生物技术通报 ›› 2021, Vol. 37 ›› Issue (1): 77-89.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1080
收稿日期:
2020-08-26
出版日期:
2021-01-26
发布日期:
2021-01-15
作者简介:
郑璐,女,博士,研究方向:植物蛋白质组学;E-mail: 基金资助:
ZHENG Lu1(), SHEN Ren-fang1,2, LAN Ping1,2()
Received:
2020-08-26
Published:
2021-01-26
Online:
2021-01-15
摘要:
蛋白质赖氨酸乙酰化是植物中普遍存在的重要蛋白质翻译后修饰过程。过去的研究主要集中在染色体组蛋白的乙酰化修饰及其调控机制。目前,随着定量乙酰化蛋白质组学技术的发展,大量非组蛋白赖氨酸乙酰化修饰被发现,其在植物中存在的普遍性及其生理功能的重要性也随之凸显。非组蛋白赖氨酸乙酰化修饰在植物不同组织、器官和细胞器中大量存在,广泛参与植物生长发育的各种代谢过程的调控,并在植物应答和适应逆境胁迫中发挥作用。综述了近年来植物非组蛋白赖氨酸乙酰化修饰的蛋白质组学研究进展,阐明乙酰化修饰在植物不同组织和亚细胞中的分布特征以及在植物生长发育和逆境胁迫响应中的作用,并阐述乙酰化修饰与其他蛋白质翻译后修饰的交互作用,最后对未来的研究进行展望和讨论。
郑璐, 沈仁芳, 兰平. 植物非组蛋白赖氨酸乙酰化修饰的蛋白质组学研究进展[J]. 生物技术通报, 2021, 37(1): 77-89.
ZHENG Lu, SHEN Ren-fang, LAN Ping. Research Progress of Plant Lysine Acetylproteome Modified in Non-histone Protein[J]. Biotechnology Bulletin, 2021, 37(1): 77-89.
植物 | 组织或器官 (处理条件) | 实验方法 | 蛋白 质数 | 位点 数 | 主要生物过程或代谢途径 | 参考 文献 |
---|---|---|---|---|---|---|
拟南芥 | 悬浮细胞、地上部、线粒体、叶绿体 | 抗体亲和富集、LC-MS/MS | 74 | 91 | 光合作用 | [19] |
叶片、长角果、花和种子、根 | 1/2-DE、LC-MS/MS | 57 | 64 | 光合作用 | [20] | |
线粒体 | 抗体亲和富集、LC-MS/MS | 120 | 243 | TCA循环、呼吸链、光呼吸、氨基酸和蛋白质代谢、氧化还原调节 | [5] | |
叶片(赖氨酸去乙酰化酶抑制剂) | 二甲基标记、抗体亲和富集、LC-MS/MS | 1 022 | 2 152 | 光合作用 | [21] | |
21 d幼苗的地上部,乙烯处理 | 梯度离心、二甲基标记、抗体亲和富集、LC-MS/MS | 2 638 | 7 456 | 组蛋白超家族、核糖体、热休克、胁迫/刺激、能量代谢 | [22] | |
不同组织(白天结束和晚上结束时) | 抗体亲和富集、LC-MS/MS | 909 | 1 365 | 捕光和光合作用、翻译、代谢、细胞运输 | [23] | |
水稻 | 悬浮细胞 | 抗体亲和富集、LC-MS/MS | 44 | 60 | 胁迫响应、DNA代谢、氮代谢、生物合成 | [24] |
幼苗 | 抗体亲和富集、LC-MS/MS | 716 | 1 337 | 乙醛酸和二羧酸代谢、碳代谢、光合作用 | [25] | |
愈伤组织、根、叶片和圆锥花序 | 抗体亲和富集、LC-MS/MS | 890 | 1 536 | 蛋白质翻译、叶绿体发育、光合作用、开花和花粉肥力、根分生组织活力 | [26] | |
种子胚(吸胀24 h后) | 抗体亲和富集、LC-MS/MS | 389 | 699 | 翻译、刺激响应、葡萄糖分解代谢、糖酵解 | [27] | |
发育中的水稻花药(减数分裂时期) | 抗体亲和富集、LC-MS/MS | 676 | 1 354 | 染色质沉默、蛋白质折叠、脂肪酸生物合成过程、胁迫响应 | [28] | |
未授粉雌蕊、授粉三/7 d后的种子 | 抗体亲和富集、LC-MS/MS | 972 | 1 817 | 糖酵解/糖异生、TCA循环、氨基酸合成、淀粉和蔗糖代谢 | [29] | |
盛花期15 d的水稻种子 | 抗体亲和富集、LC-MS/MS | 692 | 1 003 | TCA循环、糖酵解/糖异生、戊糖磷酸途径、淀粉合成和代谢、储藏蛋白 | [30] | |
叶片(氧化处理) | 抗体亲和富集、LC-MS/MS | 1 024 | 1 669 | 蛋白质翻译和折叠、光合作用、糖酵解 | [31] | |
幼苗叶片(冷胁迫) | 抗体亲和富集、LC-MS/MS | 866 | 1 353 | 光反应、卡尔文循环 | [32] | |
