生物技术通报 ›› 2022, Vol. 38 ›› Issue (7): 40-50.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0807
收稿日期:
2021-06-25
出版日期:
2022-07-26
发布日期:
2022-08-09
作者简介:
陈桂芳,女,硕士研究生,研究方向:生物化学与分子生物学;E-mail: 基金资助:
CHEN Gui-fang1,2(), YANG Jia-yi1(), GAO Yun-hua1, REN Ge1
Received:
2021-06-25
Published:
2022-07-26
Online:
2022-08-09
摘要:
染色质免疫共沉淀测序(chromatin immunoprecipitation followed by sequencing,ChIP-seq)是研究目的蛋白与DNA相互作用的重要方法,被广泛应用于转录因子、组蛋白修饰等分布与功能的研究。研究人员通过对细胞分离、染色质片段化以及测序文库构建等关键步骤不断优化,使ChIP-seq适合少量细胞的分析。近年来发展迅速的CUT&RUN(cleavage under targets and release using nuclease)、CUT&Tag(cleavage under targets and tagmentation)技术,利用特异性抗体使酶“靶向”结合目标蛋白,通过MNase酶切或Tn5转座酶切割染色质,简化了实验操作流程。本文介绍了ChIP-seq的原理及其数据分析方法,比较ChIP-seq优化方法和衍生技术。总结了在植物生长发育过程中,转录因子和组蛋白修饰在生物钟调控、激素信号转导、光信号途径、胁迫响应等方面研究与染色质免疫共沉淀测序技术的应用。
陈桂芳, 杨佳怡, 高运华, 任歌. 染色质免疫共沉淀测序技术研究进展[J]. 生物技术通报, 2022, 38(7): 40-50.
CHEN Gui-fang, YANG Jia-yi, GAO Yun-hua, REN Ge. Research Progress in Chromatin Immunoprecipitation Followed by Sequencing[J]. Biotechnology Bulletin, 2022, 38(7): 40-50.
ULI-NChIP-seq | scChIP-seq | ChIP-exo | MOW ChIP-seq | ChIP-nexus | Nano-ChIP-seq | |
---|---|---|---|---|---|---|
细胞分离/ 单细胞捕获 | 流式细胞分选 | 液滴微流控芯片 | - | 微流控芯片 | - | - |
染色质制备 | MNase酶切 | MNase酶切 | 甲醛交联 超声断裂 lambda核酸外切酶 RecJf 核酸外切酶 | 甲醛交联 超声断裂 | 甲醛交联 超声断裂 | 甲醛交联 超声断裂 |
文库制备 | - | - | - | - | 使用含有BamH I酶切位点的测序接头,环化连接酶使DNA成环,酶切后进一步建库 | 使用发夹结构引物; BciV I酶切DNA,使含有突出末端便于连接测序接头 |
细胞数 | 103-105[ | 单细胞建库[ | 106[ | 102-104[ | 106[ | 104[ |
表1 ChIP-seq优化技术比较
Table 1 Comparison of optimization techniques of ChIP-seq
ULI-NChIP-seq | scChIP-seq | ChIP-exo | MOW ChIP-seq | ChIP-nexus | Nano-ChIP-seq | |
---|---|---|---|---|---|---|
细胞分离/ 单细胞捕获 | 流式细胞分选 | 液滴微流控芯片 | - | 微流控芯片 | - | - |
染色质制备 | MNase酶切 | MNase酶切 | 甲醛交联 超声断裂 lambda核酸外切酶 RecJf 核酸外切酶 | 甲醛交联 超声断裂 | 甲醛交联 超声断裂 | 甲醛交联 超声断裂 |
文库制备 | - | - | - | - | 使用含有BamH I酶切位点的测序接头,环化连接酶使DNA成环,酶切后进一步建库 | 使用发夹结构引物; BciV I酶切DNA,使含有突出末端便于连接测序接头 |
细胞数 | 103-105[ | 单细胞建库[ | 106[ | 102-104[ | 106[ | 104[ |
ChIP-seq | CUT&RUN | CUT&Tag | |
---|---|---|---|
细胞处理 | 甲醛交联/裂解细胞 | 改变细胞膜通透性 | 改变细胞膜通透性 |
染色质制备 | 超声断裂/MNase酶切 | 染色质与特异性抗体、pA-MN反应;Ca2+激活MNase酶切处理染色质 | 染色质与特异性抗体、pA-Tn5反应;Mg2+激活Tn5,进行切割与接头连接 |
细胞数 | 106-107 | 102-103[ 可实现单细胞建库[ | 102-103 可实现单细胞建库[ |
表2 CUT&RUN、CUT&Tag与ChIP-seq比较
Table 2 Comparison of CUT&RUN,CUT&Tag and ChIP-seq
ChIP-seq | CUT&RUN | CUT&Tag | |
---|---|---|---|
细胞处理 | 甲醛交联/裂解细胞 | 改变细胞膜通透性 | 改变细胞膜通透性 |
