生物技术通报 ›› 2020, Vol. 36 ›› Issue (9): 31-41.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0994
• 根际微生物专题(专题主编:张瑞福 研究员) • 上一篇 下一篇
王卫雄1, 沈博1, 贾洪柏1, 乔俊卿2, 牛犇1
收稿日期:
2020-08-10
出版日期:
2020-09-26
发布日期:
2020-09-30
作者简介:
王卫雄,男,博士研究生,研究方向:植物与微生物互作;E-mail:24810716@qq.com
基金资助:
WANG Wei-xiong1, SHEN Bo1, JIA Hong-bai1, QIAO Jun-qing2, NIU Ben1
Received:
2020-08-10
Published:
2020-09-26
Online:
2020-09-30
摘要: 开发与应用根际生防微生物制剂,是一种环境友好的植物病害防控策略。根际生防微生物在寄主植物和土壤中的定殖量不足与抑制病原物生长的效率不高,限制了其防病功能的发挥。目前,相当数量的研究结果证实,根际生防菌群能够改善根际生防微生物的防病效果。综述了应用根际生防菌群防治植物病害的现状与根际生防菌群通过微生物的种间互作调控定殖、抑菌与诱导抗性增强防病效果的潜在机制,讨论了根际生防微生物的生长、生物膜形成、运动性、资源竞争能力以及抑菌化合物的生物合成与根际生防菌群提升防病功能的关系,并对未来根际生防菌群的研究方向及其构建与应用效率的提升策略进行了展望,指出了进一步深化根际生防菌群的增效机制研究应关注的科学问题,强调了通过简化根际微生物组构建根际生防菌群的策略与根际生防菌群和单一生防微生物菌株搭配应用的重要性。
王卫雄, 沈博, 贾洪柏, 乔俊卿, 牛犇. 根际生防菌群的应用及其防病增效的潜在机制[J]. 生物技术通报, 2020, 36(9): 31-41.
WANG Wei-xiong, SHEN Bo, JIA Hong-bai, QIAO Jun-qing, NIU Ben. Application of Rhizospheric Biocontrol Consortia and the Potential Mechanisms of Their Enhancing Efficacy on Disease-suppressive Effect[J]. Biotechnology Bulletin, 2020, 36(9): 31-41.
[1] 联合国粮食及农业组织. 粮农组织启动联合国“2020国际植物健康年”.http://www. fao. org/news/story/zh/item/12536202/icode/. Food and Agriculture Organization of the United Nations. FAO launches2020 as the UN’s International Year of Plant Health.http://www. fao. org/news/story/zh/item/12536202/icode/. [2] Velivelli SLS, Vos PD, Kromann P, et al.Biological control agents:from field to market, problems, and challenges[J]. Trends in Biotechnology, 2014, 32(10):493-496. [3] Rahman SFSA, Singh E, Pieterse CMJ, et al.Emerging microbial biocontrol strategies for plant pathogens[J]. Plant Sci, 2018, 267:102-111. [4] Fira D, Dimkic I, Beric T, et al.Biological control of plant pathogens by Bacillus species[J]. J Biotechnol, 2018, 285:44-55. [5] Alvarez B, Biosca EG.Bacteriophage-based bacterial wilt biocontrol for an environmentally sustainable agriculture[J]. Front Plant Sci, 2017, 8:1218. [6] Busby PE, Soman C, Wagner MR, et al.Research priorities for harnessing plant microbiomes in sustainable agriculture[J]. PLoS Biol, 2017, 15(3):e2001793. [7] Singh RL, Mondal S.Biotechnology for sustainable agriculture[M]. Sawston Cambridge:Woodhead Publishing, 2018. [8] Carzorla FM, Mercado-Blanco J.Biological control of tree and woody plant diseases:an impossible task?[J]. BioControl, 2016, 61:233-242. [9] Xu XM, Jeffries P, Pautasso M, et al.Combined use of biocontrol agents to manage plant diseases in theory and practice[J]. Phytopathology, 2011, 101(9):1024-1031. [10] Mazzola M, Freilich S.Prospects for biological soilborne disease control:application of indigenous versus synthetic microbiomes[J]. Phytopathology, 2017, 107(3):256-263. [11] Sarma BK, Yadav SK, Singh S, et al.Microbial consortium-mediated plant defense against phytopathogens:readdressing for enhancing efficacy[J]. Soil Biol Biochem, 2015, 87:25-33. [12] Lugtenberg B, Kamilova F.Plant-growth-promoting rhizobacteria[J]. Annu Rev Microbiol, 2009, 63:541-556. [13] Qu Q, Zhang Z, Peijnenburg WJGM, et al.Rhizosphere microbiome assembly and its impact on plant growth[J]. J Agric Food Chem, 2020, 68(18):5024-5038. [14] Garcia J, Kao-Kniffin J.Microbial group dynamics in plant rhizospheres and their implications on nutrient cycling[J]. Front Microbiol, 2018, 