小麦 | 幼苗叶片 | 抗体亲和富集、LC-MS/MS | 277 | 416 | 光反应、卡尔文循环 | [33] |
发育中的种子(干旱胁迫) | 抗体亲和富集、LC-MS/MS | 442 | 716 | 碳代谢、淀粉生物合成、蛋白质运输和降解、胁迫响应、转录 | [34] | |
二穗短柄草 | 幼苗叶片 | 抗体亲和富集、LC-MS/MS | 353 | 636 | 碳代谢、光合作用、碳固定 | [35] |
大豆 | 发育中的种子 | 抗体亲和富集、LC-MS/MS | 245 | 400 | RNA合成和加工、乙酰、信号传导、蛋白质折叠 | [36] |
草莓 | 叶片 | 抗体亲和富集、LC-MS/MS | 684 | 1 392 | 糖代谢、碳代谢、光合作用 | [37] |
云杉 | 部分干燥处理14 d的体细胞胚 | 抗体亲和富集、LC-MS/MS | 556 | 1 079 | 碳代谢、脂肪酸代谢、胁迫响应、核糖体、蛋白酶体、剪接体 | [38] |
豌豆 | 线粒体 | LC-MS/MS | 358 | 664 | 初级代谢、次级代谢、胁迫反应、核酸代谢、蛋白质合成、蛋白质折叠 | [39] |
茶树 | 叶片(氮饥饿和恢复供氮) | 抗体亲和富集、LC-MS/MS | 1 286 | 2 229 | 光合作用、糖酵解、氨基酸代谢、次级代谢(黄酮合成) | [40] |
硅藻 | 细胞(缺氮、缺磷和缺铁胁迫) | 抗体亲和富集、LC-MS/MS | 1 220 | 2 324 | 脂肪酸合成 | [41] |
表1 植物乙酰化蛋白质组研究
植物 | 组织或器官 (处理条件) | 实验方法 | 蛋白 质数 | 位点 数 | 主要生物过程或代谢途径 | 参考 文献 |
---|---|---|---|---|---|---|
拟南芥 | 悬浮细胞、地上部、线粒体、叶绿体 | 抗体亲和富集、LC-MS/MS | 74 | 91 | 光合作用 | [19] |
叶片、长角果、花和种子、根 | 1/2-DE、LC-MS/MS | 57 | 64 | 光合作用 | [20] | |
线粒体 | 抗体亲和富集、LC-MS/MS | 120 | 243 | TCA循环、呼吸链、光呼吸、氨基酸和蛋白质代谢、氧化还原调节 | [5] | |
叶片(赖氨酸去乙酰化酶抑制剂) | 二甲基标记、抗体亲和富集、LC-MS/MS | 1 022 | 2 152 | 光合作用 | [21] | |
21 d幼苗的地上部,乙烯处理 | 梯度离心、二甲基标记、抗体亲和富集、LC-MS/MS | 2 638 | 7 456 | 组蛋白超家族、核糖体、热休克、胁迫/刺激、能量代谢 | [22] | |
不同组织(白天结束和晚上结束时) | 抗体亲和富集、LC-MS/MS | 909 | 1 365 | 捕光和光合作用、翻译、代谢、细胞运输 | [23] | |
水稻 | 悬浮细胞 | 抗体亲和富集、LC-MS/MS | 44 | 60 | 胁迫响应、DNA代谢、氮代谢、生物合成 | [24] |
幼苗 | 抗体亲和富集、LC-MS/MS | 716 | 1 337 | 乙醛酸和二羧酸代谢、碳代谢、光合作用 | [25] | |
愈伤组织、根、叶片和圆锥花序 | 抗体亲和富集、LC-MS/MS | 890 | 1 536 | 蛋白质翻译、叶绿体发育、光合作用、开花和花粉肥力、根分生组织活力 | [26] | |
种子胚(吸胀24 h后) | 抗体亲和富集、LC-MS/MS | 389 | 699 | 翻译、刺激响应、葡萄糖分解代谢、糖酵解 | [27] | |
发育中的水稻花药(减数分裂时期) | 抗体亲和富集、LC-MS/MS | 676 | 1 354 | 染色质沉默、蛋白质折叠、脂肪酸生物合成过程、胁迫响应 | [28] | |
未授粉雌蕊、授粉三/7 d后的种子 | 抗体亲和富集、LC-MS/MS | 972 | 1 817 | 糖酵解/糖异生、TCA循环、氨基酸合成、淀粉和蔗糖代谢 | [29] | |
盛花期15 d的水稻种子 | 抗体亲和富集、LC-MS/MS | 692 | 1 003 | TCA循环、糖酵解/糖异生、戊糖磷酸途径、淀粉合成和代谢、储藏蛋白 | [30] | |
叶片(氧化处理) | 抗体亲和富集、LC-MS/MS | 1 024 | 1 669 | 蛋白质翻译和折叠、光合作用、糖酵解 | [31] | |
幼苗叶片(冷胁迫) | 抗体亲和富集、LC-MS/MS | 866 | 1 353 | 光反应、卡尔文循环 | [32] | |
小麦 | 幼苗叶片 | 抗体亲和富集、LC-MS/MS | 277 | 416 | 光反应、卡尔文循环 | [33] |
发育中的种子(干旱胁迫) | 抗体亲和富集、LC-MS/MS | 442 | 716 | 碳代谢、淀粉生物合成、蛋白质运输和降解、胁迫响应、转录 | [34] | |
