[1] Teuber M. Veterinary use and antibiotic resistance[J]. Curr Opin Microbiol, 2001, 4(5):493-499. [2] 薄海波, 雒丽丽, 曹彦忠, 等. 超高效液相色谱-串联质谱法测定牛奶和奶粉中6种聚醚类抗生素残留量[J]. 分析化学, 2009, 37(8):1161-1166. [3] 王俊菊, 高木珍, 包建民. 高效液相色谱串联质谱技术在兽药残留检测中的应用进展[J]. 中国兽药杂志, 2011, 45(7):45-51. [4] Zhang J, Zhang B, Wu Y, et al. Fast determination of the tetracyclines in milk samples by the aptamer biosensor[J]. Analyst, 2010, 135(10):2706-2710. [5] Kim YS, Niazi JH, Gu MB. Specific detection of oxytetracycline using DNA aptamer-immobilized interdigitated array electrode chip[J]. Anal Chim Acta, 2009, 634(2):250-254. [6] Rowe AA, Miller EA, Plaxco KW. Reagentless measurement of aminoglycoside antibiotics in blood serum via an electrochemical, ribonucleic acid aptamer-based biosensor[J]. Anal Chem, 2010, 82(17):7090-7095. [7] de-los-Santos-Alvarez N, Lobo-Casta?ón MJ, Miranda-Ordieres AJ, et al. SPR sensing of small molecules with modified RNA aptamers:detection of neomycin B[J]. Biosens Bioelectron, 2009, 24(8):2547-2553. [8] Cha MY, Lee HY, Ko Y, et al. Pharmacophore-based strategy for the development of general and specific scFv biosensors for abused antibiotics[J]. Bioconjug Chem, 2011, 22(1):88-94. [9] Giroud F, Gorgy K, Gondran C, et al. Impedimetric immunosensor based on a polypyrrole-antibiotic model film for the label-free picomolar detection of ciprofloxacin[J]. Anal Chem, 2009, 81(20):8405-8409. [10] Dong Z, Huang G, Xu S, et al. Real-time and label-free detection of chloramphenicol residues with specific molecular interaction[J]. J Microsc, 2009, 234(3):255-261. [11] Yuan J, Addo J, Aguilar MI, et al. Surface plasmon resonance assay for chloramphenicol without surface regeneration[J]. Anal Biochem, 2009, 390(1):97-99. [12] Rebe Raz S, Bremer MGEG, Giesbers M, et al. Development of a biosensor microarray towards food screening, using imaging surface plasmon resonance[J]. Biosens Bioelectron, 2008, 24(4):552-557. [13] Ionescu RE, Jaffrezic-Renault N, Bouffier L, et al. Impedimetric immunosensor for the specific label free detection of ciprofloxacin antibiotic[J]. Biosens Bioelectron, 2007, 23(4):549-555. [14] Chan PH, Liu HB, Chen YW, et al. Rational design of a novel fluorescent biosensor for beta-lactam antibiotics from a class A beta-lactamase[J]. J Am Chem Soc, 2004, 126(13):4074-4075. [15] Chan PH, So PK, Ma DL, et al. Fluorophore-labeled beta-lactamase as a biosensor for beta-lactam antibiotics:a study of the biosensing process[J]. J Am Chem Soc, 2008, 130(20):6351-6361. [16] Chen B, Ma M, Su X. An amperometric penicillin biosensor with enhanced sensitivity based on co-immobilization of carbon nanotu-bes, hematein, and beta-lactamase on glassy carbon electrode[J]. Anal Chim Acta, 2010, 674(1):89-95. [17] 石婷, 刘瑾, 张婉洁, 等. 基于 SPR 生物传感器的抗生素残留检测及影响因素分析[J]. 天津大学学报, 2010, 43(3):255-261. [18] Frasconi M, Tel-Vered R, Riskin M, et al. Surface plasmon resonance analysis of antibiotics using imprinted boronic acid-functionalized Au nanoparticle composites[J]. Anal Chem, 2010, 82(6):2512-2519. [19] Virolainen NE, Pikkemaat MG, Elferink JW, et al. Rapid detection of tetracyclines and their 4-epimer derivatives from poultry meat with bioluminescent biosensor bacteria[J]. J Agric Food Chem, 2008, 56(23):11065-11070. [20] Pikkemaat MG, Rapallini ML, Karp MT, et al. Application of a luminescent bacterial biosensor for the detection of tetracyclines in routine analysis of poultry muscle samples[J]. Food Addit Contam Part A, 2010, 27(8):1112-1117. [21] Rebe Raz S, Bremer MG, Haasnoot W, et al. Label-free and multiplex detection of antibiotic residues in milk using imaging surface plasmon resonance-based immunosensor[J]. Anal Chem, 2009, 81(18):7743-7749. [22] Ferguson JP. Baxter GA. McEvoy JD, et al. Detection of streptomycin and dihydrostreptomycin residues in milk, honey and meat samples using an optical biosensor[J]. Analyst, 2002, 127(7):951-956. [23] 吴艳, 张娟琨, 范婷, 等. 核酸适体生物传感器快速检测牛奶中抗生素[J]. 生物加工过程, 2010, 8(3):48-52. [24] Fernández F, Hegnerová K, Piliarik M, et al. A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples[J]. Biosens Bioelectron, 2010, 26(4):1231-1238. [25] Ashwin HM, Stead SL, Taylor JC, et al. Development and validation of screening and confirmatory methods for the detection of chloram-phenicol and chloramphenicol glucuronide using SPR biosensor and liquid chromatography-tandem mass spectrometry[J]. Anal Chim Acta, 2005, 529(1):103-108. [26] Laurentie M, Gaudin V. Use of the total error approach to evaluate the performance of a semi-quantitative immunological method(BIACORE method)for detecting sulfamethazine in bovine milk[J]. J Chromatogr B, 2009, 877(23):2375-2379. [27] Adrian J, Pasche S, Diserens JM, et al. Waveguide interrogated optical immunosensor(WIOS)for detection of sulfonamide antibiotics in milk[J]. Biosens Bioelectron, 2009, 24(11):3340-3346. [28] Suárez G, Jin YH, Auerswald J, et al. Lab-on-a-chip for multiplexed biosensing of residual antibiotics in milk[J]. Lab Chip, 2009, 9(11):1625-1630. [29] Huet AC, Charlier C, Singh G, et al. Development of an optical surface plasmon resonance biosensor assay for(fluoro)quinolones in egg, fish, and poultry meat[J]. Anal Chim Acta, 2008, 623(2):195-203. [30] Weigel S, Pikkemaat MG, Elferink JW, et al. Comparison of a fluoroquinolone surface plasmon resonance biosensor screening assay with established methods[J]. Food Addit Contam Part A, 2009, 26(4):441-452. [31] 陈莉莉, 陈静, 杜毅, 等. 基于生物传感器Biacore S51技术的新药发现与开发[J]. 生命的化学, 2004, 24(6):507-509. [32] Gaudin V, Hédou C, Sanders P. Validation of a Biacore method for screening eight sulfonamides in milk and porcine muscle tissues according to European decision 2002/657/EC[J]. J AOAC Int. 2007, 90(6):1706-1715. [33] 王明华, 叶尊忠, 王剑平. β内酰胺抗生素残留检测的生物传感器研究进展[J]. 食品与生物技术学报, 2010, 29(6):801-808. [34] Spier CR, Vadas GG, Kaattari SL, et al. Near real-time, on-site, quantitative analysis of PAHs in the aqueous environment using an antibody-based biosensor[J]. Environ Toxicol Chem, 2011, 30(7):1557-1563. |