[1] Ardic M, Karakaya Y, Atasever M, et al. Determination of aflatoxin B 1 levels in deep-red ground pepper(isot)using immunoaffinity column combined with ELISA[J]. Food and Chemical Toxicology, 2008, 46(5):1596-1599. [2] Detroy RW, Microbial Toxins[M]. New York:Academic Press, 1971:163-178. [3] Han Z, Zheng Y, Luan L, et al. An ultra-high-performance liquid chromatography-tandem mass spectrometry method for simultaneous determination of aflatoxins B1, B2, G1, G2, M1 and M2 in traditional Chinese medicines[J]. Analytica Chimica Acta, 2010, 664(2):165-171. [4] Li P, Zhang Q, Zhang W. Immunoassays for aflatoxins[J]. TrAC Trends in Analytical Chemistry, 2009, 28(9):1115-1126. [5] 李书国, 陈辉, 李雪梅, 等. 粮油食品中黄曲霉毒素检测方法综述[J]. 粮油食品科技, 2009, 17(2):62-65. [6] Cavaliere C, Foglia P, Guarino C, et al. A sensitive confirmatory method for aflatoxins in maize based on liquid chromatography/electrospray ionization tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2007, 21(4):550-556. [7] Ventura M, Gomez A, Anaya I, et al. Determination of aflatoxins B1, G1, B2 and G2 in medicinal herbs by liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2004, 1048(1):25-29. [8] Van Egmond HP, Schothorst RC, Jonker MA. Regulations relating to mycotoxins in food[J]. Analytical and Bioanalytical Chemistry, 2007, 389(1):147-157. [9] Zhang D, Li P, Yang Y, et al. A high selective immunochromatograp-hic assay for rapid detection of aflatoxin B 1[J]. Talanta, 2011, 85(1):736-742. [10] Guan D, Li P, Zhang Q, et al. An ultra-sensitive monoclonal antibody-based competitive enzyme immunoassay for aflatoxin M 1 in milk and infant milk products[J]. Food Chemistry, 2011, 125(4):1359-1364. [11] Min WK, Kweon DH, Park K, et al. Characterisation of monoclonal antibody against aflatoxin B 1 produced in hybridoma 2C12 and its single-chain variable fragment expressed in recombinantEscherichia coli[J]. Food Chemistry, 2011, 126(3):1316-1323. [12] Zhang D, Li P, Zhang Q, et al. Production of ultrasensitive generic monoclonal antibodies against major aflatoxins using a modified two-step screening procedure[J]. Analytica Chimica Acta, 2009, 636(1):63-69. [13] Li P, Zhang Q, Zhang W, et al. Development of a class-specific monoclonal antibody-based ELISA for aflatoxins in peanut[J]. Food Chemistry, 2009, 115(1):313-317. [14] Liu JW, Lu CC, Liu BH, et al. Development of novel monoclonal antibodies-based ultrasensitive enzyme-linked immunosorbent assay and rapid immunochromatographic strip for aflatoxin B1 detection[J]. Food Control, 2016, 59:700-707. [15] Liu BH, Hsu YT, Lu CC, et al. Detecting aflatoxin B1 in foods and feeds by using sensitive rapid enzyme-linked immunosorbent assay and gold nanoparticle immunochromatographic strip[J]. Food Control, 2013, 30(1):184-189. [16] Wang JJ, Liu BH, Hsu YT, et al. Sensitive competitive direct enzyme-linked immunosorbent assay and gold nanoparticle immunochromatographic strip for detecting aflatoxin M1 in milk[J]. Food Control, 2011, 22(6):964-969. [17] 何小鹃, 李官成. 肿瘤基因工程抗体研究进展[J]. 国外医学:肿瘤学分册, 2002, 29(4):245-248. [18] De Bruin R, Spelt K, Mol J, et al. Selection of high-affinity phage antibodies from phage display libraries[J]. Nature Biotechnology, 1999, 17:397-399. [19] Moghaddam A, Løbersli I, Gebhardt K, et al. Selection and characterisation of recombinant single-chain antibodies to the hapten Aflatoxin-B1 from naive recombinant antibody libraries[J]. Journal of Immunological Methods, 2001, 254(1):169-181. [20] Shaw DM, Embleton MJ, Westwater C, et al. Isolation of a high affinity scFv from a monoclonal antibody recognising the oncofoetal antigen 5T4[J]. Biochimica et Biophysica Acta(BBA)-General Subjects, 2000, 1524(2):238-246. [21] Rangnoi K, Jaruseranee N, O’Kennedy R, et al. One-step detection of aflatoxin-B1 using scFv-alkaline phosphatase-fusion selected from human phage display antibody library[J]. Molecular Biotechnology, 2011, 49(3):240-249. [22] 刘蓉. 