二穗短柄草 | 幼苗叶片 | 抗体亲和富集、LC-MS/MS | 353 | 636 | 碳代谢、光合作用、碳固定 | [35] |
大豆 | 发育中的种子 | 抗体亲和富集、LC-MS/MS | 245 | 400 | RNA合成和加工、乙酰、信号传导、蛋白质折叠 | [36] |
草莓 | 叶片 | 抗体亲和富集、LC-MS/MS | 684 | 1 392 | 糖代谢、碳代谢、光合作用 | [37] |
云杉 | 部分干燥处理14 d的体细胞胚 | 抗体亲和富集、LC-MS/MS | 556 | 1 079 | 碳代谢、脂肪酸代谢、胁迫响应、核糖体、蛋白酶体、剪接体 | [38] |
豌豆 | 线粒体 | LC-MS/MS | 358 | 664 | 初级代谢、次级代谢、胁迫反应、核酸代谢、蛋白质合成、蛋白质折叠 | [39] |
茶树 | 叶片(氮饥饿和恢复供氮) | 抗体亲和富集、LC-MS/MS | 1 286 | 2 229 | 光合作用、糖酵解、氨基酸代谢、次级代谢(黄酮合成) | [40] |
硅藻 | 细胞(缺氮、缺磷和缺铁胁迫) | 抗体亲和富集、LC-MS/MS | 1 220 | 2 324 | 脂肪酸合成 | [41] |
植物 | 组织或器官 | 蛋白质数 /位点数 | 蛋白质比例/% | 保守的乙酰化位点序列 | 参考 文献 | |
---|---|---|---|---|---|---|
1个位点 | ≥4个位点 | |||||
拟南芥 | 地上部 | 2 638/7 456 | 56.6 | 12.6 | KacR,Kac*R,KacK,Kac*K,K*Kac | [22] |
水稻 | 种子 | 692/1 003 | 72 | 4 | Kac*R,Kac*K,KacY,KacF,KacH,K*Kac | [30] |
水稻 | 叶片 | 1 024/1 669 | - | Kac*R,Kac*K,KacS,KacT,KacH,KacN | [31] | |
小麦 | 叶片 | 277/416 | 72 | 4 | KacY,KacH,KacF,LKac,FKac | [33] |
二穗短柄草 | 叶片 | 353/636 | 63 | 10 | KacY,Kac*K,KacH,KacF,Kac*I*K | [35] |
草莓 | 叶片 | 684/1 392 | - | - | L*Kac,F*Kac,KacH,KacY,KacF | [37] |
茶树 | 叶片 | 1 286/2 229 | 62 | 8 | E*KacK,Kac*K,Kac*R,Kac*HK,Kac*N,Kac*S,Kac*T,Kac*D | [40] |
云杉 | 体细胞胚 | 556/1 079 | 57 | 13 | KacY,Kac*F,F*Kac,YKac,KacH,K*Kac,V*Kac | [38] |
表2 不同植物乙酰化修饰位点的特征
植物 | 组织或器官 | 蛋白质数 /位点数 | 蛋白质比例/% | 保守的乙酰化位点序列 | 参考 文献 | |
---|---|---|---|---|---|---|
1个位点 | ≥4个位点 | |||||
拟南芥 | 地上部 | 2 638/7 456 | 56.6 | 12.6 | KacR,Kac*R,KacK,Kac*K,K*Kac | [22] |
水稻 | 种子 | 692/1 003 | 72 | 4 | Kac*R,Kac*K,KacY,KacF,KacH,K*Kac | [30] |
水稻 | 叶片 | 1 024/1 669 | - | Kac*R,Kac*K,KacS,KacT,KacH,KacN | [31] | |
小麦 | 叶片 | 277/416 | 72 | 4 | KacY,KacH,KacF,LKac,FKac | [33] |
二穗短柄草 | 叶片 | 353/636 | 63 | 10 | KacY,Kac*K,KacH,KacF,Kac*I*K | [35] |
草莓 | 叶片 | 684/1 392 | - | - | L*Kac,F*Kac,KacH,KacY,KacF | [37] |
茶树 | 叶片 | 1 286/2 229 | 62 | 8 | E*KacK,Kac*K,Kac*R,Kac*HK,Kac*N,Kac*S,Kac*T,Kac*D | [40] |
云杉 | 体细胞胚 | 556/1 079 | 57 | 13 | KacY,Kac*F,F*Kac,YKac,KacH,K*Kac,V*Kac | [38] |
[1] | Kouzarides T. Acetylation:a regulatory modification to rival phosphorylation?[J]. EMBO Journal, 2000,19(6):1176-1179. |
