[1] Angelpoulou DJ, Naska EJ, Paplomatas EJ. Biological control agents(BCAs)of verticillium wilt:influence of application rates and delivery method on plant protection, triggering of host defence mechanisms and rhizosphere populations of BCAs[J]. Plant Pathology, 2014, 63:1062-1069. [2] Papaioannou IA, Dimopoulou CD, Typas MA. Structural and phylogenetic analysis of the rDNA intergenic spacer region of Verticillium dahliae[J]. FEMS Microbiol Lett, 2013, 347(1):23-32. [3] Ceccherini MT, Luchi N, Pantani O, et al. Upward movement of Verticillium dahliae from soil to olive plants detected by PCR[J]. World J Microbiol Biotechnol, 2013, 29(10):1961-1967. [4] Xu Z, Ali Z, Hou X, et al. Characterization of Chinese eggplant isolates of the fungal pathogen Verticillium dahliae from different geographic origins[J]. Genet Mol Res, 2013, 12(1):183-195. [5] Hadwiger LA, Druffel K, Humann J, et al. Nuclease released by Verticillium dahliae is a signal for non-host resistance[J]. Plant Sci, 2013, 202:98-107. [6] Tabey W. Assoeiation of tylosis and hyperplasia of the xylem with vascular invasion of the hope by Verticillium[J]. Trans Brit Mycol Soc, 1958, 41(2):249-260. [7] 张铎, 解莉, 张丽萍, 赵宝华. 棉花黄萎病生物防治研究[J]. 安徽农业科学, 2007, 35(11):3302-3303, 3357. [8] Meschke H, Schrempf H. Streptomyces lividans inhibits the proliferation of the fungus Verticillium dahliae on seeds and roots of Arabidopsis thaliana[J]. Microb Biotechnol, 2010, 3(4):428-443. [9] Sah P, Paul Salve J, Dey S. Stabilizing biological populations and metapopulations through Adaptive Limiter Control[J]. J Theor Biol, 2013, 320:113-123. [10] Herndl GJ, Reinthaler T. Microbial control of the dark end of the biological pump[J]. Nat Geosci, 2013, 6(9):718-724. [11] Zhu HQ, Feng ZL, Li ZF, et al. Characterization of two fungal isolates from cotton and evaluation of their potential for biocontrol of Verticillium wilt of cotton[J]. Journal of Phytopathology, 2013, 161(2):70-77. [12] Gao W, Long L, Zhu LF, et al. Proteomic and virus-induced gene silencing(VIGS)analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae[J]. Mol Cell Proteomics, 2013, 12(12):3690-3703. [13] Kamilova F, Validov S, Azarova T, et al. Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria[J]. Environ Microbiol, 2005, 7(11):1809-1817. [14] 程凯. 防治土传棉花黄萎病微生物有机肥研制与生物效应研究[D] . 南京:南京农业大学, 2010. [15] Ji SH, Paul NC, Deng JX, et al. Biocontrol activity of bacillus amyloliquefaciens cnu114001 against fungal plant diseases[J]. Mycobiology, 2013, 41(4):234-242. [16] Tehrani AS, Disfani FA, Hedjaroud GA, et al. Antagonistic effects of several bacteria on Verticillium dahliae the causal agent of cotton wilt[J]. Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet, 2001, 66(2a):95-101. [17] 李社增, 鹿秀云, 马平, 等. 棉花黄萎病生防细菌NcD-2抑菌物质的提取[J]. 棉花学报, 2004, 16(1):62-63. [18] 陈英化, 李爱霞, 冯丽娜, 等. 棉花黄萎病内生拮抗细菌L-4-2的鉴定及定殖[J]. 西北农业学报, 2012, 21(2):68-71. [19] Li CH, Shi L, Han Q, et al. Biocontrol of verticillium wilt and colonization of cotton plants by an endophytic bacterial isolate[J]. Journal of Applied Microbiology, 2012, 113(3):641-651. [20] 夏正俊, 顾本康, 吴蔼民, 等. 棉株植物内生菌诱导棉花抗黄萎病过程中同工酶活性的变化[J]. 江苏农业学报, 1997, 13(2):99-101. [21] Xu L, Guo J. A screening strategy of fungal biocontrol agents towards Verticillium wilt of cotton[J]. Phytopathology, 2010, 100(6):s140-s140. [22] 李雪玲, 厉云, 张天宇. 利用拮抗真菌防治棉花黄萎病[J]. 棉花学报, 2003, 15(1):26-28. [23] 宋晓妍, 陈秀兰, 孙彩云, 等. 棉花黄萎病菌拮抗木霉的筛选及其抑菌机制的研究[J]. 山东大学学报:理学版, 2005, 6:98-102. [24] 孟娜, 汤斌, 黄晓东, 等. 4种木霉菌对棉花黄萎病菌抑制作用的测定[J]. 生物学杂志, 2007, 4(24):55-60. [25] Fahima T, Henis Y. Quantitative assessment of the interaction between the antagonistic fungus Talaromyces flavus and the wilt Pathgen Verticillium dahliae on eggplant roots[J]. Plant and Soil, 1995, 176:129-137. [26] 刘润进, 沈崇尧, 裘维蕃. 关于VAM菌与黄萎病菌存在侵染中的竞争作用[J]. 土壤学报, 1994, 31:224-229. [27] Xue L, Xue QH, Chen Q, et al. Isolation and evaluation of rhizosphere actinomycetes with potential application for biocontrol of Verticillium wilt of cotton[J]. Crop Protection, 2013, 43:231-240. [28] 刘大群, 田世民, 肖混, 等. 链霉菌对植物病原真菌抑制作用的研究[C] . 中国植物病理学会第六届代表大会暨学术年会论文选编. 北京:中国农业科技出版社, 1998:512-515. [29] 王兰英, 宗兆锋, 刘正坪. 大丽轮枝孢和灰葡萄孢生防放线菌的分离筛选[J]. 西北农林科技大学学报, 2005, 33:153-156. [30] Klein E, Ofek M, Katan J. Soil suppressiveness to fusarium disease:shifts in root microbiome associated with reduction of pathogen root colonization[J]. Phytopathology, 2013, 103(1):23-33. [31] Halhont Y, Ho YP, Ryzhov V, et al. Kustakins:a newclass of lipopeptides isolated from Bacillus thuringiensis[J]. J Nat Pred, 2000, 63(11):1492-1496. [32] Ongena M, Jacques P. Bacillus lipopeptides:versatile weapons for plant disease bioeontrol[J]. Trends in Mierobiology, 2007, 16(3):115-125. [33] 段红英, 丁笑生. 棉花抗黄萎病基因工程研究综述[J]. 作物杂志, 2007, 1:12-14. [34] 张宝红, 姚长兵, 巩万奎, 等. 葡萄糖氧化酶基因转化棉花和抗性愈伤组织的获得[J]. 棉花学报, 2001, 13(2):78-81. [35] 李俊华. 施用微生物有机肥调控棉花黄萎病土壤微生物区系及效应研究[D] . 南京:南京农业大学, 2011. [36] Zhang SS, Raza W, Yang XM, et al. Control of Fusarium wilt disease of cucumber plants with the application of a bio-organic fertilizer[J]. Biol Fertil Soils, 2008, 44:1073-1080. [37] 张慧. 防治棉花黄萎病微生物有机肥的研制及其生物效应[D] . 南京:南京农业大学, 2008. [38] 罗佳. 微生物有机肥防治棉花黄萎病的作用机制[D] . 南京:南京农业大学, 2010. |