生物技术通报 ›› 2019, Vol. 35 ›› Issue (8): 64-76.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0271

• 研究报告 • 上一篇    下一篇

丁酸氧化菌群对抗生素及活性炭协同作用响应

冯高, 张昱晨, 苟敏, 陈娅婷   

  1. 四川大学建筑与环境学院 环境生物技术研究中心,成都 610065
  • 收稿日期:2019-04-04 出版日期:2019-08-26 发布日期:2019-08-05
  • 作者简介:冯高,男,本科,研究方向:环境工程微生物;E-mail:fenggao_1030@163.com
  • 基金资助:
    科技部政府间国际科技创新合作重点专项(2016YFE0127700)

Response of Butyrate-oxidizing Microbial Community to the Co-effects of Antibiotics and Activated Carbon

FENG Gao, ZHANG Yu-chen , GOU Min, CHEN Ya-ting   

  1. Environmental Biotechnology Research Center,College of Architecture and Environment,Sichuan University,Chengdu 610065
  • Received:2019-04-04 Published:2019-08-26 Online:2019-08-05

摘要: 本研究构建了以丁酸为唯一碳源的厌氧消化反应器,利用16S rRNA基因测序技术分析氯四环素(Chlortetracycline,CTC)单独抑制及CTC与颗粒活性炭(Granular active carbon,GAC)协同作用下,互营丁酸氧化微生物群落结构的动态变化,探究环境胁迫下微生物之间的相互作用及其对CTC及CTC和GAC协同作用的响应。结果表明,原始反应器群落中,已知的互营丁酸氧化菌Syntrophomonas(11.6%)和乙酸营养型产甲烷古菌Methanosaeta(48.5%)分别在细菌和古菌群落中占主导优势。添加40 mg/L和50 mg/L CTC条件下,甲烷产量分别降低40.4%和49.3%。Syntrophomonas对CTC表现出耐受性,但与其呈正相关联系的细菌(如unclassified Firmicutes和unclassified Comamonadaceae)以及乙酸氧化菌Tepidanaerobacter活性被CTC明显抑制,从而影响丁酸降解率,同时造成代谢产物积累,导致产甲烷量降低。单独添加GAC以及在40 mg/L和50 mg/L CTC抑制下添加GAC,甲烷产量分别降低2.9%、48.5%和64.7%。共现网络分析结果显示,添加GAC明显增强了Geobacter以及与其呈正相关联系的细菌(Azonexus等)的活性。而产甲烷古菌Methanosaeta和Methanoculleus与Azonexus等大部分细菌呈负相关,因此,添加GAC可能间接影响了产甲烷古菌的活性。

关键词: 厌氧消化, 互营丁酸氧化, 抗生素, 颗粒活性炭, 种间直接电子传递

Abstract: An anaerobic digestion chemostat using butyrate as the sole carbon source was constructed in this study. 16S rRNA high-throughput sequencing was employed to investigate the dynamic changes of butyrate-degrading microbial community under inhibition of chlortetracycline(CTC)and co-effects of CTC and granular active carbon(GAC),and to explore the interactions among microorganisms under environmental stress and their responses to sole CTC inhibition and co-effects of CTC and GAC. Our results showed that known syntrophic butyrate degrading bacterium Syntrophomonas(11.6%)and the aceticlastic methanogen Methanosaeta(48.5%)respectively dominated the bacterial and archaeal community in the original chemostat. Addition of 40 mg/L and 50 mg/L CTC led to the inhibitory effects on methane production reduction by 40.4% and 49.3%,respectively. Although Syntrophomonas presented tolerance to CTC,bacteria(e.g.,unclassified Firmicutes and unclassified Comamonadaceae)having positive correlations with it and known acetate-oxidizing bacteria Tepidanaerobacter were significantly inhibited by CTC,which thus affected the degradation of butyrate and caused the accumulation of metabolites,further resulting in the reduction of methane. Methane production reduced by 2.9%,48.5%,and 64.7% when adding GAC along,as well as adding GAC under the 40 mg/L and 50 mg/L CTC,respectively. Co-occurrence network analysis revealed that the addition of GAC significantly enhanced the activity of Geobacter and bacterium that showed positive correlation with it(e.g.,Azonexus). However,Methanosaeta and Methanoculleus showed significantly negative correlation with most of the bacteria(e.g.,Azonexus). Thus,the addition of GAC may indirectly affect the activity of Methanosaeta and Methanoculleus.

Key words: anaerobic digestion, syntrophic butyrate oxidation, antibiotics, granular activated carbon, interspecies direct electron transfer