[1] Fire A, Xu SQ, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998, 391(6669):806-811. [2] Paddison PJ, Hannon GJ. siRNAs and shRNAs:skeleton keys to the human genome[J]. Current Opinion in Molecular Therapeutics, 2003, 5(3):217. [3] Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference[J]. Nature, 2001, 409(6818):363-365. [4] Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi::Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals[J]. Cell, 2000, 101(1):25-33. [5] Nyk?nen A, Haley B, Zamore PD. ATP requirements and small interfering RNA structure in the RNA interference pathway[J]. Cell, 2001, 107(3):309-321. [6] Lewis DL, Hagstrom JE, Loomis AG, et al. Efficient delivery of siRNA for inhibition of gene expression in postnatal mice[J]. Nature Genetics, 2002, 32(1):107-108. [7] Gil J, Esteban M. Induction of apoptosis by the dsRNA-dependent protein kinase(PKR):mechanism of action[J]. Apoptosis, 2000, 5(2):107-114. [8] Katze MG, He Y, Gale M. Viruses and interferon:a fight for supremacy[J]. Nature Reviews Immunology, 2002, 2(9):675-687. [9] Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J]. Nature, 2001, 411(6836):494-498. [10] Caplen NJ, Parrish S, Imani F, et al. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(17):9742-977. [11] Sijen T, Fleenor J, Simmer F, et al. On the role of RNA amplifica-tion in dsRNA-triggered gene silencing[J]. Cell, 2001, 107(4):465-476. [12] Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells[J]. Science, 2002, 296(5567):550-553. [13] Paddison PJ, Caudy AA, Bernstein E, et al. Short hairpin RNAs(shRNAs)induce sequence-specific silencing in mammalian cells[J]. Genes & Development, 2002, 16(8):948-958. [14] Yu JY, DeRuiter SL, Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(9):6047-6052. [15] Sliva K, Schnierle BS. Stable integration of a functional shRNA expression cassette into the murine leukemia virus genome[J]. Virology, 2006, 351(1):218-225. [16] Deroose CM, Reumers V, Gijsbers R, et al. Noninvasive monitoring of long-term lentiviral vector-mediated gene expression in rodent brain with bioluminescen ce imaging[J]. Molecular Therapy, 2006, 14(3):423-431. [17] Unwalla HJ, Li MJ, Kim JD, et al. Negative feedback inhibition of HIV-1 by TAT-inducible expression of siRNA[J]. Nature Biotechnology, 2004, 22(12):1573-1578. [18] Abbas-Terki T, Blanco-Bose W, Déglon N, et al. Lentiviral-mediated RNA interference[J]. Human Gene Therapy, 2002, 13(18):2197-2201. [19] Fish R, Kruithof E. Short-term cytotoxic effects and long-term instability of RNAi delivered using lentiviral vectors[J]. BMC Molecular Biology, 2004, 5(1):9. [20] Hannon GJ, Rossi JJ. Unlocking the potential of the human genome with RNA interference[J]. Nature, 2004, 431(7006):371-378. [21] Gimeno R, Weijer K, Voordouw A, et al. Monitoring the effect of gene silencing by RNA interference in human CD34+ cells injected into newborn RAG2-/-γc-/-mice:functional inactivation of p53 in developing T cells[J]. Blood, 2004, 104(13):3886-3893. [22] Sledz CA, Williams BRG. RNA interference in biology and disease[J]. Blood, 2005, 106(3):787-794. [23] Siolas D, Lerner C, Burchard J, et al. Synthetic shRNAs as potent RNAi triggers[J]. Nature Biotechnology, 2005, 23(2):227-231. [24] Kim DH, Behlke MA, Rose SD, et al. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy[J]. Nature Biotechnology, 2004, 23(2):222-226. [25] Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature, 2000, 403(6772):901-906. [26] Morrissey DV, Blanchard K, Shaw L, et al. Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication[J]. Hepatology, 2005, 41(6):1349-1356. [27] McCaffrey AP, Nakai H, Pandey K, et al. Inhibition of hepatitis B virus in mice by RNA interference[J]. Nature Biotechnology, 2003, 21(6):639-644. [28] Jackson AL, Burchard J, Schelter J, et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity[J]. RNA, 2006, 12(7):1179-1187. [29] Xia H, Liu L, Wahlberg N, et al. Molecular phylogenetic analysis of bovine viral diarrhoea virus:a Bayesian approach[J]. Virus Research, 2007, 130(1):53-62. [30] Lambeth LS, Moore RJ, Muralitharan MS, Doran TJ. Suppression of bovine viral diarrhea virus replication by small interfering RNA and short hairpin RNA-mediated RNA interference[J]. Veterinary Microbiology, 2007, 119(2):132-143. [31] Lambeth L, Wise T, Moore R, et al. Comparison of bovine RNA polymerase III promoters for short hairpin RNA expression[J]. Animal Genetics, 2006, 37(4):369-672. [32] Ni W, Hu S, Qiao J, et al. Suppression of bovine viral diarrhea virus replication by single and dual short hairpin RNA-mediated RNA interference[J]. Research in Veterinary Science, 2012, 93(1):544-548. [33] Snijder EJ, Van Tol H, Pedersen KW, et al. Identification of a novel structural protein of arteriviruses[J]. Journal of Virology, 1999, 73(8):6335-6345. [34] Chen J, Liu T, Zhu CG, et al. Genetic variation of Chinese PRRSV strains based on ORF5 sequence[J]. Biochemical Genetics, 2006, 44(9):421-431. [35] Bao Y, Guo Y, Zhang L, et al. Inhibition of porcine reproductive and respiratory syndrome virus replication by RNA interference in MARC-145 cells[J]. Molecular Biology Reports, 2012, 39(3):2515-2522. [36] Huang J, Jiang P, Li Y, et al. Inhibition of porcine reproductive and respiratory syndrome virus replication by short hairpin RNA in MARC-145 cells[J]. Veterinary Microbiology, 2006, 115(4):302-310. [37] Feng Q, Yu H, Liu Y, et al. Genome comparison of a novel foot-and-mouth disease virus with other FMDV strains[J]. Biochemical and Biophysical Research Communications, 2004, 323(1):254-263. [38] Xu YF, Shen HY, Zhao MQ, et al. Adenovirus-vectored shRNAs targeted to the highly conserved regions of VP1 and 2B in tandem inhibits replication of foot-and-mouth disease virus both in vitro and in vivo[J]. Journal of Virological Methods, 2012, 181(1):51-58. [39] Luo J, Du J, Gao S, et al. Lentviral-mediated RNAi to inhibit target gene expression of the porcine integrin αv subunit, the FMDV receptor, and against FMDV infection in PK-15 cells[J]. Virology Journal, 2011, 8(1):428. |