染色质制备 | 超声断裂/MNase酶切 | 染色质与特异性抗体、pA-MN反应;Ca2+激活MNase酶切处理染色质 | 染色质与特异性抗体、pA-Tn5反应;Mg2+激活Tn5,进行切割与接头连接 |
细胞数 | 106-107 | 102-103[ 可实现单细胞建库[ | 102-103 可实现单细胞建库[ |
[1] |
Lee TI, Johnstone SE, Young RA. Chromatin immunoprecipitation and microarray-based analysis of protein location[J]. Nat Protoc, 2006, 1(2):729-748.
doi: 10.1038/nprot.2006.98 URL |
[2] |
Ma T, Ye Z, Wang L. Genome wide approaches to identify protein-DNA interactions[J]. Curr Med Chem, 2019, 26(42):7641-7654.
doi: 10.2174/0929867325666180530115711 URL |
[3] | Park PJ. ChIP-seq:advantages and challenges of a maturing technology[J]. Nat Rev Genet, 2009, 10(10):669-680. |
[4] |
Wang G, Li X, An Y, et al. Transient ChIP-seq for genome-wide in vivo DNA binding landscape[J]. Trends Plant Sci, 2021, 26(5):524-525.
doi: 10.1016/j.tplants.2020.12.002 URL |
[5] |
Slattery M, Zhou T, Yang L, et al. Absence of a simple code:how transcription factors read the genome[J]. Trends Biochem Sci, 2014, 39(9):381-399.
doi: 10.1016/j.tibs.2014.07.002 pmid: 25129887 |
[6] |
O’Neill LP, Turner BM. Immunoprecipitation of native chromatin:NChIP[J]. Methods, 2003, 31(1):76-82.
doi: 10.1016/S1046-2023(03)00090-2 URL |
[7] |
Kasinathan S, Orsi GA, Zentner GE, et al. High-resolution mapping of transcription factor binding sites on native chromatin[J]. Nat Methods, 2014, 11(2):203-209.
doi: 10.1038/nmeth.2766 URL |
[8] |
Huang X, Pan Q, Lin Y, et al. A native chromatin immunoprecipitation(ChIP)protocol for studying histone modifications in strawberry fruits[J]. Plant Methods, 2020, 16:10.
doi: 10.1186/s13007-020-0556-z URL |
[9] |
Chereji RV, Ocampo J, Clark DJ. MNase-sensitive complexes in yeast:nucleosomes and non-histone barriers[J]. Mol Cell, 2017, 65(3):565-577. e3.
doi: S1097-2765(16)30847-4 pmid: 28157509 |
[10] |
Teytelman L, Thurtle DM, Rine J, et al. Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins[J]. PNAS, 2013, 110(46):18602-18607.
doi: 10.1073/pnas.1316064110 pmid: 24173036 |
[11] | Johnson DS, Mortazavi A, Myers RM, et al. Genome-wide mapping of in vivo protein-DNA interactions[J]. Science, 2007, 316 |
5830):1497-1502. | |
[12] | Barski A, Cuddapah S, Cui K, et al. High-resolution profiling of histone methylations in the human genome[J]. Cell, 2007, 129(4):823-837. |
[13] |
Schones DE, Cui KR, Cuddapah S, et al. Dynamic regulation of nucleosome positioning in the human genome[J]. Cell, 2008, 132(5):887-898.