[2] | Lusser A, Kölle D, Loidl P. Histone acetylation:lessons from the plant kingdom[J]. Trends in Plant Science, 2001,6(2):59-65. |
[3] |
Narita T, Weinert BT, Choudhary C. Functions and mechanisms of non-histone protein acetylation[J]. Nature Reviews Molecular Cell Biology, 2018,20(3):156-174.
URL pmid: 30467427 |
[4] | Zhang JM, Sprung R, Pei JM, et al. Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli[J]. Molecular & Cellular Proteomics, 2009,8(2):215-225. |
[5] | König AC, Hartl M, Boersema PJ, et al. The mitochondrial lysine acetylome of Arabidopsis[J]. Mitochondrion, 2014,19:252-260. |
[6] | Allfrey VG, Faulkner R, Mirsky AE. Aetylation methylation of histones their possible role in regulation of RNA synthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1964,51(5):786-794. |
[7] | Luger K, Mäder AW, Richmond RK, et al. Crystal structure of the nucleosome core particle at 2. 8 Å resolution[J]. Nature, 1997,389(6648):251-260. |
[8] |
Liu X, Yang S, Yu CW, et al. Histone acetylation and plant development[J]. The Enzymes, 2016,40:173-199.
URL pmid: 27776781 |
[9] |
Chen ZJ, Tian L. Roles of dynamic and reversible histone acetylation in plant development and polyploidy[J]. Biochimica et Biophysica Acta, 2007,1769(5-6):295-307.
doi: 10.1016/j.bbaexp.2007.04.007 URL pmid: 17556080 |
[10] |
Kim JM, To TK, Ishida J, et al. Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2008,49(10):1580-1588.
doi: 10.1093/pcp/pcn133 URL pmid: 18779215 |
[11] |
Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain[J]. Cell, 1997,90(4):595-606.
URL pmid: 9288740 |
[12] |
Zhao Y, Jensen ON. Modification-specific proteomics:strategies for characterization of post-translational modifications using enrichment techniques[J]. Proteomics, 2009,9(20):4632-4641.
URL pmid: 19743430 |
[13] |
Kim SC, Sprung R, Chen Y, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey[J]. Molecular Cell, 2006,23(4):607-618.
URL pmid: 16916647 |
[14] |
Lundby A, Lage K, Weinert BT, et al. Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns[J]. Cell Reports, 2012,2(2):419-431.
