[1] Alberti P, Mergny JL.DNA duplex-quadruplex exchange as the basis for a nanomolecular machine[J]. Proc Natl Acad Sci USA, 2003, 100(4):1569-1573. [2] Benenson Y, Gil B, Ben-Dor U, et al.An autonomous molecular computer for logical control of gene expression[J]. Nature, 2004, 429(6990):423-429. [3] Teller C, Willner I.Functional nucleic acid nanostructures and DNA machines[J]. Current Opinion in Biotechnology, 2010, 21(4):376-391. [4] Gopaul DN, Guo F, Duyne GDV.Structure of the Holliday junction intermediate in Cre- loxP, site-specific recombination[J]. Embo Journal, 2014, 17(14):4175-4187. [5] Mills M, Lacroix L, Arimondo PB, et al.Unusual DNA conformations:implications for telomeres[J]. Current Medicinal Chemistry Anticancer Agents, 2002, 2(5):627-644. [6] And JJL, Tan W.A Single DNA Molecule Nanomotor[J]. Nano Lett, 2015, 2(4):315-318. [7] Alberti P, Mergny JL.DNA duplex-quadruplex exchange as the basis for a nanomolecular machine[J]. Proc Natl Acad Sci USA, 2003, 100(4):1569-1573. [8] Hou X, Guo W, Xia F, et al.A biomimetic potassium responsive nanochannel:G-quadruplex DNA conformational switching in a synthetic nanopore[J]. J Am Chem Soc, 2009, 131(22):7800-7805. [9] Wu ZS, Chen CR, Shen GL, et al.Reversible electronic nanoswitch based on DNA G-quadruplex conformation:a platform for single-step, reagentless potassium detection[J]. Biomaterials, 2008, 29(17):2689-2696. [10] 谢海燕, 陈薛钗, 邓玉林. 核酸适配体及其在化学领域的相关应用[J]. 化学进展, 2007, 19(6):1026-1033. [11] Zheng D, Seferos DS, Giljohann DA, et al.Aptamer nano-flares for molecular detection in living cells[J]. Nano Lett, 2009, 9(9):3258-3261. [12] Ellington AD, Szostak JW.In vitro selection of RNA molecules that bind specific ligands[J]. Nature, 1990, 346(6287):818-822. [13] Banerjee A, Bhatia D, Saminathan A, et al.Controlled release of encapsulated cargo from a DNA icosahedron using a chemical trigger[J]. Angew Chem, 2013, 52(27):6854-6857. [14] Niazov T, Pavlov V, Xiao Y, et al.DNAzyme-functionalized au nanoparticles for the amplified detection of DNA or telomerase activity[J]. Nano Lett, 2004, 4(9):1683-1687. [15] And JL, Lu Y.A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ Ions in aqueous solution with high sensitivity and selectivity[J]. J Am Chem Soc, 2007, 129(32):9838-9839. [16] Santoro SW, Joyce GF.A general purpose RNA-cleaving DNA enzyme[J]. Proc Natl Acad Sci USA, 1997, 94(9):4262-4266. [17] 胡春玲, 吴继魁. 基于脱氧核酶的重金属离子荧光生物传感器的研究进展[J]. 化学通报, 2013, 76(11):1011-1015. [18] Peng H, Li XF, Zhang H, et al.A microRNA-initiated DNAzyme motor operating in living cells[J]. Nature Communications, 2017, 8:14378-14390. [19] Wu Y, Huang J, Yang X, et al.Gold nanoparticle loaded split-DNAzyme-probe for amplified miRNA detection in living cells[J]. Anal Chem, 2017, 89(16):8377-8383. [20] Chen J, Zuehlke A, Deng B, et al.A target-triggered DNAzyme motor enabling homogeneous, amplified detection of proteins[J]. Anal Chem, 2017, 89(23):12888-12895. [21] Yang Y, Huang J, Yang X, et al.Gold nanoparticle based hairpin-locked-DNAzyme probe for amplified miRNA imaging in living cells[J]. Anal Chem, 2017, 89(11):5850-5856. [22] Buranachai C, Mckinney SA, Ha T.Single molecule nanometronome[J]. Nano Lett, 2006, 6(3):496-500. [23] Liu Y, West SC.Happy Hollidays:40th anniversary of the Holliday junction[J]. Nature Reviews Molecular Cell Biology, 2004, 5(11):937-944. [24] White CT, Todorov TN.Carbon nanotubes as long ballistic conductors[J]. Nature, 1998, 393(393):240-242. [25] Saito R, Fujita M, Dresselhaus G, et al.Electronic structure of chiral graphene tubules[J]. Applied Physics