抗黄曲霉毒素 B-1 荧光重组抗体的制备[D]. 无锡:江南大学, 2010. [23] Stoltenburg R, Reinemann C, Strehlitz B. SELEX-a(r)evolutionary method to generate high-affinity nucleic acid ligands[J]. Biomolecular Engineering, 2007, 24(4):381-403. [24] Malhotra S, Pandey AK, Rajput YS, et al. Selection of aptamers for aflatoxin M1 and their characterization[J]. Journal of Molecular Recognition, 2014, 27(8):493-500. [25] Ma X, Wang W, Chen X, et al. Selection, identification, and application of Aflatoxin B1 aptamer[J]. European Food Research and Technology, 2014, 238(6):919-925. [26] Fang L, Chen H, Ying X, et al. Micro-plate chemiluminescence enzyme immunoassay for aflatoxin B1 in agricultural products[J]. Talanta, 2011, 84(1):216-222. [27] Shim WB, Kim MJ, Mun H, et al. An aptamer-based dipstick assay for the rapid and simple detection of aflatoxin B1[J]. Biosensors and Bioelectronics, 2014, 62:288-294. [28] Wang Y, Liu N, Ning B, et al. Simultaneous and rapid detection of six different mycotoxins using an immunochip[J]. Biosensors and Bioelectronics, 2012, 34(1):44-50. [29] 李军涛, 候水平, 姬泽薇, 等. 免疫荧光层析试纸条法检测食用油中的黄曲霉毒素 B-1[J]. 中国卫生检验杂志, 2015, 7:17. [30] Zhang Z, Li Y, Li P, et al. Monoclonal antibody-quantum dots CdTe conjugate-based fluoroimmunoassay for the determination of aflatoxin B 1 in peanuts[J]. Food Chemistry, 2014, 146:314-319. [31] 许琳, 张兆威, 李培武, 等. 量子点探针应用于粮油中黄曲霉毒素免疫检测的研究[J]. 中国油料作物学报, 2015, 37(1):119. [32] Xu W, Xiong Y, Lai W, et al. A homogeneous immunosensor for AFB 1 detection based on FRET between different-sized quantum dots[J]. Biosensors and Bioelectronics, 2014, 56:144-150. [33] Wu S, Duan N, Zhu C, et al. Magnetic nanobead-based immunoassay for the simultaneous detection of aflatoxin B 1 and ochratoxin A using upconversion nanoparticles as multicolor labels[J]. Biosensors and Bioelectronics, 2011, 30(1):35-42. [34] Liu D, Huang Y, Chen M, et al. Rapid detection method for aflatoxin B 1 in soybean sauce based on fluorescent microspheres probe[J]. Food Control, 2015, 50:659-662. [35] 张兆威, 李培武, 张奇, 等. 农产品中黄曲霉毒素的时间分辨荧光免疫层析快速检测技术研究[J]. 中国农业科学, 2014, 47(18):3668-3674. [36] Paniel N, Radoi A, Marty JL. Development of an electrochemical biosensor for the detection of aflatoxin M1 in milk[J]. Sensors, 2010, 10(10):9439-9448. [37] Parker CO, Lanyon YH, Manning M, et al. Electrochemical immunochip sensor for aflatoxin M1 detection[J]. Analytical Chemistry, 2009, 81(13):5291-5298. [38] Nguyen BH, Dai Tran L, Do QP, et al. Label-free detection of aflatoxin M1 with electrochemical Fe 3 O 4 /polyaniline-based aptasensor[J]. Materials Science and Engineering:C, 2013, 33(4):2229-2234. [39] Lin Y, Lin Y, Tang D, et al. Simple and sensitive detection of aflatoxin B 1 within five minute using a non-conventional competitive immunosensing mode[J]. Biosensors and Bioelectronics, 2015, 74:680-686. [40] Zhang X, Li CR, Wang WC, et al. A novel electrochemical immunosensor for highly sensitive detection of aflatoxin B 1 in corn using single-walled carbon nanotubes/chitosan[J]. Food Chemistry, 2016, 192:197-202. [41] Singh C, Srivastava S, Ali MA, et al. Carboxylated multiwalled carbon nanotubes based biosensor for aflatoxin detection[J]. Sensors and Actuators B:Chemical, 2013, 185:258-264. [42] 孙秀兰, 汪忠云, 方银军, 等. 