URL pmid: 22902405 |
[15] |
Wang Q, Zhang Y, Yang C, et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux[J]. Science, 2010,327(5968):1004-1007.
URL pmid: 20167787 |
[16] |
Nambi S, Gupta K, Bhattacharyya M, et al. Cyclic AMP-dependent protein lysine acylation in mycobacteria regulates fatty acid and propionate metabolism[J]. The Journal of Biological Chemistry, 2013,288(20):14114-14124.
URL pmid: 23553634 |
[17] |
Scroggins BT, Robzyk K, Wang D, et al. An acetylation site in the middle domain of Hsp90 regulates chaperone function[J]. Molecular Cell, 2007,25(1):151-159.
URL pmid: 17218278 |
[18] |
Liang W, Malhotra A, Deutscher MP. Acetylation regulates the stability of a bacterial protein:growth stage-dependent modification of RNase R[J]. Molecular Cell, 2011,44(1):160-166.
doi: 10.1016/j.molcel.2011.06.037 URL pmid: 21981926 |
[19] |
Finkemeier I, Laxa M, Miguet L, et al. Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis[J]. Plant Physiol, 2011,155(4):1779-1790.
URL pmid: 21311031 |
[20] |
Wu X, Oh MH, Schwarz EM, et al. Lysine acetylation is a widespread protein modification for diverse proteins in Arabidopsis[J]. Plant Physiol, 2011,155(4):1769-1778.
doi: 10.1104/pp.110.165852 URL pmid: 21311030 |
[21] |
Hartl M, Füβl M, Boersema PJ, et al. Lysine acetylome profiling uncovers novel histone deacetylase substrate proteins in Arabidopsis[J]. Molecular Systems Biology, 2017,13(10):949.
URL pmid: 29061669 |
[22] |
Liu SC, Yu FC, Yang Z, et al. Establishment of dimethyl labeling-based quantitative acetylproteomics in Arabidopsis[J]. Molecular & Cellular Proteomics, 2018,17(5):1010-1027.
URL pmid: 29440448 |
[23] | Uhrig RG, Schläpfer P, Roschitzki B, et al. Diurnal changes in concerted plant protein phosphorylation and acetylation in Arabidopsis organs and seedlings[J]. Plant Journal, 2019,99(1):176-194. |
[24] |
Nallamilli BRR, Edelmann MJ, Zhong X, et al. Global analysis of lysine acetylation suggests the involvement of protein acetylation in diverse biological processes in rice(Oryza sativa)[J]. PLoS One, 2014,9(2):e89283.
URL pmid: 24586658 |
[25] |
Xiong Y, Peng X, Cheng Z, et al. A comprehensive catalog of the lysine-acetylation targets in rice(Oryza sativa)based on proteomic analyses[J]. Journal of Proteomics, 2016,138:20-29.
doi: 10.1016/j.jprot.2016.01.019 URL pmid: 26836501 |
[26] | Li Z, Wang Y, Bello BK, et al. Construction of a quantitative acetylomic tissue atlas in rice(Oryza sativa L.)[J]. Molecules, 2018,23(11):2843. |
[27] |
He D, Wang Q, Li M, et al. Global proteome analyses of lysine acetylation and succinylation reveal the widespread involvement of both modification in metabolism in the embryo of germinating rice seed[J]. Journal of Proteome Research, 2016,15(3):879-890.
doi: 10.1021/acs.jproteome.5b00805 URL pmid: 26767346 |
[28] | Li X, Ye J, Ma H, et al. Proteomic analysis of lysine acetylation provides strong evidence for involvement of acetylated proteins in plant meiosis and tapetum function[J]. Plant Journal, 2018,93(1):142-154. |
[29] | Wang Y, Hou Y, Qiu J, et al. A quantitative acetylomic analysis of early seed development in rice(Oryza sativa L.)[J]. International Journal of Molecular Sciences, 2017,18(7):1376. |
[30] | Meng X, Lv Y, Mujahid H, et al. Proteome-wide lysine acetylation identification in developing rice(Oryza sativa)seeds and protein co-modification by acetylation, succinylation, ubiquitination, and phosphorylation[J]. Biochimica et Biophysica Acta(BBA)- Proteins and Proteomics, 2018,1866(3):451-463. |
[31] |
Zhou H, Finkemeier I, Guan W, et al. Oxidative stress-triggered interactions between the succinyl- and acetyl-proteomes of rice leaves[J]. Plant, Cell & Environment, 2018,41(5):1139-1153.