Letters, 1992, 60(18):2204-2206. [26] Zheng M, Jagota A, Semke ED, et al.DNA-assisted dispersion and separation of carbon nanotubes[J]. Nature Materials, 2003, 2(5):338-342. [27] Manohar S, Tang T, Jagota A.Structure of homopolymer DNA-CNT hybrids[J]. Journal of Physical Chemistry C, 2007, 111(48):17835-17845. [28] Zheng M, Jagota A, Semke ED, et al.DNA-assisted dispersion and separation of carbon nanotubes[J]. Nature Materials, 2003, 2(5):338-342. [29] Zheng M, Jagota, Walls DJ.Structure-based carbon nanotube sorting by sequence-dependent DNA assembly[J]. Science, 2003, 302(5650):1545-1548. [30] Zhao C, Song Y, Ren J, et al.A DNA nanomachine induced by single-walled carbon nanotubes on gold surface[J]. Biomaterials, 2009, 30(9):1739-1745. [31] Kim B, Sigmund WM.Functionalized multiwall carbon nanotube/gold nanoparticle composites[J]. Langmuir the Acs Journal of Surfaces and Colloids, 2004, 20(19):8239-8242. [32] 冯永成, 董守安, 唐春. 一维金纳米线的自组装研究[J]. 贵金属, 2007, 28(4):1-5. [33] Dong H, Jing Z, Ju H, et al.Highly sensitive multiple microRNA detection based on fluorescence quenching of graphene oxide and isothermal strand-displacement polymerase reaction[J]. Anal Chem, 2012, 84(10):4587-4593. [34] Mamaeva V, Sahlgren C, Lindén M.Mesoporous silica nanoparticles in medicine—recent advances[J]. Advanced Drug Delivery Reviews, 2013, 65(5):689-702. [35] 唐玥, 柯学. 介孔二氧化硅纳米粒子药物递送系统研究进展[J]. 中国药科大学学报, 2012, 43(6):567-572. [36] Gu J, Su S, Zhu M, et al.Targeted doxorubicin delivery to liver cancer cells by PEGylated mesoporous silica nanoparticles with a pH-dependent release profile[J]. Microporous and Mesoporous Materials, 2012, 161(5):160-167. [37] Connor EE, Mwamuka J, Gole A, et al.Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity[J]. Small, 2005, 1(3):325-327. [38] 付佩玉. 基于纳米金放大的生物传感器及DNA分子机器的研究[D]. 青岛:青岛科技大学, 2011. [39] Daniel MC, Astruc D.Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Cheminform, 2004, 35(16):293-346. [40] 吴伟, 贺全国, 陈洪. 磁性纳米粒子在生物传感器中的应用研究进展[J]. 化学通报, 2007, 70(4):277-285. [41] 李春梅. 金纳米与磁纳米颗粒及其复合物的生物传感和细胞成像研究[D]. 重庆:西南大学, 2013. [42] Bacon HE, Jr LE, Trimpi HD.A magnetic switch for the control of cell death signalling in in vitro and in vivo systems[J]. Nature Materials, 2012, 11(12):1038-1043. [43] 李玉宝. 纳米生物医药材料[M]. 北京:化学工业出版社, 2004. [44] Ma Y, Liang X, Tong S, et al.Gold nanoshell nanomicelles for potential magnetic resonance imaging, light-triggered drug release, and photothermal therapy[J]. Adv Funct Mater, 2013, 23(7):815-822. [45] Fan Z, Shelton M, Singh AK, et al.Multifunctional plasmonic shell-magnetic core nanoparticles for targeted diagnostics, isolation, and photothermal destruction of tumor cells[J]. ACS Nano, 2012, 6 (2):1065-1073. [46] Chen L, Zheng H, Zhu X, et al.Metal-organic frameworks-based biosensor for sequence-specific recognition of double-stranded DNA[J]. Analyst, 2013, 138(12):3490-3493. [47] Lei J, Qian R, Ling P, et al.Design and sensing applications of metal-organic framework composites[J]. TrAC Trends in Anal Chem, 2014, 58:71-78. [48] Han Q, Zhang L, He C, et al.Metal-organic frameworks with phosphotungstate incorporated for hydrolytic cleavage of a DNA-model phosphodiester[J]. Inorg Chem, 2012, 51(9):5118-5127. [49] Kahn JS, Freage L, Enkin N, et al.Stimuli-responsive DNA-functionalized metal-organic frameworks(MOFs)[J]. Adv Mater, 2017, 29(6):1602782. [50] 杨洋, 柳华杰, 刘冬生. DNA纳米机器[J]. 