生物技术通报 ›› 2020, Vol. 36 ›› Issue (6): 73-82.doi: 10.13560/j.cnki.biotech.bull.1985.2019-1020
靳海洋1,2, 王慧1,2, 张燕辉1,2, 胡天龙1,2, 林志斌1,2, 刘本娟1,2, 蔺兴武1, 谢祖彬1
收稿日期:
2019-10-24
出版日期:
2020-06-26
发布日期:
2020-06-28
作者简介:
靳海洋,男,博士研究生,研究方向:土壤微生物;E-mail:hyjin@issas.ac.cn
基金资助:
JIN Hai-yang1,2, WANG Hui1,2, ZHANG Yan-hui1,2, HU Tian-long1,2, LIN Zhi-bin1,2, LIU Ben-juan1,2, LIN Xing-wu1, XIE Zu-bin1
Received:
2019-10-24
Published:
2020-06-26
Online:
2020-06-28
摘要: 旨为获取高效固氮菌株,为稻田生物固氮能力的微生物调控提供菌种资源。选用4个具有不同固氮效率水平的水稻土样品,采用稀释平板法和富集纯化法从土壤中分离可培养固氮菌株,通过基因组DNA的nifH基因扩增、乙炔还原活性的定量测定和无氮培养基上的生长状况筛选优势固氮菌株,进一步对优势固氮菌株进行促生潜力测定。共分离纯化得到可培养微生物菌株14株,以新分离菌株的基因组DNA为模板,有7株菌株能够扩增出nifH基因。其中,新分离菌株P204、P205、P207和P208在无氮培养基上生长速度较快,乙炔还原活性较高,同时具有IAA生成、溶磷活性和铁载体生成等促进植物生长的潜力,可用于进一步功能基因开发和微生物接种应用研究。
靳海洋, 王慧, 张燕辉, 胡天龙, 林志斌, 刘本娟, 蔺兴武, 谢祖彬. 稻田土壤固氮菌株的分离筛选及促生潜力[J]. 生物技术通报, 2020, 36(6): 73-82.
JIN Hai-yang, WANG Hui, ZHANG Yan-hui, HU Tian-long, LIN Zhi-bin, LIU Ben-juan, LIN Xing-wu, XIE Zu-bin. Isolation,Screening and Plant Growth-promoting Potential of Nitrogen-fixing Strains from Paddy Soils[J]. Biotechnology Bulletin, 2020, 36(6): 73-82.
[1] Galloway JN, Dentener FJ, Capone DG, et al.Nitrogen cycles:past, present, and future[J]. Biogeochemistry, 2004, 70(2):153-226. [2] Fowler D, Coyle M, Skiba U, et al.The global nitrogen cycle in the twenty-first century[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2013, 368(1621):20130164. [3] Smil V.Nitrogen and food production:Proteins for human diets[J]. Ambio, 2002, 31(2):126-131. [4] Tilman D, Cassman KG, Matson PA, et al.Agricultural sustainability and intensive production practices[J]. Nature, 2002, 418(6898):671-677. [5] Erisman JW, Sutton MA, Galloway J, et al.How a century of ammonia synthesis changed the world[J]. Nature Geoscience, 2008, 1(10):636-639. [6] Storkey J, Macdonald AJ, Poulton PR, et al.Grassland biodiversity bounces back from long-term nitrogen addition[J]. Nature, 2015, 528(7582):401-404. [7] Erisman JW, Galloway JN, Seitzinger S, et al.Consequences of human modification of the global nitrogen cycle[J]. Philosophical Transactions of the Royal Society B-Biological Sciences, 2013, 368(1621):20130116. [8] Hitz K, Clark AJ, Van Sanford DA.Identifying nitrogen-use efficient soft red winter wheat lines in high and low nitrogen environments[J]. Field Crops Research, 2017, 200:1-9. [9] Guarda G, Padovan S, Delogu G.Grain yield, nitrogen-use efficiency and baking quality of old and modern Italian bread-wheat cultivars grown at different nitrogen levels[J]. European Journal of Agronomy, 2004, 21(2):181-192. [10] Dai XL, Zhou XH, Jia DY, et al.Managing the seeding rate to improve nitrogen-use efficiency of winter wheat[J]. Field Crops Research, 2013, 154:100-109. [11] Fageria NK, Baligar VC.Enhancing nitrogen use efficiency in crop plants[J]. Advances in Agronomy, 2005, 88:97-185. [12] Dawson JC, Huggins DR, Jones SS.Characterizing nitrogen use efficiency in natural and agricultural ecosystems to improve the performance of cereal crops in low-input and organic agricultural systems[J]. Field Crops Research, 2008, 107(2):89-101. [13] Keuter A, Veldkamp E, Corre MD.Asymbiotic biological nitrogen fixation in a temperate grassland as affected by management practices[J]. Soil Biology and Biochemistry, 2014, 70:38-46. [14] Fowler D, Steadman CE, Stevenson D, et al.Effects of global change during the 21st century on the nitrogen cycle[J]. Atmospheric Chemistry and Physics, 2015, 15(24):13849-13893. [15] Peoples MB, Herridge DF, Ladha JK.Biological nitrogen fixation:An efficient source of nitrogen for sustainable agricultural production?