doi: 10.1111/pce.13100 URL pmid: 29126343 |
[32] | Xue C, Liu S, Chen C, et al. Global proteome analysis links lysine acetylation to diverse functions in Oryza Sativa[J]. Proteomics, 2018,18:1700036. |
[33] |
Zhang Y, Song L, Liang W, et al. Comprehensive profiling of lysine acetylproteome analysis reveals diverse functions of lysine acetylation in common wheat[J]. Scientific Reports, 2016,6:21069.
doi: 10.1038/srep21069 URL pmid: 26875666 |
[34] |
Zhu GR, Yan X, Zhu D, et al. Lysine acetylproteome profiling under water deficit reveals key acetylated proteins involved in wheat grain development and starch biosynjournal[J]. Journal of Proteomics, 2018,185:8-24.
doi: 10.1016/j.jprot.2018.06.019 URL pmid: 30003963 |
[35] |
Zhen S, Deng X, Wang J, et al. First comprehensive proteome analyses of lysine acetylation and succinylation in seedling leaves of Brachypodium distachyon L.[J]. Scientific Reports, 2016,6:31576.
doi: 10.1038/srep31576 URL pmid: 27515067 |
[36] |
Smith-Hammond CL, Swatek KN, Johnston ML, et al. Initial description of the developing soybean seed protein Lys-N ε-acetylome [J]. Journal of Proteomics, 2014,96:56-66.
doi: 10.1016/j.jprot.2013.10.038 URL pmid: 24211405 |
[37] |
Fang X, Chen W, Zhao Y, et al. Global analysis of lysine acetylation in strawberry leaves[J]. Frontiers in Plant Science, 2015,6:739.
doi: 10.3389/fpls.2015.00739 URL pmid: 26442052 |
[38] | Xia Y, Jing D, Kong L, et al. Global lysine acetylome analysis of desiccated somatic embryos of Picea asperata[J]. Frontiers in Plant Science, 2016,7:01927. |
[39] |
Smith-Hammond CL, Hoyos E, Miernyk JA. The pea seedling mitochondrial N ε-lysine acetylome [J]. Mitochondrion, 2014,19:154-165.
doi: 10.1016/j.mito.2014.04.012 URL pmid: 24780491 |
[40] |
Jiang JT, Gai ZS, Wang Y, et al. Comprehensive proteome analyses of lysine acetylation in tea leaves by sensing nitrogen nutrition[J]. BMC Genomics, 2018,19:840.
doi: 10.1186/s12864-018-5250-4 URL pmid: 30477445 |
[41] |
Chen Z, Luo L, Chen RF, et al. Acetylome profiling reveals extensive lysine acetylation of the fatty acid metabolism pathway in the diatom Phaeodactylum tricornutum[J]. Molecular & Cellular Proteomics, 2018,17(3):399-412.
doi: 10.1074/mcp.RA117.000339 URL pmid: 29093020 |
[42] |
Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions[J]. Science, 2009,325(5942):834-840.
doi: 10.1126/science.1175371 URL pmid: 19608861 |
[43] |
Young NL, Plazas-Mayorca MD, Garcia BA. Systems-wide proteomic characterization of combinatorial post-translational modification patterns[J]. Expert Review of Proteomics, 2010,7(1):79-92.
URL pmid: 20121478 |
[44] |
Chen Y, Zhao WH, Yang JS, et al. Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways[J]. Molecular & Cellular Proteomics, 2012,11(10):1048-1062.
doi: 10.1074/mcp.M112.019547 URL pmid: 22826441 |
[45] |
Hosp F, Lassowskat I, Santoro V, et al. Lysine acetylation in mitochondria:From inventory to function[J]. Mitochondrion, 2017,33:58-71.
doi: 10.1016/j.mito.2016.07.012 URL pmid: 27476757 |
[46] |
Schilling B, Rardin MJ, MacLean BX, et al. Platform-independent and label-free quantitation of proteomic data using MS1 extracted ion chromatograms in skyline:application to protein acetylation and phosphorylation[J]. Molecular & Cellular Proteomics, 2012,11(5):202-214.