doi: 10.1016/j.cell.2008.02.022 pmid: 18329373 |
[14] | Nakato R, Shirahige K. Recent advances in ChIP-seq analysis:from quality management to whole-genome annotation[J]. Brief Bioinform, 2017, 18(2):279-290. |
[15] |
Park SJ, Kim JH, Yoon BH, et al. A ChIP-seq data analysis pipeline based on bioconductor packages[J]. Genomics Inform, 2017, 15(1):11-18.
doi: 10.5808/GI.2017.15.1.11 URL |
[16] |
Peng Q, Vijaya Satya R, Lewis M, et al. Reducing amplification artifacts in high multiplex amplicon sequencing by using molecular barcodes[J]. BMC Genom, 2015, 16:589.
doi: 10.1186/s12864-015-1806-8 URL |
[17] |
Ebbert MT, Wadsworth ME, Staley LA, et al. Evaluating the necessity of PCR duplicate removal from next-generation sequencing data and a comparison of approaches[J]. BMC Bioinformatics, 2016, 17(Suppl 7):239.
doi: 10.1186/s12859-016-1097-3 URL |
[18] |
Hatem A, Bozdağ D, Toland AE, et al. Benchmarking short sequence mapping tools[J]. BMC Bioinformatics, 2013, 14:184.
doi: 10.1186/1471-2105-14-184 pmid: 23758764 |
[19] |
Flicek P, Birney E. Sense from sequence reads:methods for alignment and assembly[J]. Nat Methods, 2009, 6 (11 suppl):S6-S12.
doi: 10.1038/nmeth.1376 URL |
[20] |
Li H, Durbin R. Fast and accurate short-read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25(14):1754-1760.
doi: 10.1093/bioinformatics/btp324 URL |
[21] |
Langmead B, Trapnell C, Pop M, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[J]. Genome Biol, 2009, 10(3):R25.
doi: 10.1186/gb-2009-10-3-r25 URL |
[22] |
Li RQ, Li YR, Kristiansen K, et al. SOAP:short oligonucleotide alignment program[J]. Bioinformatics, 2008, 24(5):713-714.
doi: 10.1093/bioinformatics/btn025 URL |
[23] |
Jothi R, Cuddapah S, Barski A, et al. Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data[J]. Nucleic Acids Res, 2008, 36(16):5221-5231.
doi: 10.1093/nar/gkn488 pmid: 18684996 |
[24] | Shang J, Zhu F, Vongsangnak W, et al. Evaluation and comparison of multiple aligners for next-generation sequencing data analysis[J]. Biomed Res Int, 2014, 2014:309650. |
[25] |
Trapnell C, Salzberg SL. How to map billions of short reads onto genomes[J]. Nat Biotechnol, 2009, 27(5):455-457.
doi: 10.1038/nbt0509-455 pmid: 19430453 |
[26] | 陈凤珍, 李玲, 操利超, 等. 四种常用的生物序列比对软件比较[J]. 生物信息学, 2016, 14(1):56-60. |
Chen FZ, Li L, Cao LC, et al. Comparison of four common biological sequence alignment tools[J]. Chin J Bioinform, 2016, 14(1):56-60. | |
[27] |
Zhang Y, Liu T, Meyer CA, et al. Model-based analysis of ChIP-Seq(MACS)[J]. Genome Biol, 2008, 9(9):R137.
doi: 10.1186/gb-2008-9-9-r137 URL |
[28] |
Valouev A, Johnson DS, Sundquist A, et al. Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data[J]. Nat Methods, 2008, 5(9):829-834.
doi: 10.1038/nmeth.1246 pmid: 19160518 |
[29] | Wilbanks EG, Facciotti MT. Evaluation of algorithm performance in ChIP-seq peak detection[J]. PLoS One, 2010, 5(7):e11471. |
[30] | Liu S, Liu G, Cheng P, et al. Genome-wide profiling of histone lysine butyrylation reveals its role in the positive regulation of gene transcription in rice[J]. Rice:N Y, 2019, 12(1):86. |
[31] | Lu Y, Xu Q, Liu Y, et al. Dynamics and functional interplay of histone lysine butyrylation, crotonylation, and acetylation in rice under starvation and submergence[J]. Genome Biol, 2018, 19(1):144. |
[32] |
Cock PJ, Fields CJ, Goto N, et al. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants[J]. Nucleic Acids Res, 2010, 38(6):1767-1771.