[J]. Plant and Soil, 1995, 174(1-2):3-28. [16] Olivares J, Bedmar EJ, Sanjuan J.Biological nitrogen fixation in the context of global change[J]. Molecular Plant-Microbe Interactions, 2013, 26(5):486-494. [17] Reed SC, Cleveland CC, Townsend AR.Functional ecology of free-living nitrogen fixation:a contemporary perspective[J]. Annual Review of Ecology, Evolution, and Systematics, 2011, 42:489-512. [18] Dahal B, Nandakafle G, Perkins L, et al.Diversity of free-Living nitrogen fixing Streptomyces in soils of the badlands of South Dakota[J]. Microbiological Research, 2017, 195:31-39. [19] Ladha JK, Tirol-Padre A, Reddy CK, et al.Global nitrogen budgets in cereals:A 50-year assessment for maize, rice, and wheat production systems[J]. Scientific Reports, 2016, 6:19355. [20] Romero-Perdomo F, Abril J, Camelo M, et al.Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton(Gossypium hirsutum):Effect in reducing N fertilization[J]. Revista Argentina De Microbiologia, 2017, 49(4):377-383. [21] Jalilian J, Modarres-Sanavya SAM, Saberali SF, et al.Effects of the combination of beneficial microbes and nitrogen on sunflower seed yields and seed quality traits under different irrigation regimes[J]. Field Crops Research, 2012, 127:26-34. [22] van Elsas JD, Duarte GF, Rosado AS, et al. Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment[J]. Journal of Microbiological Methods, 1998, 32(2):133-154. [23] Kizilkaya R.Yield response and nitrogen concentrations of spring wheat(Triticum aestivum)inoculated with Azotobacter chroococcum strains[J]. Ecological Engineering, 2008, 33(2):150-156. [24] Wang X, Liu B, Ma J, et al.Soil aluminum oxides determine biological nitrogen fixation and diazotrophic communities across major types of paddy soils in China[J]. Soil Biology and Biochemistry, 2019, 131:81-89. [25] Gauri SS, Mandal SM, Mondal KC, et al.Enhanced production and partial characterization of an extracellular polysaccharide from newly isolated Azotobacter sp. SSB81[J]. Bioresource Technology, 2009, 100(18):4240-4243. [26] Brown ME, Burlingham SK, Jackson RM.Studies on Azotobacter species in soil:1. Comparison of media and techniques for counting Azotobacter in soil[J]. Plant and Soil, 1962, 17(3):309-319. [27] Aquilanti L, Favilli F, Clementi F.Comparison of different strategies for isolation and preliminary identification of Azotobacter from soil samples[J]. Soil Biology and Biochemistry, 2004, 36(9):1475-1483. [28] Solanki MK, Wang Z, Wang FY, et al.Intercropping in sugarcane cultivation influenced the soil properties and enhanced the diversity of vital diazotrophic bacteria[J]. Sugar Tech, 2017, 19(2):136-147. [29] Kayasth M, Gera R, Dudeja SS, et al.Studies on salinization in Haryana soils on free-living nitrogen-fixing bacterial populations and their activity[J]. Journal of Basic Microbiology, 2014, 54(3):170-179. [30] Lane DJ.16S /23S rRNA sequencing[M]. Stackebrandt E, Goodfellow M. Nucleic acid techniques in bacterial systematics. New York:Wiley, 1991:115-175. [31] Kim OS, Cho YJ, Lee K, et al.Introducing EzTaxon-e:a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62:716-721. [32] Chun J, Lee JH, Jung Y, et al.EzTaxon:a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences[J]. International Journal of Systematic and Evolutionary Microbiology, 2007, 57:2259-2261. [33] Yoon SH, Ha SM, Kwon S et al. Introducing EzBioCloud:a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies[J]. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(5):1613-1617. [34] Poly F, Monrozier LJ, Bally R.Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil[J]. Research in Microbiology, 2001, 152(1):95-103. [35] Li DJ, Zhang QS, Xiao KC, et al.Divergent responses of biological nitrogen fixation in soil, litter and moss to temperature and moisture in a karst forest, southwest China[J]. Soil Biology and Biochemistry, 2018, 118:1-7. [36] Hyman MR, Arp DJ.Quantification and removal of some contaminating gases from acetylene used to study gas-utilizing enzymes and microorganisms[J]. Applied and Environmental Microbiology, 1987, 53(2):298-303. [37] Hardy RW, Holsten RD, Jackson EK, et al.The acetylene-ethylene assay for N2 fixation:laboratory and field evaluation[J]. Plant Physiology, 1968, 43:1185-1207. [38] Hardy RWF, Burns RC, Holsten RD.Applications of acetylene-ethylene assay for measurement of nitrogen fixation[J]. Soil Biology and Biochemistry, 1973, 5(1):47-81. [39] Bradford MM.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1):248-254. [40] Glickmann E, Dessaux Y.A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria[J]. Applied and Environmental Microbiology, 1995, 61(2):793-796. [41] Nautiyal CS.An efficient microbiological growth medium for screening phosphate solubilizing microorganisms[J]. FEMS Microbiology Letters, 1999, 170(1):265-270. [42] Murphy J, Riley JP.A modified single solution method for the determination of phosphate in natural waters[J]. Analytica Chimica Acta, 1962, 27:31-36. [43] Collavino MM, Sansberro PA, Mroginski LA, et al.Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth[J]. Biology and Fertility of Soils, 2010, 46(7):727-738. [44] Schwyn B, Neilands JB.Universal chemical assay for the detection and determination of siderophores[J]. Analytical Biochemistry, 1987, 160(1):47-56. [45] Bellenger JP, Xu Y, Zhang X, et al.Possible contribution of alternative nitrogenases to nitrogen fixation by asymbiotic N2-fixing bacteria in soils[J]. Soil Biology and Biochemistry, 2014, 69:413-420. [46] Bellenger JP, Wichard T, Xu Y, et al.Essential metals for nitrogen fixation in a free-living N2-fixing bacterium:chelation, homeostasis and high use efficiency[J]. Environmental Microbiology, 2011, 13(6):1395-1411. [47] Priya H, Prasanna R, Ramakrishnan B, et al.Influence of cyanobacterial inoculation on the culturable microbiome and growth of rice[J]. Microbiological Research, 2015, 171:78-89. [48] 李雯, 阎爱华, 黄秋娴, 等. 尾矿区不同植被恢复模式下高效固氮菌的筛选及Biolog鉴定[J]. 生态学报, 2014, 34(9):2329-2337. [49] Navarro-Noya YE, Hernández-Mendoza E, Morales-Jiménez J, et al.Isolation and characterization of nitrogen fixing heterotrophic bacteria from the rhizosphere of pioneer plants growing on mine tailings[J]. Applied Soil Ecology, 2012, 62:52-60. [50] 李艳星, 郭平毅, 孙建光. 块根块茎类作物内生固氮菌分离鉴定、系统发育与促生特性[J]. 