[1] Elbein AD, Pan Y, Pastuszak I, et al. New insights on trehalose:a multifunctional molecule[J] . Glycobiology, 2003, 13(4):17R-27R. [2] Richards A, Krakowka S, Dexter L, et al. Trehalose:a review of properties, history of use and human tolerance, and results of multiple safety studies[J] . Food and Chemical Toxicology, 2002, 40(7):871-898. [3] Mandels G, Vitols R, Parrish FW. Trehalose as an endogenous reserve in spores of the fungus Myrothecium verrucaria[J] . Journal of Bacteriology, 1965, 90(6):1589-1598. [4] Retzinger G, Meredith S, Takayama K, et al. The role of surface in the biological activities of trehalose 6, 6’-dimycolate. Surface properties and development of a model system[J] . Journal of Biological Chemistry, 1981, 256(15):8208-8216. [5] 阚洪玲, 孙洪涛, 董建军. 海藻糖在化妆品中的应用[J] . 食品与药品, 2005, 7(9):48-50. [6] Inoue H, Shimoda C. Changes in trehalose content and trehalase ac-tivity during spore germination in fission yeast, Schizosaccharomyces pombe[J] . Archives of Microbiology, 1981, 129(1):19-22. [7] Schiraldi C, Di Lernia I, De Rosa M. Trehalose production:exploiting novel approaches[J] . TRENDS in Biotechnology, 2002, 20(10):420-425. [8] Kato M, Takehara K, Kettoku M, et al. Subsite structure and catalytic mechanism of a new glycosyltrehalose-producing enzyme isolated from the hyperthermophilic archaeum, Sulfolobus solfataricus KM1[J] . Biosci Biotechnol Biochem, 2000, 64(2):319-326. [9] Lama L, Nicolaus B, Trincone A, et al. Starch conversion with immobilized thermophilic archaebacterium Sulfolobus solfataricus[J] . Biotechnology Letters, 1990, 12(6):431-432. [10] Mukai K, Tabuchi A, Nakada T, et al. Production of trehalose from starch by thermostable enzymes from Sulfolobus acidocaldarius[J] . Starch-Starke, 1997, 49(1):26-30. [11] Nakada T, Maruta K, Tsusaki K, et al. Purification and properties of a novel enzyme, maltooligosyl trehalose synthase, from Arthrobacter sp. Q36[J] . Biosci Biotech Bioch, 1995, 59(12):2210-2214. [12] de Pasale D, Di Lernia I, Sasso MP, et al. A novel thermophilic fusion enzyme for trehalose production[J] . Extremophiles, 2002, 6(6):463-468. [13] Fang TY, Hung XG, Shih TY, et al. Characterization of the trehalosyl dextrin-forming enzyme from the thermophilic archaeon Sulfolobus solfataricus ATCC 35092[J] . Extremophiles, 2004, 8(4):335-343. [14] Kato M, Miura Y, Kettoku M, et al. Purification and characterizat-ion of new trehalose-producing enzymes isolated from the hyperth-ermophilic archae, Sulfolobus solfataricus KM1[J] . Biosci Biotech Bioch, 1996, 60(3):546-550. [15] Yamamoto T, Maruta K, Watanabe H, et al. Trehalose-producing operon treYZ from Arthrobacter ramosus S34*[J] . Bioscience, Biotechnology, and Biochemistry, 2001, 65(6):1419-1423. [16] Kato M. Trehalose production with a new enzymatic system from Sulfolobus solfataricus KM11[J] . Journal of Molecular Catalysis B Enzymatic, 1999, 6(3):223-233. [17] 吴襟, 于炜婷, 王辉, 等. 耐热古菌芝田硫化叶菌海藻糖生成相关酶的基因克隆、表达和序列分析[J] . 生物化学与生物物理进展, 2003, 30(5):798-802. [18] 张文德, 乔宇, 丁宏标. 谷氨酸棒杆菌麦芽寡糖基海藻糖合成酶基因的克隆与表达[J] . 中国农业科技导报, 2009, 11(1):68-72. [19] 王晓阁. 枯草芽孢杆菌研究进展与展望[J] . 中山大学研究生学刊:自然科学与医学版, 2012,(3):14-23. [20] Kang Z, Duan X, Jing W. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system[J] . Scientific Reports, 2016, 2016(6):27943-27943. [21] Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar[J] . Anal Chem, 1959, 31(3):426. [22] Nakada T, Ikegami S, Chaen H, et al. Purification and characteriz-ation of thermostable maltooligosyl trehalose trehalohydrolase from the thermoacidophilic archaebacterium[J] . Biosci Biotechnol Biochem, 1996, 60(2):263-266. [23] 胡爽, 蔡海波, 蒋加庆, 等. 碳源对重组大肠杆菌发酵生产GLP-1融合蛋白的影响[J] . 工业微生物, 2010, 40(4):57-62. [24] 杨海麟, 王长城, 张玲, 等. 产胆固醇氧化酶重组大肠杆菌的发酵培养基和诱导条件的优化[J] . 食品与生物技术学报, 2009, 28(5):670-674. [25] 陆阳. 玫瑰微球菌海藻糖合成相关酶基因的克隆以及基因工程菌的构建表达[D] . 北京:北京化工大学, 2005. [26] 吴世雄. 嗜酸热硫化叶菌MTSase和MTHase的异源表达及应用[D] . 无锡:江南大学, 2016. |