doi: 10.1093/nar/gkp1137 URL |
[33] |
Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25(16):2078-2079.
doi: 10.1093/bioinformatics/btp352 URL |
[34] | Wolfsberg TG. Using the NCBI map viewer to browse genomic sequence data[J]. Curr Protoc Bioinformatics, 2010, Chapter 1:Unit 1. 5. 1-Unit 1. 525. |
[35] |
Zhang HB, Kim M, Chuang JH, et al. pyBedGraph:a Python package for fast operations on 1D genomic signal tracks[J]. Bioinformatics, 2020, 36(10):3234-3235.
doi: 10.1093/bioinformatics/btaa061 URL |
[36] |
Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer(IGV):high-performance genomics data visualization and exploration[J]. Brief Bioinform, 2013, 14(2):178-192.
doi: 10.1093/bib/bbs017 pmid: 22517427 |
[37] | Cao Z, Chen C, He B, et al. A microfluidic device for epigenomic profiling using 100 cells[J]. Nat Methods, 2015, 12(10):959-962. |
[38] |
Dean FB, Hosono S, Fang L, et al. Comprehensive human genome amplification using multiple displacement amplification[J]. PNAS, 2002, 99(8):5261-5266.
doi: 10.1073/pnas.082089499 URL |
[39] |
Brind’Amour J, Liu S, Hudson M, et al. An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations[J]. Nat Commun, 2015, 6:6033.
doi: 10.1038/ncomms7033 URL |
[40] |
Brind’Amour J, Liu S, et al. Ultra-low-input native ChIP-seq for rare cell populations[J]. Protoc Exch, 2015. DOI: 10.1038/protex.2015.007.
doi: 10.1038/protex.2015.007 |
[41] |
Sackmann EK, Sackmann EK, Fulton AL, et al. The present and future role of microfluidics in biomedical research[J]. Nature, 2014, 507(7491):181-189.
doi: 10.1038/nature13118 URL |
[42] |
Rotem A, Ram O, Shoresh N, et al. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state[J]. Nat Biotechnol, 2015, 33(11):1165-1172.
doi: 10.1038/nbt.3383 URL |
[43] | Rhee HS, Pugh BF. ChIP-exo method for identifying genomic location of DNA-binding proteins with near-single-nucleotide accuracy[J]. Curr Protoc Mol Biol, 2012, Chapter 21:Unit 21. 24. |
[44] |
Rhee HS, Pugh BF. Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution[J]. Cell, 2011, 147(6):1408-1419.
doi: 10.1016/j.cell.2011.11.013 URL |
[45] |
Zhu BH, Hsieh YP, Murphy TW, et al. MOWChIP-seq for low-input and multiplexed profiling of genome-wide histone modifications[J]. Nat Protoc, 2019, 14(12):3366-3394.
doi: 10.1038/s41596-019-0223-x URL |
[46] | Casbon JA, Osborne RJ, Brenner S, et al. A method for counting PCR template molecules with application to next-generation sequencing[J]. Nucleic Acids Res, 2011, 39(12):e81. |
[47] |
He Q, Johnston J, Zeitlinger J. ChIP-Nexus enables improved detection of in vivo transcription factor binding footprints[J]. Nat Biotechnol, 2015, 33(4):395-401.
doi: 10.1038/nbt.3121 |
[48] |
Adli M, Zhu J, Bernstein BE. Genome-wide chromatin maps derived from limited numbers of hematopoietic progenitors[J]. Nat Methods, 2010, 7(8):615-618.
doi: 10.1038/NMETH.1478 |
[49] |
Adli M, Bernstein BE. Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq[J]. Nat Protoc, 2011, 6(10):1656-1668.
doi: 10.1038/nprot.2011.402 URL |
[50] | Wang D, Deal RB. Epigenome profiling of specific plant cell types using a streamlined INTACT protocol and ChIP-seq[J]. Methods Mol Biol, 2015, 1284:3-25. |
[51] | Skene PJ, Henikoff S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites[J]. eLife, 2017, 6:e21856. |
[52] | Schmid M, Durussel T, Laemmli UK. ChIC and ChEC;genomic mapping of chromatin proteins[J]. Mol Cell, 2004, 16(1):147-157. |
[53] | Meers MP, Bryson TD, Henikoff JG, et al. Improved CUT&RUN chromatin profiling tools[J]. eLife, 2019, 8:e46314. |
[54] |
Skene PJ, Henikoff JG, Henikoff S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers[J]. Nat Protoc, 2018, 13(5):1006-1019.
