et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits[D]. Nature Genetics, 2012, 44(4):369-375. [14] Todd JA. Statistical false positive or true disease pathway?[J]. Nature Genetics, 2006, 38(7):731-733. [15] Herbert A, Gerry NP, McQueen MB, et al. A common genetic variant is associated with adult and childhood obesity[J]. Science, 2006, 312(5771):279-283. [16] Rosskopf D, Bornhorst A, Rimmbach C, et al. Comment on “A common genetic variant is associated with adult and childhood obesity”[J]. Science, 2007, 315(5809):187. [17] Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity[J]. Science, 2007, 316:889-894. [18] Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes[J]. Nature, 2007, 445(7130):881-885. [19] Steinthorsdottir V, Thorleifsson G, Reynisdottir I, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes[J]. Nature Genetics, 2007, 39(6):770-775. [20] Saxena R, Voight BF, Lyssenko V, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels[J]. Science, 2007, 316(5829):133l-1336. [21] Zeggini E, Weedon MN, Lindgren CM, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes[J]. Science, 2007, 316(5829):1336-1341. [22] Scott LJ, Mohike KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants[J]. Science, 2007, 316:1341-1345. [23] Burton PR, Clayton DG, Cardon LR, et al. Genome-wide association study of 14, 000 cases of seven common diseases and 3, 000 shared controls[J]. Nature, 2007, 447(7145):661-678. [24] Takeuchi F, Serizawa M, Yamamoto K, et al. Confirmation of multiple risk loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population[J]. Diabetes, 2009, 58(7):1690-1699. [25] Zeggini E, Scott LJ, Saxena R, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes[J]. Nature Genetics, 2008, 40(5):638-645. [26] Tsai FJ, Yang CF, Chen CC, et al. A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese[J]. PLoS Genetics, 2010, 6(2):e1000847. [27] 黄琼, 尹继业, 刘昭前. 2型糖尿病全基因组关联分析的研究进展[J]. 中华内分泌代谢杂志, 2010, 26(5):432-436. [28] Mah S, Nelson MR, Delisi LE, et al. Identification of the semaphorin receptorPLXNA2 as a candidate for susceptibility to schizophrenia[J]. Mol Psychiatry, 2006, 11(5):471-478. [29] Shifman S, Johannesson M, Bronstein M, et al. Genome wide association identifies a common variant in the reelin gene that increases the risk of schizophrenia only in women[J]. PLoS Genetics, 2008, 4(2):e28. [30] Kirov G, Zaharieva I, Georgieva L, et al. A genome wide association study in 574 schizophrenia trios using DNA pooling[J].Molecular Psychiatry, 2009, 14(8):796-803. [31] Shi J, Levinson DF, Duan J, et al. Common variants on chromosome 6p22.1 are associated with schizophrenia[J].Nature, 2009, 460(7256):753-757. [32] Hunter DJ, Altshuler D, Rader DJ. From Darwin’s finches to cana-ries in the coal mine—mining the genome for new biology[J].New England Journal of Medicine, 2008, 358(26):2760-2763. [33] Athanasiu L, Mattingsdal M, Kahler AK, et al.Gene variants associated with schizophrenia in a Norwegian genome-wide study are replicated in a large European cohort[J]. J Psychiatr Res, 2010, 44(12):748-753. [34] Alkelai A, Lupoli S, Greenbaum L, et al. DOCK4 and CEACAM21 as novel schizophrenia candidate genes in the Jewish population[J].Int J Neuropsychopharmacol, 2012, 15(4):541. [35] Ma X, Deng W, Liu X, et al. A genome-wide association study for quantitative traits in schizophrenia in China[J]. Genes Brain and Behavior, 2011, 10(7):734-739. [36] Barrett JC, Hansoul S, Nicolae DL, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's dise-ase[J]. Nature Genetic, 2008, 40(8):955-962. [37] Weiss LA, Arking DE, Daly MJ, et al. A genome-wide linkage and association scan reveals novel loci for autism[J]. Nature, 2009, 461(7265):802-808. [38] Parisseaux B, Bernardo R. In silico mapping of quantitative trait loci in maize[J]. Theor Appl Genet, 2004, 109(3):508-514. [39] Stich B, Melchinger AE, Frisch M, et al. Linkage disequilibrium in European elite maize germplasm investigated with SSRs[J]. Theoretical and Applied Genetics, 2005, 111(4):723-730. [40] Breseghello F, Sorrells ME. Association mapping of kernel size and milling quality in wheat(Triticum aestivum L.)cultivars[J]. Genetics, 2006, 172(2):1165-1177. [41] Jun TH, Van K, Kim MY, et al. Association analysis using SSR markers to find QTL for seed protein content in soybean[J]. Euphytica, 2008, 162(2):179-191. [42] Kraakman AT, Niks RE, Berg PM, et al. Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars[J]. Genetics, 2004, 168(1):435-446. [43] Aranzana MJ, Kim S, Zhao K, et al. Genome-wide association map-ping in Arabidopsis identifies previously known flowering time and pathogen resistance genes[J]. PLoS Genet, 2005, 1(5):e60. [44] Susanna A, Huang YS, Vilhjálmsson BJ, et al. Genome-wide association study of 107 phenotypes in a common set of Arabidopsis thaliana inbred lines[J]. Nature, 2010, 465(7298):627-631. [45] Atwell S, Huang YS, Vilhjálmsson BJ, et al. Genome-wide association studies of 14 agronomic traits in rice landraces[J]. Nature Genetics, 2010, 42(11):961-967. [46] Zhao KY, Tung CW, Eizenga GC, et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa[J]. Nature Genetics, 2011, 2(467):1467. [47] Huang XH, Zhao Y, Wei XH, et al. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm[J]. Nature Genetics, 2012, 44(1):32-39. [48] 凃欣, 石立松, 汪樊, 等. 全基因组关联分析的进展与反思[J]. 生理科学进展, 2010, 41(2):87-93 |