9:1516. [15] Compant S, Samad A, Faist H, et al.A review on the plant microbiome:Ecology, functions, and emerging trends in microbial application[J]. J Adv Res, 2019, 19:29-37. [16] Vorholt JA, Vogel C, Carlstrom CI, et al.Establishing causality:opportunities of synthetic communities for plant microbiome research[J]. Cell Host Microbe, 2017, 22(2):142-155. [17] Woo SL, Pepe O.Microbial consortia:promising probiotics as plant biostimulants for sustainable agriculture[J]. Front Plant Sci, 2018, 9:1801. [18] Pierson EA, Weller DM.Use of mixtures of fluorescent pseudomonads to suppress take-all and improve the growth of wheat[J]. Phytopathology, 1994, 84:940-947. [19] Pliego C, de Weert S, Lamers G, et al. Two similar enhanced root-colonizing Pseudomonas strains differ largely in their colonization strategies of avocado roots and Rosellinia necatrix hyphae[J]. Environ Microbiol, 2008, 10(12):3295-3304. [20] Thomloudi EE, Tsalgatidou PC, Douka D, et al.Multistrain versus single-strain plant growth promoting microbial inoculants - The compatibility issue[J]. Hell Plant Prot J, 2019, 12(2):61-77. [21] Lutz MP, Wenger S, Maurhofer M, et al.Signaling between bacterial and fungal biocontrol agents in a strain mixture[J]. FEMS Microbiol Ecol, 2004, 48(3):447-455. [22] Hassani MA, Duran P, Hacquard S.Microbial interactions within the plant holobiont[J]. Microbiome, 2018, 6(1):58. [23] McKellar ME, Nelson EB. Compost-induced suppression of Pythium damping-off is mediated by fatty-acid-metabolizing seed-colonizing microbial communities[J]. Appl Environ Microbiol, 2003, 69(1):452-460. [24] Hu J, Wei Z, Friman VP, et al.Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression[J]. mBio, 2016, 7(6):e01790-16. [25] Wei Z, Yang T, Friman VP, et al.Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health[J]. Nat Commun, 2015, 6:8413. [26] Thakkar A, Saraf M.Development of microbial consortia as a biocontrol agent for effective management of fungal diseases in Glycine maxL[J]. Arch Phytopathol Plant Prot, 2014, 48(6):459-474. [27] Santhanam R, Menezes RC, Grabe V, et al.A suite of complementary biocontrol traits allows a native consortium of root-associated bacteria to protect their host plant from a fungal sudden-wilt disease[J]. Mol Ecol, 2019, 28(5):1154-1169. [28] Solanki MK, Yandigeri MS, Kumar S, et al.Co-inoculation of different antagonists can enhance the biocontrol activity against Rhizoctonia solani in tomato[J]. Antonie Van Leeuwenhoek, 2019, 112(11):1633-1644. [29] Shanmugam V, Kanoujia N.Biological management of vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycospersici by plant growth-promoting rhizobacterial mixture[J]. Biol Control, 2011, 57(2):85-93. [30] Georg S. Raupach JK.Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens[J]. Phytopathology, 1998, 88(11):1159-1164. [31] Zhang LN, Wang DC, et al.Consortium of plant growth-promoting rhizobacteria strains suppresses sweet pepper disease by altering the rhizosphere microbiota[J]. Front Microbiol, 2019, 10:1668. [32] Carrion VJ, Perez-Jaramillo J, Cordovez V, et al.Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome[J]. Science, 2019, 366(6465):606-612. [33] Niu B, Paulson JN, Zheng X, et al.Simplified and representative bacterial community of maize roots[J]. Proc Natl Acad Sci USA, 2017, 114(12):E2450-E2459. [34] Bardas GA, Lagopodi AL, Kadoglidou K, et al.Biological control of three Colletotrichum lindemuthianum races using Pseudomonas chlororaphis PCL1391 and Pseudomonas fluorescens WCS365[J]. Biol Control, 2009, 49(2):139-145. [35] Morris BE, Henneberger R, Huber H, et al.Microbial syntrophy:interaction for the common good[J]. FEMS Microbiol Rev, 2013, 37(3):384-406. [36] Mee MT, Collins JJ, Church GM, et al.Syntrophic exchange in synthetic microbial communities[J]. Proc Natl Acad Sci USA, 2014, 111(20):E2149-E2156. [37] Bashan Y, Holguin G.Azospirillum-plant relationships:environmental and physiological advances[J]. Can J Microbiol, 1997, 43(2):103-121. [38] Bashan Y.Inoculants of plant growth-promoting bacteria for use in agriculture[J]. Biotechnol Adv, 1998, 16(4):729-770. [39] Bais HP, Weir TL, Perry LG, et al.The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annu Rev Plant Biol, 2006, 57:233-266. [40] Huang XF, Chaparro JM, Reardon KF, et al.Rhizosphere interactions:root exudates, microbes, and microbial communities[J]. Botany, 2014, 92(4):267-275. [41] Peterson SB, Dunn AK, Klimowicz AK, et al.Peptidoglycan from Bacillus cereus mediates commensalism with rhizosphere bacteria from the Cytophaga-Flavobacterium group[J]. Appl Environ Microbiol, 2006, 72(8):5421-5427. [42] Vlamakis H, Chai Y, Beauregard P, et al.Sticking together:building a biofilm the Bacillus subtilis way[J]. Nat Rev Microbiol, 2013, 11(3):157-168. [43] Fan B, Chen XH, Budiharjo A, et al.Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein[J]. J Biotechnol, 2011, 151(4):303-311. [44] Beauregard PB, Chai Y, Vlamakis H, et al.Bacillus subtilis biofilm induction by plant polysaccharides[J]. Proc Natl Acad Sci USA, 2013, 110(17):E1621-1630. [45] Berendsen RL, Vismans G, Yu K, et al.Disease-induced assemblage of a plant-beneficial bacterial consortium[J]. ISME J, 2018, 12(6):1496-1507. [46] Burmolle M, Webb JS, et al.Enhanced biofilm formation and incre-ased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms[J]. Appl Environ Microbiol, 2006, 72(6):3916-3923. [47] Harshey RM.Bacterial motility on a surface:many ways to a common goal[J]. Annu Rev Microbiol, 2003, 57:249-273. [48] Allard-Massicotte R, Tessier L, Lecuyer F, et al.Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors[J]. mBio, 2016, 7(6):e01664-16. [49] Warmink JA, Nazir R, Corten B, et al.Hitchhikers on the fungal highway:The helper effect for bacterial migration via fungal hyphae[J]. Soil Biol Biochem, 2011, 43(4):760-765. [50] Kohlmeier S, Smits THM, Ford RM, et al.Taking the fungal highway:mobilization of pollutant-degrading bacteria by fungi[J]. Environ Sci Technol, 2005, 39(12):4640-4646. [51] Wick L, Remer R, Wurz B, et al.Effect of fungal hyphae on the access of bacteria to phenanthrene in soil[J]. Environ Sci Technol, 2007, 41:500-505. [52] Zhang W, Li XG, Sun K, et al.Mycelial network-mediated rhizobial dispersal enhances legume nodulation[J]. ISME J, 2020, 14(4):1015-1029. [53] de Novais CB, Sbrana C, da Conceicao Jesus E, et al. Mycorrhizal networks facilitate the colonization of legume roots by a symbiotic nitrogen-fixing bacterium[J]. Mycorrhiza, 2020, 30:389-396. [54] Ingham CJ, Kalisman O, Finkelshtein A, et al.Mutually facilitated dispersal between