中国农业科学, 2017, 50(1):104-122. [51] Barraquio WL, Revilla L, Ladha JK.Isolation of endophytic diazotrophic bacteria from wetland rice[J]. Plant and Soil, 1997, 194:15-24. [52] 孙建光, 胡海燕, 刘君, 等. 农田环境中固氮菌的促生潜能与分布特点[J]. 中国农业科学, 2012, 45(8):1532-1544. [53] 徐秀倩, 吴小芹, 吴天宇, 等. 林木根际细菌JYZ-SD5的促生抗逆性能及种类鉴定[J]. 生物技术通报, 2019, 35(3):31-38. [54] Franche C, Lindstrom K, Elmerich C.Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants[J]. Plant and Soil, 2009, 321:35-59. [55] Li HB, Singh RK, Singh P, et al.Genetic diversity of nitrogen-fixing and plant growth promoting Pseudomonas species isolated from sugarcane rhizosphere[J]. Frontiers in Microbiology, 2017, 8:1268. [56] Kirchhof G, Reis VM, Baldani JI, et al.Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants[J]. Plant and Soil, 1997, 194(1-2):45-55. [57] Coelho MRR, Marriel IE, Jenkins SN, et al.Molecular detection and quantification of nifH gene sequences in the rhizosphere of sorghum(Sorghum bicolor)sown with two levels of nitrogen fertilizer[J]. Applied Soil Ecology, 2009, 42(1):48-53. [58] Zhan J, Sun QY.Diversity of free-living nitrogen-fixing microorg-anisms in the rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings[J]. Microbiolo-gical Research, 2012, 167(3):157-165. [59] Gaby JC, Buckley DH.A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase[J]. PLoS One, 2012, 7 (7):e42149. [60] 张亮, 袁玲, 黄建国. 自生固氮菌对土壤钾的活化作用[J]. 土壤学报, 2015, 52(2):399-405. [61] 张亮, 杨宇虹, 李倩, 等. 自生固氮菌活化土壤无机磷研究 [J]. 生态学报, 2013, 33(7):2157-2164. [62] 陈胜男, 谷洁, 付青霞, 等. 接种自生固氮菌对玉米根际土壤酶活性和细菌群落功能多样性的影响[J]. 植物营养与肥料学报, 2012, 18(2):444-450. [63] Thavasi R, Subramanyam Nambaru VR, Jayalakshmi S, et al.Biosurfactant production by Azotobacter chroococcum isolated from the marine environment[J]. Marine Biotechnology, 2009, 11:551-556. |
[1] | 谢田朋, 张佳宁, 董永骏, 张建, 景明. 早期抽薹对当归根际土壤微环境的影响[J]. 生物技术通报, 2023, 39(7): 206-218. |
[2] | 赵林艳, 徐武美, 王豪吉, 王昆艳, 魏富刚, 杨绍周, 官会林. 施用生物炭对连作三七根际真菌群落与存活率的影响[J]. 生物技术通报, 2023, 39(7): 219-227. |
[3] | 申云鑫, 施竹凤, 周旭东, 李铭刚, 张庆, 冯路遥, 陈齐斌, 杨佩文. 三株具生防功能芽孢杆菌的分离鉴定及其生物活性研究[J]. 生物技术通报, 2023, 39(3): 267-277. |
[4] | 张华香, 徐晓婷, 郑云婷, 肖春桥. 溶磷微生物在钝化和植物修复重金属污染土壤中的作用[J]. 生物技术通报, 2023, 39(3): 52-58. |
[5] | 胡雪莹, 张越, 郭雅杰, 仇天雷, 高敏, 孙兴滨, 王旭明. 不同施肥处理农田土壤中噬菌体与细菌携带抗生素抗性基因的比较[J]. 生物技术通报, 2022, 38(9): 116-126. |
[6] | 高晓蓉, 丁尧, 吕军. 芘降解菌Pseudomonas sp. PR3的植物促生特性及其对芘胁迫下水稻生长的影响[J]. 生物技术通报, 2022, 38(9): 226-236. |
[7] | 江美彦, 周杨, 刘仁浪, 姚菲, 杨云舒, 侯凯, 冯冬菊, 吴卫. 白芷根际促生菌的筛选及其促生效果研究[J]. 生物技术通报, 2022, 38(8): 167-178. |
[8] | 王子寅, 刘秉儒, 李子豪, 赵晓玉. 荒漠草原柠条灌丛堆不同发育阶段土壤细菌群落结构特征[J]. 生物技术通报, 2022, 38(7): 205-214. |
[9] | 赵林艳, 官会林, 王克书, 卢燕磊, 向萍, 魏富刚, 杨绍周, 徐武美. 土壤含水量对三七连作土壤微生物群落的影响[J]. 生物技术通报, 2022, 38(7): 215-223. |
[10] | 赵忠娟, 杨凯, 扈进冬, 魏艳丽, 李玲, 徐维生, 李纪顺. 盐胁迫条件下哈茨木霉ST02对椒样薄荷生长及根区土壤理化性质的影响[J]. 生物技术通报, 2022, 38(7): 224-235. |
[11] | 徐扬, 张冠初, 丁红, 秦斐斐, 张智猛, 戴良香. 土壤类型对花生根际土壤细菌群落多样性和产量的影响[J]. 生物技术通报, 2022, 38(6): 221-234. |
[12] | 张昊鑫, 王中华, 牛兵, 郭慷, 刘璐, 姜瑛, 张仕祥. 产IAA兼具溶磷解钾高效促生菌的筛选、鉴定及其广谱性应用[J]. 生物技术通报, 2022, 38(5): 100-111. |
[13] | 王宁, 李蕙秀, 李季, 丁国春. 堆肥调控作物根际微生物组抑制植物病害的研究进展[J]. 生物技术通报, 2022, 38(5): 4-12. |
[14] | 祝静, 于存. 长枝木霉菌肥对玉米生长、土壤肥力和根际微生物的影响[J]. 生物技术通报, 2022, 38(4): 230-241. |
[15] | 高亚慧, 姜明国, 丰景, 周桂. 产生促生挥发性物质的潜在PGPR菌株筛选及其促生特性研究[J]. 生物技术通报, 2022, 38(3): 103-112. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 513
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 472
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||