doi: 10.1038/nprot.2018.015 URL |
[55] |
Hainer SJ, Bošković A, McCannell KN, et al. Profiling of pluripotency factors in single cells and early embryos[J]. Cell, 2019, 177(5):1319-1329. e11.
doi: S0092-8674(19)30276-4 pmid: 30955888 |
[56] |
Goryshin IY, Reznikoff WS. Tn5 in vitro transposition[J]. J Biol Chem, 1998, 273(13):7367-7374.
doi: 10.1074/jbc.273.13.7367 pmid: 9516433 |
[57] |
Picelli S, Björklund AK, Reinius B, et al. Tn5 transposase and tagmentation procedures for massively scaled sequencing projects[J]. Genome Res, 2014, 24(12):2033-2040.
doi: 10.1101/gr.177881.114 pmid: 25079858 |
[58] | Schmidl C, Rendeiro AF, Sheffield NC, et al. ChIPmentation:fast, robust, low-input ChIP-seq for histones and transcription factors[J]. Nat Methods, 2015, 12(10):963-965. |
[59] |
Kaya-Okur HS, Wu SJ, Codomo CA, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells[J]. Nat Commun, 2019, 10(1):1930.
doi: 10.1038/s41467-019-09982-5 pmid: 31036827 |
[60] |
Bartosovic M, Kabbe M, Castelo-Branco G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues[J]. Nat Biotechnol, 2021, 39(7):825-835.
doi: 10.1038/s41587-021-00869-9 pmid: 33846645 |
[61] |
Cusanovich DA, Daza R, Adey A, et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing[J]. Science, 2015, 348(6237):910-914.
doi: 10.1126/science.aab1601 pmid: 25953818 |
[62] |
Wang Q, Xiong H, Ai S, et al. CoBATCH for high-throughput single-cell epigenomic profiling[J]. Mol Cell, 2019, 76(1):206-216. e7.
doi: 10.1016/j.molcel.2019.07.015 URL |
[63] |
Muhammad II, Kong SL, Akmar Abdullah SN, et al. RNA-seq and ChIP-seq as complementary approaches for comprehension of plant transcriptional regulatory mechanism[J]. Int J Mol Sci, 2019, 21(1):167.
doi: 10.3390/ijms21010167 URL |
[64] |
Liu W, Triplett L, Chen XL. Emerging roles of posttranslational modifications in plant-pathogenic fungi and bacteria[J]. Annu Rev Phytopathol, 2021, 59:99-124.
doi: 10.1146/annurev-phyto-021320-010948 URL |
[65] |
Gaudinier A, Brady SM. Mapping transcriptional networks in plants:data-driven discovery of novel biological mechanisms[J]. Annu Rev Plant Biol, 2016, 67(1):575-594.
doi: 10.1146/annurev-arplant-043015-112205 URL |
[66] |
Zheng XY, Gehring M. Low-input chromatin profiling in Arabidopsis endosperm using CUT&RUN[J]. Plant Reprod, 2019, 32(1):63-75.
doi: 10.1007/s00497-018-00358-1 URL |
[67] |
Tao X, Feng S, Zhao T, et al. Efficient chromatin profiling of H3K4me3 modification in cotton using CUT&Tag[J]. Plant Methods, 2020, 16:120.
doi: 10.1186/s13007-020-00664-8 URL |
[68] |
Guo J, Li W, Shang L, et al. OsbHLH98 regulates leaf angle in rice through transcriptional repression of OsBUL1[J]. New Phytol, 2021, 230(5):1953-1966.
doi: 10.1111/nph.17303 URL |
[69] |
Kamioka M, Takao S, Suzuki T, et al. Direct repression of evening genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis circadian clock[J]. Plant Cell, 2016, 28(3):696-711.
