[1] Chaney RL, Minnie M, Li YM, et al. Phytoremediation of soil metals[J]. Curr Opin Biotech, 1997, 8(3):279-284. [2] Cunningham SD, Berti WR. The remediation of contaminated soils with green plants:An overview[J]. In Vitro Cell Dev Biol:Plant, 1993, 29(4):207-212. [3] Raskin I, Kumar PBA, Dushenkov S, et al. Bioconcentration of heavy metals by plants[J]. Curr Opin Biotechnol, 1994, 5(3):285-290. [4] Salt DE, Blaylock M, Kumar N, et al. Phytoremediation:a novel strategy for the removal of toxic metals from the environment using plants[J]. Biotechnol, 1995, 13(5):468-474. [5] 丁佳红, 刘登义, 储玲, 等. 重金属污染土壤植物修复的研究进展和应用前景[J].生物学杂志, 2004, 21(4):6-9. [6] Meyers B, Zaitsman A, Lacroix B, et al. Nuclear and plastid genetic engineering of plants:comparison of opportunities and challenges[J]. Biotechnol Adv, 2010, 6:747-756. [7] Maestri E, Marmiroli N. Transgenic Plants for Phytoremediation[J]. Int J Phytoremediat, 2011, 13(S1):264-279. [8] Ruiz ON, Daniell H. Genetic engineering to enhance mercury phyto-remediation[J]. Curr Opin Biotechnol, 2009, 20(2):213-219. [9] Oberschall A, Deák M, T?r?k K, et al. A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses[J]. Plant J, 2000, 24(4):437-446. [10] Gullner G, Komives T, Rennenberg H. Enhanced tolerance of transgenic poplar plants overexpressing gamma-glutamylcysteine synthetase towards chloroacetanilide herbicides[J]. J Exp Bot, 2001, 52(358):971-979. [11] May MJ, Vernoux T, Leaver C, et al. Glutathione homeostasis in plants:implications for environmental sensing and plant development[J]. J Exp Bot, 1998, 49(321):649-667. [12] Kawahigashi H. Transgenic plants for phytoremediation on herbicides[J]. Curr Opin Biotechnol, 2009, 20(2):225-230. [13] Jabeen R, Ahmad A, Iqbal M. Phytoremediation of heavy metals:physiological and molecular mechanisms[J]. Bot Rev, 2009, 75(4):339-364. [14] Kotrba P, Najmanova J, Macek T, et al. Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution[J]. Biotechnol Adv, 2009, 27(6):799-810. [15] Pilon-Smits EA, LeDuc DL. Phytoremediation of selenium using transgenic plants[J]. Curr Opin Biotechnol, 2009, 20(2):207-212. [16] James CA, Strand SE. Phytoremediation of small organic contaminants using transgenic plants[J]. Curr Opin Biotechnol, 2009, 20(2):237-241. [17] Van Aken B. Transgenic plants for enhanced phytoremediation of toxic explosives[J]. Curr Opin Biotechnol, 2009, 20(2):231-236. [18] Zhao C, Qiao M, Yu Y, et al. The effect of the heterologous expression of Phragmites australis γ -glutamylcysteine synthetase on the Cd2+accumulation of Agrostis palustris[J]. Plant Cell Environ, 2010, 33(6):877-887. [19] Doty SL, James CA, Moore AL, et al. Enhanced phytoremediation of volatile environmental pollutants with transgenic trees[J]. Proc Natl Acad Sci USA, 2007, 104(43):16816-16821. [20] 曹雪莲, 惠泉, 刘均洪.转基因植物修复有机污染物的进展[J].环境保护科学, 2008, 34(3):71-73. [21] Maestri E, Marmiroli M, Visioli G, et al. Metal tolerance and hyperaccumulation:Costs and trade-offs between traits and environment[J]. Environ Exp Bot, 2010, 68(1):1-13. [22] Halpin C. Gene stacking in transgenic plants-the challenge for 21st century plant biotechnology[J]. Plant Biotechnol J, 2005, 3(2):141-155. [23] Bizily SP, Rugh CL, Meagher RB. Phytodetoxification of hazardous organomercurials by genetically engineered plants[J]. Nat Biotechnol, 2000, 18(2):213-217. [24] Sultan SE. Phenotypic plasticity for plant development, function and life history[J]. Trends Plant Sci, 2000, 5(12):537-542. [25] Besnard G, Basic N, Christin PA, et al. Thlaspi caerulescens(Brassicaceae)population genetics in western Switzerland:is the genetic structure affected by natural variation of soil heavy metal concentrations?[J]. New Phytol, 2009, 181(4):974-984. [26] Pauwels M, Roosens N, Frerot H, et al. When population genetics serves genomics:putting adaptation back in a spatial and historical context[J]. Curr Opin Plant Biol, 2008, 11(2):129-134. [27] van de Mortel JE, Schat H, Moerland PD, et al. Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd hyperaccumulator Thlaspi caerulescens[J]. Plant Cell Environ, 2008, 31(3):301-324. [28] Kieffer P, Dommes J, Hoffmann L, et al. Quantitative changes in protein expression of cadmium-exposed poplar plants[J]. Proteomics, 2008, 8(12):2514-2530. [29] Visioli G, Marmiroli M, Marmiroli N. Two-dimensional liquid chromatography technique coupled with mass spectrometry analysis to compare the proteomic response to cadmium stress in plants[J]. J Biomed Biotechnol, 2010:567510. [30] Herbette S, Taconnat L, Hugouvieux V, et al. Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots[J]. Biochim, 2006, 88(11):1751-1765 |