the nonmotile fungus Aspergillus fumigatus and the swarming bacterium Paenibacillus vortex[J]. Proc Natl Acad Sci USA, 2011, 108(49):19731-19736. [55] Finkelshtein A, Roth D, Ben Jacob E, et al.Bacterial swarms recruit cargo bacteria to pave the way in toxic environments[J]. mBio, 2015, 6(3):e00074-15. [56] Venieraki A, Tsalgatidou PC, et al.Swarming motility in plant-associated bacteria[J]. Hell Plant Prot J, 2016, 9(1):16-27. [57] Kannan V, Sureendar R.Synergistic effect of beneficial rhizosphere microflora in biocontrol and plant growth promotion[J]. J Basic Microbiol, 2009, 49(2):158-164. [58] Irikiin Y, Nishiyama M, Otsuka S, et al.Rhizobacterial community-level, sole carbon source utilization pattern affects the delay in the bacterial wilt of tomato grown in rhizobacterial community model system[J]. Applied Soil Ecology, 2006, 34(1):27-32. [59] Gu S, Wei Z, Shao Z, et al.Competition for iron drives phytopathogen control by natural rhizosphere microbiomes[J]. Nat Microbiol, 2020, 5(8):1002-1010. [60] Traxler MF, Kolter R.Natural products in soil microbe interactions and evolution[J]. Nat Prod Rep, 2015, 32(7):956-970. [61] Traxler MF, Watrous JD, Alexandrov T, et al.Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome[J]. mBio, 2013, 4(4):e00459-13. [62] Chen XH, Koumoutsi A, Scholz R, et al.Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42[J]. Nat Biotechnol, 2007, 25(9):1007-1014. [63] Haas D, Keel C.Regulation of antibiotic production in root-colonizing Peudomonas spp. and relevance for biological control of plant disease[J]. Annu Rev Phytopathol, 2003, 41:117-153. [64] Ghishalberti EL, Sivasithamparam, K.Antifungal antibiotics produced by Trichoderma spp.[J]. Soil Biol Biochem, 1991, 23(11):1011-1020. [65] Pishchany G, Mevers E, et al.Amycomicin is a potent and specific antibiotic discovered with a targeted interaction screen[J]. Proc Natl Acad Sci USA, 2018, 115(40):10124-10129. [66] Nutzmann HW, Reyes-Dominguez Y, Scherlach K, et al.Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation[J]. Proc Natl Acad Sci USA, 2011, 108(34):14282-14287. [67] Brakhage AA.Regulation of fungal secondary metabolism[J]. Nat Rev Microbiol, 2013, 11(1):21-32. [68] Ola AR, Thomy D, Lai D, et al.Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis[J]. J Nat Prod, 2013, 76(11):2094-2099. [69] Kloepper JW, Tuzun S, Kuć JA.Proposed definitions related to induced disease resistance[J]. Biocontrol Sci Tech, 1992, 2(4):349-351. [70] Jain A, Singh S, Kumar Sarma B, et al.Microbial consortium-mediated reprogramming of defence network in pea to enhance tolerance against Sclerotinia sclerotiorum[J]. J Appl Microbiol, 2012, 112(3):537-550. [71] Alizadeh H, Behboudi K, Ahmadzadeh M, et al.Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14[J]. Biol Control, 2013, 65(1):14-23. [72] Liu K, McInroy JA, Hu CH, et al. Mixtures of plant-growth-promoting rhizobacteria enhance biological control of multiple plant diseases and plant-growth promotion in the presence of pathogens[J]. Plant Dis, 2018, 102(1):67-72. [73] Nicholas A. Lyons RK.Bacillus subtilis protects public goods by extending kin discrimination to closely related species[J]. mBio, 2017, 8(4):e00723-17. [74] Liu YX, Qin Y, Bai Y.Reductionist synthetic community approaches in root microbiome research[J]. Curr Opin Microbiol, 2019, 49:97-102. [75] Haas D, Defago G.Biological control of soil-borne pathogens by fluorescent pseudomonads[J]. Nat Rev Microbiol, 2005, 3(4):307-319. [76] Jain A, Singh A, Singh S, et al.Biological management of Sclerotinia sclerotiorum in pea using plant growth promoting microbial consortium[J]. J Basic Microbiol, 2015, 54:1-12. [77] Jetiyanon K, Kloepper JW.Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases[J]. Biol Control, 2002, 24(3):285-291. [78] Srivastava R, Khalid A, Singh US, et al.Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt[J]. Biological Control. 2010, 53(1):24-31. [79] Zhou DM, Feng H, Schuelke T, et al.Rhizosphere microbiomes from root knot nematode non-infested plants suppress nematode infection[J]. Microb Ecol, 2019, 78(2):470-481. [80] Domenech J, Reddy MS, et al.Combined application of the biolo- gical product LS213 with Bacillus, Pseudomonas or Chryseobacte-rium for growth promotion and biological control of soil-borne dise-ases in pepper and tomato[J]. BioControl, 2006, 51:245-258. [81] Chemeltorit PP, Mutaqin KH, Widodo W.Combining Trichoderma hamatum THSW13 and Pseudomonas aeruginosa BJ10-86:a synergistic chili pepper seed treatment for Phytophthora capsici infested soil[J]. Eur J Plant Pathol, 2017, 147:157-166. [82] Raupach GS, Kloepper JW.Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens[J]. Phytopathology, 1998, 88(11):1159-1164. [83] Yang W, Zheng L, Liu HX, et al.Evaluation of the effectiveness of a consortium of three plant-growth promoting rhizobacteria for biocontrol of cotton Verticillium wilt[J]. Biocontrol Sci Technol, 2014, 24(5):489-502. [84] Thangavelu R, Gopi M.Combined application of native Trichoderma isolates possessing multiple functions for the control of Fusarium wilt disease in banana cv. Grand Naine[J]. Biocontrol Sci Technol, 2015, 25(10):1147-1164. |
[1] | 苗永美, 苗翠苹, 于庆才. 枯草芽孢杆菌BBs-27发酵液性质及脂肽对黄色镰刀菌的抑菌作用[J]. 生物技术通报, 2023, 39(9): 255-267. |
[2] | 张岳一, 兰社益, 裴海闰, 封棣. 多菌种联用发酵燕麦麸皮工艺优化及发用功效评价[J]. 生物技术通报, 2023, 39(9): 58-70. |
[3] | 马俊秀, 吴皓琼, 姜威, 闫更轩, 胡基华, 张淑梅. 蔬菜软腐病菌广谱拮抗细菌菌株筛选鉴定及防效研究[J]. 生物技术通报, 2023, 39(7): 228-240. |
[4] | 李典典, 粟元, 李洁, 许文涛, 朱龙佼. 抗菌适配体的筛选与应用进展[J]. 生物技术通报, 2023, 39(6): 126-132. |
[5] | 张玲, 张荣意, 刘盛科, 谭志琼. 瓜类细菌性果斑病菌拮抗细菌的筛选及其抑菌作用[J]. 生物技术通报, 2023, 39(1): 253-263. |
[6] | 石成龙, 汪锡武, 李安琪, 钱森和, 王洲, 赵世光, 刘艳, 薛正莲. ε-聚赖氨酸对阪崎克罗诺杆菌细胞结构与生物被膜形成的影响[J]. 生物技术通报, 2022, 38(9): 147-157. |
[7] | 李颖, 龙长梅, 蒋标, 韩丽珍. 两株PGPR菌株的花生定殖及对根际细菌群落结构的影响[J]. 生物技术通报, 2022, 38(9): 237-247. |
[8] | 赵子玉, 王春光, 吕建存, 李继开, 张铁. 超广谱β-内酰胺酶CTX-M-14中药抑制剂的筛选及芸香苷抑酶作用研究[J]. 生物技术通报, 2022, 38(6): 235-244. |
[9] | 王宁, 李蕙秀, 李季, 丁国春. 堆肥调控作物根际微生物组抑制植物病害的研究进展[J]. 生物技术通报, 2022, 38(5): 4-12. |
[10] | 王子琰, 王建, 张伦, 桂水清, 卢雪梅. 家蝇抗菌肽MDC对鼠伤寒沙门氏菌的抑菌稳定性研究[J]. 生物技术通报, 2022, 38(3): 149-156. |
[11] | 杨瑞先, 刘萍, 王祖华, 阮宝硕, 汪智达. 牡丹根腐病原菌拮抗细菌抑菌活性物质分析[J]. 生物技术通报, 2022, 38(2): 57-66. |
[12] | 李思思, 张博源, 符运会, 周佳, 屈建航. 一株高效溶磷细菌的条件优化及其溶磷特性研究[J]. 生物技术通报, 2022, 38(12): 274-286. |
[13] | 赵雅茹, 许庆方, 高文俊, 郭刚, 陈雷, 玉柱. 抑霉乳酸菌脱毒特性及青贮应用的研究[J]. 生物技术通报, 2021, 37(9): 95-105. |
[14] | 王小河, 辜夕容, 祁顺菊, 李杰, 崔瑶, 李得霞, 杨莉荟. 巴山榧树枝和叶提取物的抗氧化能力、抑菌活性与挥发性成分[J]. 生物技术通报, 2021, 37(8): 152-161. |
[15] | 蔡国磊, 陆小凯, 娄水珠, 杨海英, 杜刚. 芽孢杆菌LM基于全基因组的分类鉴定及抑菌原理的研究[J]. 生物技术通报, 2021, 37(8): 176-185. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||