doi: 10.1105/tpc.15.00737 URL |
[70] |
Li DM, Fu X, Guo L, et al. FAR-RED ELONGATED HYPOCOTYL3 activates SEPALLATA2 but inhibits CLAVATA3 to regulate meristem determinacy and maintenance in Arabidopsis[J]. PNAS, 2016, 113(33):9375-9380.
doi: 10.1073/pnas.1602960113 URL |
[71] |
Chen Y, Dan Z, Gao F, et al. Rice GROWTH-REGULATING FACTOR7 modulates plant architecture through regulating GA and indole-3-acetic acid metabolism[J]. Plant Physiol, 2020, 184(1):393-406.
doi: 10.1104/pp.20.00302 URL |
[72] |
Ouyang X, Li J, Li G, et al. Genome-wide binding site analysis of FAR-RED ELONGATED HYPOCOTYL3 reveals its novel function in Arabidopsis development[J]. Plant Cell, 2011, 23(7):2514-2535.
doi: 10.1105/tpc.111.085126 URL |
[73] | Wu K, Wang S, Song W, et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice[J]. Science, 2020, 367(6478):eaaz2046. |
[74] |
Nishio H, Nagano AJ, Ito T, et al. Seasonal plasticity and diel stability of H3K27me3 in natural fluctuating environments[J]. Nat Plants, 2020, 6(9):1091-1097.
doi: 10.1038/s41477-020-00757-1 URL |
[75] |
Pajoro A, Muiño JM, Angenent GC, et al. Profiling nucleosome occupancy by MNase-seq:experimental protocol and computational analysis[J]. Methods Mol Biol, 2018, 1675:167-181.
doi: 10.1007/978-1-4939-7318-7_11 pmid: 29052192 |
[76] | Buenrostro JD, Wu B, Chang HY, et al. ATAC-seq:a method for assaying chromatin accessibility genome-wide[J]. Curr Protoc Mol Biol, 2015, 109:21. 29.1-21. 29. 9. |
[1] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[2] | 韩浩章, 张丽华, 李素华, 赵荣, 王芳, 王晓立. 盐碱胁迫诱导的猴樟酵母cDNA文库构建及CbP5CS上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 236-245. |
[3] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[4] | 徐靖, 朱红林, 林延慧, 唐力琼, 唐清杰, 王效宁. 甘薯IbHQT1启动子的克隆及上游调控因子的鉴定[J]. 生物技术通报, 2023, 39(8): 213-219. |
[5] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[6] | 陈晓, 于茗兰, 吴隆坤, 郑晓明, 逄洪波. 植物lncRNA及其对低温胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(7): 1-12. |
[7] | 郭怡婷, 赵文菊, 任延靖, 赵孟良. 菊芋NAC转录因子家族基因的鉴定及分析[J]. 生物技术通报, 2023, 39(6): 217-232. |
[8] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[9] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[10] | 张新博, 崔浩亮, 史佩华, 高锦春, 赵顺然, 陶晨雨. 低起始量的免疫共沉淀技术研究进展[J]. 生物技术通报, 2023, 39(4): 227-235. |
[11] | 葛颜锐, 赵冉, 徐静, 李若凡, 胡云涛, 李瑞丽. 植物维管形成层发育及其调控的研究进展[J]. 生物技术通报, 2023, 39(3): 13-25. |
[12] | 刘铖霞, 孙宗艳, 罗云波, 朱鸿亮, 曲桂芹. bHLH转录因子的磷酸化调控植物生理功能的研究进展[J]. 生物技术通报, 2023, 39(3): 26-34. |
[13] | 赵孟良, 郭怡婷, 任延靖. 菊芋WRKY转录因子家族基因的鉴定及分析[J]. 生物技术通报, 2023, 39(2): 116-125. |
[14] | 赵若含, 赵净颖, 柏毅承, 张瑞芳, 贾俊静, 豆腾飞. 单细胞染色质转座酶可及性高通量测序技术及其应用[J]. 生物技术通报, 2023, 39(12): 109-117. |
[15] | 韩芳英, 胡昕, 王楠楠, 谢裕红, 王晓艳, 朱强. DREBs响应植物非生物逆境胁迫研究进展[J]. 生物技术通报, 2023, 39(11): 86-98. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||