化学进展, 2008, 20(2):197-207. [51] Yurke B, Turberfield AJ, Jr MA, et al.A DNA-fuelled molecular machine made of DNA[J]. Nature, 2000, 406(6796):605-608. [52] Chen Y, Wang M, Mao C.An autonomous DNA nanomotor powered by a DNA enzyme[J]. Angew Chem, 2004, 43(27):3554-3557. [53] Shin JS, Pierce NA.A synthetic DNA walker for molecular transport[J]. J Am Chem Soc, 2004, 126(35):10834-10835. [54] Kolb HC, Finn MG, Sharpless KB.Click chemistry:diverse chemical function from a few good reactions[J]. Angew Chem, 2001, 32(35):2004-2021. [55] Binder WH, Sachsenhofer R.‘Click’ chemistry in polymer and material science:an update[J]. Macromolecular Rapid Communications, 2010, 29(12-13):952-981. [56] Hou J, Liu X, Shen J, et al.The impact of click chemistry in medicinal chemistry[J]. Expert Opinion on Drug Discovery, 2012, 7(6):489-501. [57] Kolb HC, Sharpless KB.The growing impact of click chemistry on drug discovery[J]. Drug Discovery Today, 2003, 8(24):1128-1137. [58] Ge C, Luo Q, Wang D, et al.Colorimetric detection of copper(II)ion using click chemistry and hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme[J]. Anal Chem, 2014, 86(13):6387-6392. [59] Ni Q, Zhang F, Zhang Y, et al.In situ shRNA synthesis on DNA-polylactide nanoparticles to treat multidrug resistant breast cancer[J]. Adv Mater, 2018, 30(10). doi:10.1002/adma.201705737. [60] Felsenfeld G, Davies DR, Rich A.Formation of a 3-stranded polynucleotide molecule[J]. J Am Chem Soc, 1957, 79(8):2023-2024. [61] Amodio A, Zhao B, Porchetta A, et al.Rational design of pH-controlled DNA strand displacement[J]. J Am Chem Soc, 2014, 136(47):16469-16472. [62] Ranallo S, Prévosttremblay C, Idili A, et al.Antibody-powered nucleic acid release using a DNA-based nanomachine[J]. Nature Communications, 2017, 8:15150-15158. [63] Mills M, Lacroix L, Arimondo PB, et al.Unusual DNA conformations:implications for telomeres[J]. Current Medicinal Chemistry Anticancer Agents. 2002, 2(5):627-644. [64] 杨洋, 刘冬生. 质子驱动的核酸纳米机器[J]. 生命科学, 2008, 20(3):358-363. [65] Liu D, Balasubramanian S.A proton-fuelled DNA nanomachine [J]. Angew Chem Int Ed Engl, 2003, 42(46):5734-5736. [66] Mao Y, Liu D, Wang S, et al.Alternating-electric-field-enhanced reversible switching of DNA nanocontainers with pH[J]. Nucleic Acids Res, 2007, 35(5):e33. [67] Liu H, Yun X, Li F, et al.Light-driven conformational switch of i-motif DNA[J]. Angew Chem, 2007, 46(14):2515-2517. [68] Liang X, Nishioka H, Takenaka N, et al.A DNA nanomachine powered by light irradiation[J]. Chembiochem, 2008, 9(5):702-705. [69] Sun W, Jiang T, Lu Y, et al.Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery[J]. J Am Chem Soc, 2014, 136(42):14722-14725. [70] Mou Q, Ma Y, Pan G, et al.DNA trojan horses:the self-assembled floxuridine-containing DNA polyhedra for cancer therapy[J]. Angew Chem, 2017, 129(41):12528-12532. [71] Rothemund PW.Folding DNA to create nanoscale shapes and patterns[J]. Nature, 2006, 440(7082):297-302. [72] Li S, Jiang Q, Liu S, et al.A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo[J]. Nature Biotechnology, 2018, 36(3):258-264. [73] Yuan Q, Wu Y, Wang J, et al.Targeted bioimaging and photodynamic therapy nanoplatform using an aptamer-guided G-quadruplex DNA carrier and near-infrared light[J]. Angew Chem, 2013, 125(52):14215-14219. [74] Liu C, Zhang P, Zhai X, et al.Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence[J]. Biomaterials, 2012, 33(13):3604-3613. [75] Liang CP, Ma PQ, Liu H, et al.Rational engineering of dynamic, entropy-driven DNA nanomachine for intracellular microRNA imaging[J]. Angew Chem, 2017, 56(31):9077-9081. [76] Ma PQ, Liang CP, Zhang HH, et al.A highly integrated DNA nanomachine operating in living cells powered by an endogenous stimulus[J]. Chem Sci, 2018, 9:3299-3304. |