溶胶凝胶法固定抗体制备黄曲霉毒素免疫传感器[J]. 分析化学, 2010(2):245-248. [43] Li ZJ, Zhongyun W, Xiulan S, et al. A sensitive and highly stable electrochemical impedance immunosensor based on the formation of silica gel-ionic liquid biocompatible film on the glassy carbon electrode for the determination of aflatoxin B 1 in bee pollen[J]. Talanta, 2010, 80(5):1632-1637. [44] Yu L, Zhang Y, Hu C, et al. Highly sensitive electrochemical impedance spectroscopy immunosensor for the detection of AFB 1 in olive oil[J]. Food Chemistry, 2015, 176:22-26. [45] Wang D, Hu W, Xiong Y, et al. Multifunctionalized reduced graphene oxide-doped polypyrrole/pyrrolepropylic acid nanocomposite impedimetric immunosensor to ultra-sensitively detect small molecular aflatoxin B 1[J]. Biosensors and Bioelectronics, 2015, 63:185-189. [46] Castillo G, Spinella K, Poturnayová A, et al. Detection of aflatoxin B 1 by aptamer-based biosensor using PAMAM dendrimers as immobilization platform[J]. Food Control, 2015, 52:9-18. [47] Bacher G, Pal S, Kanungo L, et al. A label-free silver wire based impedimetric immunosensor for detection of aflatoxin M1 in milk[J]. Sensors and Actuators B:Chemical, 2012, 168:223-230. [48] Rameil S, Schubert P, Grundmann P, et al. Use of 3-(4-hydroxyp-henyl)propionic acid as electron donating compound in a potentiometric aflatoxin M 1-immunosensor[J]. Analytica Chimica Acta, 2010, 661(1):122-127. [49] Lv X, Li Y, Cao W, et al. A label-free electrochemiluminescence immunosensor based on silver nanoparticle hybridized mesoporous carbon for the detection of Aflatoxin B 1[J]. Sensors and Actuators B:Chemical, 2014, 202:53-59. [50] Chauhan R, Solanki PR, Singh J, et al. A novel electrochemical piezoelectric label free immunosensor for aflatoxin B1 detection in groundnut[J]. Food Control, 2015, 52:60-70. [51] Park JH, Kim YP, Kim IH, et al. Rapid detection of aflatoxin B 1 by a bifunctional protein crosslinker-based surface plasmon resonance biosensor[J]. Food Control, 2014, 36(1):183-190. [52] Jin X, Jin X, Chen L, et al. Piezoelectric immunosensor with gold nanoparticles enhanced competitive immunoreaction technique for quantification of aflatoxin B 1[J]. Biosensors and Bioelectronics, 2009, 24(8):2580-2585. [53] Ye Y, Zhou Y, Mo Z, et al. Rapid detection of aflatoxin B 1 on membrane by dot-immunogold filtration assay[J]. Talanta, 2010, 81(3):792-798. [54] 黄艳梅, 刘道峰, 赖卫华, 等. 集成免疫磁珠富集和免疫层析的黄曲霉毒素 M1 快速检测法[J]. 分析化学, 2014, 42(5):654-659. [55] Zhang D, Li P, Zhang Q, et al. Ultrasensitive nanogold probe-based immunochromatographic assay for simultaneous detection of total aflatoxins in peanuts[J]. Biosensors and Bioelectronics, 2011, 26(6):2877-2882. [56] Zhang D, Li P, Liu W, et al. Development of a detector-free semiquantitative immunochromatographic assay with major aflatoxins as target analytes[J]. Sensors and Actuators B:Chemical, 2013, 185:432-437. [57] Xu X, Liu X, Li Y, et al. A simple and rapid optical biosensor for detection of aflatoxin B1 based on competitive dispersion of gold nanorods[J]. Biosensors and Bioelectronics, 2013, 47:361-367. [58] Hu H, Garcia-Uribe A, Deng Y, et al. Layer-by-layer assembled smectite-polymer nanocomposite film for rapid fluorometric detection of aflatoxin B 1[J]. Sensors and Actuators B:Chemical, 2012, 166:205-211. [59] Larou E, Yiakoumettis I, Kaltsas G, et al. High throughput cellular biosensor for the ultra-sensitive, ultra-rapid detection of aflatoxin M1[J]. Food Control, 2013, 29(1):208-212. |