doi: 10.1074/mcp.M112.017707 URL pmid: 22454539 |
[47] |
Gao XJ, Li QR, Liu YS, et al. Multi-in-one:Multiple-proteases, one-hour-shot strategy for fast and high-coverage phosphoproteomic investigation[J]. Analytical Chemistry, 2020,92(13):8943-8951.
doi: 10.1021/acs.analchem.0c00906 URL pmid: 32479063 |
[48] |
Humphrey SJ, Azimifar SB, Mann M. High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics[J]. Nature Biotechnology, 2015,33(9):990-995.
doi: 10.1038/nbt.3327 URL pmid: 26280412 |
[49] |
Allen JF. Why chloroplasts and mitochondria retain their own genomes and genetic systems:Colocation for redox regulation of gene expression[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(33):10231-10238.
doi: 10.1073/pnas.1500012112 URL pmid: 26286985 |
[50] |
Zhu JK. Abiotic stress signaling and responses in plants[J]. Cell, 2016,167(2):313-324.
doi: 10.1016/j.cell.2016.08.029 URL pmid: 27716505 |
[51] |
Collado-Romero M, Alós E, Prieto P. Unravelling the proteomic profile of rice meiocytes during early meiosis[J]. Frontiers in Plant Science, 2014,5:356.
doi: 10.3389/fpls.2014.00356 URL pmid: 25104955 |
[52] |
Lesk C, Rowhani P, Ramankutty N. Influence of extreme weather disasters on global crop production[J]. Nature, 2016,529(7584):84-87.
URL pmid: 26738594 |
[53] | 张林刚, 邓西平. 小麦抗旱性生理生化研究进展[J]. 干旱地区农业研究, 2000,18(3):87-92. |
Zhang LG, Deng XP. Advances in studies on physiology and biochemistry of wheat drought resistance[J]. Agricultural Research in the Arid Areas, 2000,18(3):87-92. | |
[54] | 吴巍, 赵军. 植物对氮素吸收利用的研究进展[J]. 中国农学通报, 2010,26(13):75-78. |
Wu W, Zhao J. Advances on plants’ nitrogen assimilation and utilization[J]. Chinese Agricultural Science Bulletin, 2010,26(13):75-78. | |
[55] |
Levitan O, Dinamarca J, Zelzion E, et al. Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(2):412-417.
doi: 10.1073/pnas.1419818112 URL pmid: 25548193 |
[56] |
Withers J, Dong X. Post-translational regulation of plant immunity[J]. Current Opinion in Plant Biology, 2017,38:124-132.
doi: 10.1016/j.pbi.2017.05.004 URL pmid: 28538164 |
[57] |
Grabsztunowicz M, Koskela MM, Mulo P. Post-translational modifications in regulation of chloroplast function:recent advances[J]. Frontiers in Plant Science, 2017,8:240.
doi: 10.3389/fpls.2017.00240 URL pmid: 28280500 |
[58] |
Nussinov R, Tsai CJ, Xin F, et al. Allosteric post-translational modification codes[J]. Trends in Biochemical Sciences, 2012,37(10):447-455.
doi: 10.1016/j.tibs.2012.07.001 URL |
[59] |
Weinert BT, Schölz C, Wagner SA, et al. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation[J]. Cell Reports, 2013,4(4):842-851.
doi: 10.1016/j.celrep.2013.07.024 URL |
[60] |
Xie X, Kang HX, Liu WD, et al. Comprehensive profiling of the rice ubiquitome reveals the significance of lysine ubiquitination in young leaves[J]. Journal of Proteome Research, 2015,14(5):2017-2025.
doi: 10.1021/pr5009724 URL pmid: 25751157 |
[61] |
Serre NBC, Alban C, Bourguignon J, et al. An outlook on lysine methylation of non-histone proteins in plants[J]. Journal of Experimental Botany, 2018,69(19):4569-4581.
doi: 10.1093/jxb/ery231 URL pmid: 29931361 |
[62] |
Hunter T. The age of crosstalk:phosphorylation, ubiquitination, and beyond[J]. Molecular Cell, 2007,28(5):730-738.
doi: 10.1016/j.molcel.2007.11.019 URL pmid: 18082598 |
[63] |
Yang XJ, Seto E. Lysine acetylation:codified crosstalk with other posttranslational modifications[J]. Molecular Cell, 2008,31(4):449-461.
doi: 10.1016/j.molcel.2008.07.002 URL pmid: 18722172 |
[64] |
Zhang Z, Tan M, Xie Z, et al. Identification of lysine succinylation as a new post-translational modification[J]. Nature Chemical Biology, 2011,7(1):58-63.
