[1] Gessler C, Pertot I, Perazzoli M. Plasmopara viticola:A review of knowledge on downy mildew of grapevine and effective disease management[J]. Phytopathol Mediterr, 2011, 50:3-44. [2] Rusjan D, Strlic M, Pucko D, et al. Copper accumulation regarding the soil characteristics in Sub-Mediterranean vineyards of Slovenia[J]. Geoderma, 2007, 141:111-118. [3] Lachhab N, Sanzani S, Adrian M, et al. Soybean and casein hydrolysates induce grapevine immune responses and resistance against Plasmopara viticola[J]. Front Plant Sci, 2014, 5:716. [4] Maia AJ, Leite CD, Botelho RV, et al. Chitosan as an option to control mildew in the sustainable vinegrowing[J]. Semin Cienc Agrar Londrina, 2012, 33:2519-2530. [5] Aziz A, Poinssot B, Daire X. Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola[J]. Mol Plant Microbe Interact, 2003, 16:1118-1128. [6] Alfonzo A, Piccolo SL, Conigliaro G, et al. Antifungal peptides produces by Bacillus amyloliquefaciens AG1 active against grapevine fungal pathogens[J]. Ann Microbiol, 2012, 62:1593-1599. [7] Wan T, Zhao H, Wang W. Effect of biocontrol agent Bacillus amyloliquefaciens SN16-1 and plant pathogen Fusarium oxysporum on tomato rhizosphere bacterial community composition[J]. Biological Control, 2017, 112:1-9 [8] Qaiser J, et al. Purification and antifungal characterization of Cyclo(D-Pro-L-Val)from Bacillus amyloliquefaciens Y1 against Fusarium graminearum to control head blight in wheat[J]. Biocatalysis and Agricultural Biotechnology, 2017, 10:141-147. [9] Wang SL, Shih IL, Liang TW, et al. Purification and characterization of two antifungal chitinases extracellularly produced by Bacillus amyloliquefaciens V656 in a shrimp and crab shell powder medium[J]. J Agric Food Chem, 2002, 50:2241-2248. [10] Hiradate S, Yoshida S, Sugie H, et al. Mulberry anthracnose antagonists(iturins)produced by Bacillus amyloliquefaciens RC-2[J]. Phytochemistry, 2002, 61:693-698. [11] Pinchuk IV, et al. Amicoumacin antibiotic production and genetic diversity of Bacillus subtilis strains isolated from different habitats[J]. Res Microbiol, 2002, 153:269-276. [12] Antonio A, Sandra LP, et al. Antifungal peptides produced by Bacillus amyloliquefaciens AG1 active against grapevine fungal pathogens[J]. Ann Microbiol, 2012, 62:1593-1599. [13] Mann M, Jensen ON. Proteomic analysis of post-translational modifications[J]. Nat Biotechnol, 2003:21, 255-261. [14] 汪家政, 范明主编. 蛋白质技术手册[M]. 北京:科学出版社, 2000. [15] Touré Y, et al. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple[J]. J Appl Microbiol, 2004, 96:1151-1160. [16] Kim PI, Chung KC, Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908[J]. FEMS Microbiol Lett, 2004, 234:177-183. [17] Liu YF, Chen ZY, Ng TB, et al. Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916[J]. Peptides, 2007:28:553-559. [18] 王智文, 陈海波, 宋福平, 等. 苏云金芽胞杆菌分泌蛋白的鉴定及分析[J]. 生物技术通报, 2017, 33(4):169-176. [19] 须瑛敏. 枯草芽孢杆菌氨肽酶的研究[D]. 无锡:江南大学, 2005. [20] 齐希猛. 海洋细菌TC-1防治香蕉枯萎病及抗菌蛋白抑菌的机理初步研究[D]. 湛江:广东海洋大学, 2012. [21] Matsui M, et al. Leucine aminopeptidases:diversity in structure and function[J]. Biol Chem, 2006, 387(12):1535-1544. [22] Pautot V, et al. Leucine aminopeptidase:an inducible component of the defense response in Lycopersicon esculentum(tomato)[J]. Proc Natl Acad Sci USA, 1993, 90(21):9906-9910. [23] Merzendorfer H, Zimoch L. Chitin metabolism in insects:structure, function and regulation of chitin syntheses and chitinases[J]. J Exp Biol, 2003, 206(24):4393-412. [24] Ahmadian G, Degrassi G, Venturi V, et al. Bacillus pumilus SG2 isolated from saline conditions produces and secretes two chitinases[J]. J Appl Microbiol, 2007, 103(4):1081-1089. [25] Kuranda MJ, Robbins PW. Chitinase is required for cell separation during growth of Saccharomyces cerevisiae[J]. J Biol Chem, 1991, 266(29):19758-19767. [26] Liu D, Cai J, Xie CC, et al. Purification and partial characterization of a 36-kDa chitinase from Bacillus thuringiensis subsp. colmeri, and its biocontrol potential[J]. Enzyme and Microbial Technology, 2010, 46:252-256. [27] Driss F, Kallassy-Awad M, Zouari N, et al. Molecular characterization of a novel chitinase from Bacillus thuringiensis subsp. Kurstaki[J]. J Appl Microbiol, 2005, 99(4):945-953. [28] Huang CJ, Wang TK, Chung SC, et al. Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9[J]. J Biochem Mol Biol, 2005, 38(1):82-88. [29] de la Vega LM, Barboza-Corona JE, Aguilar-Uscanga MG, et al. Purification and characterization of an exochitinase from Bacillus thuringiensis subsp. aizawai and its action against phytopathogenic fungi[J]. Can J Microbiol, 2006, 52(7):651-657. [30] Nguyen NV, Kim YJ, Oh KT, et al. Antifungal activity of chitinases from Trichoderma aureoviride DY-59 and Rhizopus microsporus VS-9[J]. Curr Microbiol, 2008, 56(1):28-32. |