[1] Baykov AA, Malinen AM, Luoto HH, et al. Pyrophosphate-fueled Na + and H + transport in prokaryotes[J]. Microbiol Mol Biol Rev, 2013, 77(2):267-276. [2] Holm NG, Baltscheffsky H. Links between hydrothermal environments, pyrophosphate, Na + , and early evolution[J]. Orig Life Evol Biosph, 2011, 41(5):483-493. [3] Serrano A, Pérez-Castiñeira JR, Baltscheffsky M, et al. H + -PPases:yesterday, today and tomorrow[J]. IUBMB Life, 2007, 59(2):76-83. [4] Tsai JY, Kellosalo J, Sun YJ, et al. Proton/sodium pumping pyrophosphatases:the last of the primary ion pumps[J]. Curr Opin Struct Biol, 2014, 27:38-47. [5] Belogurov GA, Lahti R. A lysine substitute for K + . A460K mutation eliminates K + dependence in H + -pyrophosphatase of Carboxydothermus hydrogenoformans[J]. J Biol Chem, 2002, 277(51):49651-49654. [6] Gaxiola RA, Sanchez CA, Paez-Valencia J, et al. Genetic manipulation of a “vacuolar” H + -PPase:from salt tolerance to yield enhancement under phosphorus-deficient soils[J]. Plant Physiol, 2012, 159(1):3-11. [7] Schilling RK, Tester M, Marschner P, et al. AVP1:one protein, many roles[J]. Trends Plant Sci, 2017, 22(2):154-162. [8] Pasapula V, Shen G, Kuppu S, et al. Expression of an Arabidopsis vacuolar H + -pyrophosphatase gene(AVP1)in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions[J]. Plant Biotechnol, 2011, 9(1):88-99. [9] Wei A, He C, Li B, et al. The pyramid of transgenes TsVP and BetA effectively enhances the drought tolerance of maize plants[J]. Plant Biotechnol, 2011, 9(2):216-229. [10] Bao AK, Wang SM, Wu GQ, et al. Overexpression of the Arabidopsis H + -PPase enhanced resistance to salt and drought stress in transgenic alfalfa(Medicago sativa L. )[J]. Plant Sci, 2009, 176(2):232-240. [11] Yang H, Knapp J, Koirala P, et al. Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type I H + -pyrophosphatase[J]. Plant Biotechnol, 2007, 5(6):735-745. [12] Paez-Valencia J, Sanchez-Lares J, Marsh E, et al. Enhanced proton translocating pyrophosphatase activity improves nitrogen use efficiency in Romaine lettuce[J]. Plant Physiol, 2013, 161(3):1557-1569. [13] Khoudi H, Maatar Y, Gouiaa S, et al. Transgenic tobacco plants expressing ectopically wheat H + -pyrophosphatase(H + -PPase)gene TaVP1 show enhanced accumulation and tolerance to cadmium[J]. J Plant Physiol, 2012, 169(1):98-103. [14] Luoto HH, Belogurov GA, Baykov AA, et al. Na + -translocating membrane pyrophosphatases are widespread in the microbial world and evolutionarily precede H + -translocating pyrophosphatases[J]. J Biol Chem, 2011, 24:21633-21642. [15] Luoto HH, Baykov AA, Lahti R, et al. Membrane-integral pyrophosphatase subfamily capable of translocating both Na + and H + [J]. Proc Natl Acad Sci USA, 2013, 110(4):1255-1260. [16] Luoto HH, Nordbo E, Baykov AA, et al. Membrane Na + -pyrophosphatases can transport protons at low sodium concentrat-ions[J]. J Biol Chem, 2013, 49:35489-35499. [17] 王学奎. 植物生理生化实验原理和技术[M]. 第2版. 北京:高等教育出版社, 2006. [18] Guazzaroni ME, Morgante V, Mirete S, et al. Novel acid resistance genes from the metagenome of the Tinto River, an extremely acidic environment[J]. Environ Microbiol, 2013, 15(4):1088-1102. [19] Kapardar RK, Ranjan R, Grover A, et al. Identification and characterization of genes conferring salt tolerance to Escherichia coli from pond water metagenome[J]. Bioresour Technol, 2010, 101(11):3917-3924. [20] 刘畅, 罗著, 张梦如, 等. 蓝藻橙色类胡萝卜素蛋白的基因克隆及在大肠杆菌中的异源表达和功能分析[J]. 生物技术通报, 2016, 32(7):138-145. [21] Culligan EP, Marchesi JR, Hill C, et al. Mining the human gut microbiome for novel stress resistance genes[J]. Gut Microbes, 2012, 3(4):394-397. [22] Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome[J]. Nature, 2011, 473(7346):174-180. [23] Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome[J]. Science, 2006, 312(5778):1355-1359. [24] Hu H, Xiong L. Genetic engineering and breeding of drought-resistant crops[J]. Annu Rev Plant Biol, 2014, 65:715-741. [25] Yang S, Vanderbeld B, Wan J, et al. Narrowing down the targets:towards successful genetic engineering of drought-tolerant crops[J]. Mol Plant, 2010, 3(3):469-490. |