[1] Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress:achievements and limitations[J]. Curr Opin Biotech, 2005, 16(2):123-132. [2] 张丙乾.新疆土壤盐碱化及其防治[J].干旱区研究, 1993, 10(1):66-71. [3] Marcus K, John B, Mitchell-Olds T. Molecular systematics and evolution of Arabidopsis[J]. Plant Biol, 1999, 1(5):529-537. [4] 张海波, 刘彭, 刘立鸿, 等.新疆短命植物小拟南芥耐盐性的初步研[J].西北植物学报, 2007, 27(2):286-290. [5] 刘彤, 李学禹, 向其柏, 等.种群内和种群间小拟南芥植株营养含量的变化及协变格局研究[J].武汉植物研究, 2004, 22(3):251-258. [6] 朱新霞, 高剑峰, 刘红玲, 等.小拟南芥几丁质酶基因cDNA的克隆与序列分析[J].石河子大学学报, 2004, 22(5):411-414. [7] 黄先忠, 张鹏, 吕新华, 等.新疆小拟南芥ApCBF1基因的克隆及其过量表达转基因的研究[J].石河子大学学报, 2009, 27(3):265-268. [8] Bressan R, Bohnert H, Zhu JK. Abiotic stress tolerance:from gene discovery in model organisms to crop improvement[J]. Mol Plant, 2009, 2(1):1-2. [9] Park SY, Fung P, Nishimura N, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of start proteins[J]. Science, 2009, 324(5930):1068-1071. [10] Fujii H, Chinnusamy V, Rodrigues A, et al. In vitro reconstitution of an abscisic acid signaling pathway[J]. Nature, 2009, 62:660-666. [11] Santiago J, Rodrigues A, Saez A, et al. Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs[J]. Plant J, 2009, 60(4):575-588. [12] 王凤宝, 董立峰, 尹秀玲, 等.小麦离体叶片室内自然干化失水率与品种抗旱性关系的研究[J].河北农业技术师范学院学报, 1997(1):50-54. [13] 巨生.对离体叶片失水率作为小麦抗旱性指标的评价[J].华北农业学报, 1997, 12(4):52-56. [14] 孙丽, 吴忠义, 李学东, 于荣.植物气孔运动过程中的信号转导机制[J]. 植物生理学通讯, 2006, 42(6):1203-1210. [15] Pei ZM, Baizabal-Aguirre VM, Allen GJ, et al. A transient outward-rectifying K+ channel current down-regulated by cytosolic Ca2+ in Arabidopsis thaliana guard cells[J]. Proc Natl Acad Sci USA, 1998, 95(11):6548-6553. [16] Cutler SR, Rodriguez PL, Finkelstein RR, et al. Abscisic acid:emergence of a core signaling network[J]. Annu Rev Plant Biol, 2010, 61:651-679. [17] Kim SJ, Ryu MY, Kim WT. Suppression of Arabidopsis RING-DUF1117 E3 ubiquitin ligase, AtRDUF1 and AtRDUF2, reduces tolerance to ABA-mediated drought stress[J]. Biochem Biophys Res Commun, 2012, 420(1):141-147. [18] Xiong L, Zhu JK. Regulation of abscisic acid biosynthesis[J]. Plant Physiol, 2003, 133(1):29-36. [19] Zhang S, Qi Y, Liu M, et al. SUMO E3 ligase AtMMS21 regulates drought tolerance in Arabidopsis thaliana(F)[J]. J Integr Plant Biol, 2013, 55(1):83-95. [20] Shi H, Ye T, Wang Y, et al. Arabidopsis ALTERED MERISTEM PROGRAM 1 negatively modulates plant responses to abscisic acid and dehydration stress[J]. Plant Physiol Biochem, 2013, 67C:209-216. [21] Xiong L, Lee H, Ishitani M, Zhu JK. Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis[J]. J Biol Chem, 2002, 277(10):8588-8596. [22] Chinnusamy V, Schumaker K, Zhu JK. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants[J]. J Exp Bot, 2004, 55(395):225-236. [23] Ishitani M, Xiong L, Stevenson B, et al. Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis:interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways[J]. Plant Cell, 1997, 9(11):1935-1949. [24] Furukawa J, Abe Y, Mizuno H, et al. Seasonal fluctuation of organic and inorganic components in xylem sap of Populus nigra[J]. Plant Root, 2011, 5:56-62. [25] Bertrand A, Robitaille G, Castonguay Y, et al. Changes in ABA and gene expression in cold-acclimated sugar maple[J]. Tree Physiol, 1997, 17(1):31-37. [26] Fowler S, Thomashow MF. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway[J]. Plant Cell, 2002, 14(8):1675-1690. |