doi: 10.1038/nchembio.495 URL pmid: 21151122 |
[65] |
Kersten B, Agrawal GK, Durek P, et al. Plant phosphoproteomics:an update[J]. Proteomics, 2009,9(4):964-988.
doi: 10.1002/pmic.200800548 URL pmid: 19212952 |
[66] |
Lu Z, Cheng Z, Zhao Y, et al. Bioinformatic analysis and post-translational modification crosstalk prediction of lysine acetylation[J]. PLoS One, 2011,6(12):e28228.
doi: 10.1371/journal.pone.0028228 URL pmid: 22164248 |
[67] |
Vu LD, Gevaert K, De Smet I. Protein language:Post-translational modifications talking to each other[J]. Trends in Plant Science, 2018,23(12):1068-1080.
doi: 10.1016/j.tplants.2018.09.004 URL pmid: 30279071 |
[68] |
Filipčík P, Curry JR, Mace PD. When worlds collide-mechanisms at the interface between phosphorylation and ubiquitination[J]. Journal of Molecular Biology, 2017,429(8):1097-1113.
doi: 10.1016/j.jmb.2017.02.011 URL pmid: 28235544 |
[69] |
Gao X, Hong H, Li WC, et al. Downregulation of rubisco activity by non-enzymatic acetylation of RbcL[J]. Molecular Plant, 2016,9(7):1018-1027.
doi: 10.1016/j.molp.2016.03.012 URL pmid: 27109602 |
[1] | 胡海琳, 徐黎, 李晓旭, 王晨璨, 梅曼, 丁文静, 赵媛媛. 小肽激素调控植物生长发育及逆境生理研究进展[J]. 生物技术通报, 2023, 39(7): 13-25. |
[2] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[3] | 刘奎, 李兴芬, 杨沛欣, 仲昭晨, 曹一博, 张凌云. 青杄转录共激活因子PwMBF1c的功能研究与验证[J]. 生物技术通报, 2023, 39(5): 205-216. |
[4] | 薛皦, 朱庆锋, 冯彦钊, 陈沛, 刘文华, 张爱霞, 刘勤坚, 张琪, 于洋. 植物基因上游开放阅读框的研究进展[J]. 生物技术通报, 2023, 39(4): 157-165. |
[5] | 魏明, 王欣玉, 伍国强, 赵萌. NAD依赖型去乙酰化酶SRT在植物表观遗传调控中的作用[J]. 生物技术通报, 2023, 39(4): 59-70. |
[6] | 桑田, 王鹏程. 植物SUMO化修饰研究进展[J]. 生物技术通报, 2023, 39(3): 1-12. |
[7] | 张红红, 方晓峰. 相分离调控植物胁迫感知和应答的研究进展[J]. 生物技术通报, 2023, 39(11): 44-53. |
[8] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[9] | 安昌, 陆琳, 沈梦千, 陈盛圳, 叶康卓, 秦源, 郑平. 植物bHLH基因家族研究进展及在药用植物中的应用前景[J]. 生物技术通报, 2023, 39(10): 1-16. |
[10] | 王楠楠, 王文佳, 朱强. 植物胁迫相关microRNA研究进展[J]. 生物技术通报, 2022, 38(8): 1-11. |
[11] | 汤茜茜, 林楚宇, 陶增. 植物组蛋白去甲基化酶研究进展[J]. 生物技术通报, 2022, 38(7): 13-22. |
[12] | 李萍, 郭发平, 田敏, 税阳, 徐娜娜, 白大嵩, 余德金, 张杰, 胡运高, 彭友林. 甾醇在调节植物生长发育中的研究进展[J]. 生物技术通报, 2022, 38(7): 90-98. |
[13] | 古盼, 齐学影, 李莉, 张曦, 单晓昳. AtRGS1胞吞动态调控G蛋白参与拟南芥生长发育和抗性反应[J]. 生物技术通报, 2022, 38(6): 34-42. |
[14] | 悦曼芳, 张春, 吴忠义. 植物转录因子AP2/ERF家族蛋白结构和功能的研究进展[J]. 生物技术通报, 2022, 38(12): 11-26. |
[15] | 汤晓丽, 姜福东, 张洪霞. 植物SINA E3泛素连接酶功能的研究进展[J]. 生物技术通报, 2022, 38(10): 10-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||