[1] Bommareddy RR, Chen Z, Rappert S, et al. A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase[J]. Metab Eng, 2014, 25:30-37. [2] Pérez-García F, Peters-Wendisch P, Wendisch F. Engineering Corynebacterium glutamicum for fast production of L-lysine and L-pipecolic acid[J]. Appl Microbiol Biot, 2016, 100(18):8075-8090. [3] Jakobsen M, Brautaset T, Degnes KF, et al. Overexpression of wild-type aspartokinase increases L-lysine production in the thermotolerant methylotrophic bacterium Bacillus methanolicus[J]. Appl Environ Microbiol, 2009, 75(3):652-661. [4] Xu J, Zhang J, Guo Y, et al. Improvement of cell growth and L-lysine production by genetically modified Corynebacterium glutamicum during growth on molasses[J]. J Ind Microbiol Biot, 2013, 40(12):1423-1432. [5] Sagong HY, Kim KJ. Structural basis for redox sensitivity in Corynebacterium glutamicum diaminopimelate epimerase:an enzyme involved in l-lysine biosynthesis[J]. Sci Rep-UK, 2017, 7:1-13. [6] Eggeling L, Bott M. A giant market and a powerful metabolism:L-lysine provided by Corynebacterium glutamicum[J]. Appl Microbiol Biot, 2015, 99(8):3387-3394. [7] Takeno S, Hori K, Ohtani S, et al. L-Lysine production independent of the oxidative pentose phosphate pathway by Corynebacterium glutamicum with the Streptococcus mutans gapN gene[J]. Metab Eng, 2016, 37:1-10. [8] Dong X, Zhao Y, Zhao J, et al. Characterization of aspartate kinase and homoserine dehydrogenase from Corynebacterium glutamicum IWJ001 and systematic investigation of l-isoleucine biosynthesis[J]. J Ind Microbiol Biot, 2016, 43(6):873-885. [9] Chen Z, Meyer W, Rappert S, et al. Coevolutionary analysis enabled rational deregulation of allosteric enzyme inhibition in Corynebacterium glutamicum for lysine production[J]. Appl Environ Microb, 2011, 77(13):4352-4360. [10] Ma CW, Xiu ZL, Zeng AP. Exploring signal transduction in heteromultimeric protein based on energy dissipation model[J]. J Biomol Struct Dyn, 2015, 33(1):134-146. [11] Tsujimoto M, Yoshida A, Shimizu T, et al. Aspartate kinase involved in 4-hydroxy-3-nitrosobenzamide biosynthesis in Streptomyces murayamaensis[J]. Biosci Biotech Bioch, 2016, 80(11):2255-2263. [12] Yoshida A, Tomita T, Kuzuyama T, et al. Mechanism of concerted inhibition of α 2 β 2 -type hetero-oligomeric aspartate kinase from Corynebacterium glutamicum[J]. J Biol Chem, 2010, 285(35):27477-27486. [13] Yoshida A, Tomita T, et al. Structural Insight into concerted inhibi-tion of alpha 2 beta 2-type aspartate kinase from Corynebacterium glutamicum[J]. J Mol Biol, 2007, 368(2):521-536. [14] 朱运明, 王晓飞, 等. 北京棒杆菌天冬氨酸激酶 G377 定点突变及酶学性质表征[J]. 食品科学, 2014, 35(9):192-197. [15] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding[J]. Anal Biochem, 1976, 72:248-254. [16] Min W, Li H, Li H, et al. Characterization of Aspartate Kinase from Corynebacterium pekinense and the Critical Site of Arg169[J]. Int J Mol Sci, 2015, 16(12):28270-28284. [17] 余秉琦, 沈微, 诸葛健. 适用于异源DNA高效整合转化的谷氨酸棒杆菌电转化法[J]. 中国生物工程杂志, 2005(2):78-81. [18] Van der Rest ME, Lange C, Molenaar D. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA[J]. Appl Microbiol Biot, 1999, 52(4):541-545. [19] Anusree M, Wendisch VF, Nampoothiri KM. Co-expression of endoglucanase and β-glucosidase in Corynebacterium glutamicum DM1729 towards direct lysine fermentation from cellulose[J]. Bioresource Technol, 2016, 213:239-244. |