生物技术通报 ›› 2020, Vol. 36 ›› Issue (7): 182-189.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0880
赵琳1, 王璞2, 吴琦1, 宋瑞瑞1, 兰韬1, 云振宇1
收稿日期:
2019-09-20
出版日期:
2020-07-26
发布日期:
2020-07-28
作者简介:
赵琳,男,博士,副研究员,研究方向:植物生物技术与标准化;E-mail:zhaolin@cnis.ac.cn
基金资助:
ZHAO Lin1, WANG Pu2, WU Qi1, SONG Rui-rui1, LAN Tao1, YUN Zhen-yu1
Received:
2019-09-20
Published:
2020-07-26
Online:
2020-07-28
摘要: 植物生长过程中不可避免的要面对不利的环境因素,它们已经进化出了灵活的基因表达重编程机制应对干旱、高盐、冷、热或洪涝等非生物环境胁迫。近年来,随着表观遗传学研究的不断深入,发现组蛋白翻译后修饰特性会受环境胁迫的影响而改变,启动相关胁迫应答基因表达,或者充当胁迫应答转录因子的下游参与调控转录活动,组蛋白修饰已经被证实在植物逆境的响应过程中起着至关重要的作用。主要综述了非生物胁迫下植物组蛋白修饰参与基因转录应答的最新进展,以期为植物非生物胁迫耐受性的相关研究提供参考。
赵琳, 王璞, 吴琦, 宋瑞瑞, 兰韬, 云振宇. 非生物胁迫下植物组蛋白修饰参与基因表达调控的研究进展[J]. 生物技术通报, 2020, 36(7): 182-189.
ZHAO Lin, WANG Pu, WU Qi, SONG Rui-rui, LAN Tao, YUN Zhen-yu. Research Progress in Histone Modification of Plant Involved in the Regulation of Gene Expression Response to Abiotic Stress[J]. Biotechnology Bulletin, 2020, 36(7): 182-189.
[1] Cutler SR, Rodriguez PL, Finkelstein RR, et al.Abscisic acid:emergence of a core signaling network[J]. Annual Review of Plant Biology, 2010(61):651-679. [2] Amtmann A, Armengaud P.Effects of N, P, K and S on metabolism:new knowledge gained from multi-level analysis[J]. Current Opinion in Plant Biology, 2009, 12(3):275-283. [3] Wang LC, Wu JR, Chang WL, et al.Arabidopsis HIT4 encodes a novel chromocentre-localized protein involved in the heat reactivation of transcriptionally silent loci and is essential for heat tolerance in plants[J]. Journal of Experimental Botany, 2013, 64(6):1689-1701. [4] Miura K, Furumoto T.Cold signaling and cold response in plants[J]. International Journal of Molecular Sciences, 2013, 14(3):5312-5337. [5] Saidi Y, Finka A, Goloubinoff P.Heat perception and signalling in plants:a tortuous path to thermotolerance[J]. New Phytologist, 2011, 190(3):556-565. [6] Singh D, Laxmi A.Transcriptional regulation of drought response:a tortuous network of transcriptional factors[J]. Frontiers in Plant Science, 2015(6):895. [7] Tang XL, Mu XM, Shao HB, et al.Global plant-responding mechanisms to salt stress:physiological and molecular levels and implications in biotechnology[J]. Critical Reviews in Biotechnology, 2015, 35(4):425-437. [8] Sauter M.Root responses to flooding[J]. Current Opinion in Plant Biology, 2013, 16(3):282-286. [9] Geng Y, Wu R, Wee CW, et al.A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis[J]. The Plant Cell, 2013, 25(6):2132-2154. [10] Wang H, Wang H, Shao H, et al.Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology[J]. Frontiers in Plant Science, 2016(7):67. [11] Roudier F, Ahmed I, Berard C, et al.Integrative epigenomic mapping defines four main chromatin states in Arabidopsis[J]. The EMBO Journal, 2011, 30(10):1928-1938. [12] Zhang XY, Bernatavichute YV, Cokus S, et al.Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana[J]. Genome Biology, 2009, 10(6):R62. [13] Zhang X, Clarenz O, Cokus S, et al.Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis[J]. PLoS Biology, 2007, 5(5):e129. [14] Bernatavichute YV, Zhang XY, Cokus S, et al.Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana[J]. PLoS One, 2008, 3(9):e3156. [15] Zong W, Zhong X, You J, et al.Genome-wide profiling of histone H3K4-tri-methylation and gene expression in rice under drought stress[J]. Plant Molecular Biology, 2013, 81(1/2):175-88. [16] Singh P, Yekondi S, Chen PW, et al.Environmental history modulates Arabidopsis pattern-triggered immunity in a HISTONE ACETYLTRANSFERASE1- dependent manner[J]. The Plant Cell, 2014, 26(6):2676-2688. [17] Ding Y, Avramova Z, Fromm M.The Arabidopsis trithorax-like factor ATX1 functions in dehydration stress responses via ABA-dependent and ABA-independent pathways[J]. The Plant Journal, 2011, 66(5):735-744. [18] Huang S, Zhang A, Jin JB, et al.Arabidopsis histone H3K4 demethylase JMJ17 functions in dehydration stress response[J]. New Phytologist, 2019, 223(3):1372-1387. [19] Kim JM, To TK, Ishida J, et al.Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2008, 49(10):1580-1588. [20] Nguyen HN, Cheong JJ.The AtMYB44 promoter is accessible to signals that induce different chromatin modifications for gene transcription[J]. Plant Physiol Biochem, 2018, 130:14-19. [21] Nguyen NH, Jung C, Cheong JJ.Chromatin remodeling for the transcription of type 2C protein phosphatase genes in response to salt stress[J]. Plant Physiol Biochem, 2019, 141:325-331. [22] Tsuji H, Saika H, Tsutsumi N, et al.Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice[J]. Plant and Cell Physiology, 2006, 47(7):995-1003. [23] Chen LT, Luo M, Wang YY, et al.Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response[J]. Journal of Experimental Botany, 2010, 61(12):3345-3353. [24] Folsom JJ, Begcy K, Hao X, et al.Rice fertilization-independent endosperm1 regulates seed size under heat stress by controlling early endosperm development[J]. Plant Physiology, 2014, 165(1):238-248. [25] González RM, Ricardi MM, Iusem ND.Epigenetic marks in an adaptive water stress-responsive gene in tomato roots under normal and drought conditions[J]. Epigenetics, 2013, 8(8):864-872. [26] Kwon CS, Lee D, Choi G, et al.Histone occupancy-dependent and -independent removal of H3K27 trimethylation at cold-responsive genes in Arabidopsis[J]. Plant J, 2009, 60(1):112-121. [27] Zong W, Yang J, Fu J, et al.Synergistic regulation of drought-responsive genes by transcription factor OsbZIP23 and histone modification in rice[J]. Journal of Integrative Plant Biology, 2019, doi:10. 1111/jipb. 12850. [28] Zhu N, Cheng S, Liu X, et al.The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice[J]. Plant Science, 2015, 236:146-156. [29] González RM, Ricardi MM, Iusem ND.Atypical epigenetic mark in an atypical location:cytosine methylation at asymmetric(CNN)sites within the body of a non-repetitive tomato gene[J]. BMC Plant Biology, 2011, 11(1):94. [30] Sani E, Herzyk P, Perrella G, et al.Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome[J]. Genome Biology, 2013, 14(6):R59. [31] Ding Y, Fromm M, Avramova Z.Multiple exposures to drought ‘train’ transcriptional responses in Arabidopsis[J]. Nature Communications, 2012, 13(3):740. [32] Liu HC, Lämke J, Lin SY, et al.Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress[J]. The Plant Journal, 2018, 95(3):401-413. [33] Kuo MH, Brownell JE, Sobel RE, et al.Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines[J]. Nature, 1996, 383(6597):269-272. [34] Shahbazian MD, Grunstein M.Functions of site-specific histone acetylation and deacetylation[J]. Annual Review of Biochemistry, 2007(76):75-100. [35] Wang Z, Zang C, Cui K, et al.Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes[J]. Cell, 2009, 138(5):1019-1031. [36] Chinnusamy V, Zhu J, Zhu JK.Cold stress regulation of gene expression in plants[J]. Trends Plant Sci, 2007, 10:444-451. [37] Matsui A, Ishida J, Morosawa T, et al.Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array[J]. Plant and Cell Physiology, 2008, 49(8):1135-1149. [38] Kim JM, To TK, Ishida J, et al.Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana[J]. Plant Cell Physiol, 2012, 53(5):847-856. [39] Zheng M, Liu X, Lin J, et al.Histone acetyltransferase GCN5 contributes to cell wall integrity and salt stress tolerance by altering the expression of cellulose synthesis genes[J]. The Plant Journal, 2019, 97(3):587-602. [40] Hu Z, Song N, Zheng M, et al.Histone acetyltransferase GCN5 is essential for heat stress-responsive gene activation and thermotolerance in Arabidopsis[J]. The Plant Journal, 2015, 84(6):1178-1791. [41] Weng M, Yang Y, Feng H, et al.Histone chaperone ASF1 is involved in gene transcription activation in response to heat stress in Arabidopsis thaliana[J]. Plant Cell and Environment, 2014, 37(9):2128-2138. [42] Li H, Yan S, Zhao L, et al.Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling[J]. BMC Plant Biology, 2014, 14:105. [43] Zhao L, Wang P, Yan S, et al.Promoter-associated histone acetylation is involved in the osmotic stress-induced transcriptional regulation of the maize ZmDREB2A gene[J]. Physiologia Plantarum, 2014, 151(4):459-467. [44] Yolcu S, Ozdemir F, Güler A, et al.Histone acetylation influences the transcriptional activation of POX in Beta vulgaris L. and Beta maritima L. under salt stress[J]. Plant Physiology and Biochemistry, 2016, 100:37-46. [45] To TK, Nakaminami K, Kim JM, et al.Arabidopsis HDA6 is required for freezing tolerance[J]. Biochemical and Biophysical Research Communications, 2011, 406(3):414-419. [46] Hu Y, Zhang L, Zhao L, et al.Trichostatin A selectively suppresses the cold-induced transcription of the ZmDREB1 gene in maize[J]. PLoS One, 2011, 6(7):e22132. [47] Hu Y, Zhang L, He S, et al.Cold stress selectively unsilences tandem repeats in heterochromatin associated with accumulation of H3K9ac[J]. Plant Cell Environ, 2012, 35(12):2130-2142. [48] Hou H, Zhao L, Zheng X, et al.Dynamic changes in histone modification are associated with upregulation of Hsf and rRNA genes during heat stress in maize seedlings[J]. Protoplasma, 2019, 256(5):1245-1256. [49] Zhang H, Yue M, Zheng X, et al.The role of promoter-associated histone acetylation of Haem Oxygenase-1(HO-1)and Giberellic Acid-Stimulated Like-1(GSL-1)genes in heat-induced lateral root primordium inhibition in maize[J]. Frontiers in Plant Science, 2018, 9:1520. [50] Zhao L, Wang P, Hou H, et al.Transcriptional regulation of cell cycle genes in response to abiotic stresses correlates with dynamic changes in histone modifications in maize[J]. PLoS One, 2014, 9(8):e106070. [51] Roy D, Paul A, Roy A, et al.Differential acetylation of histone H3 at the regulatory region of OsDREB1b promoter facilitates chromatin remodelling and transcription activation during cold stress[J]. PLoS One, 2014, 9(6):e100343. [52] Zhang Z, Zhang S, Zhang Y, et al.Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and Pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation[J]. The Plant Cell, 2011, 23(1):396-411. [53] Wang Z, Casas-Mollano JA, Xu J, et al.Osmotic stress induces phosphorylation of histone H3 at threonine 3 in pericentromeric regions of Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences, 2015, 112(27):8487-8492. [54] Ma S, Tang N, Li X, et al.Reversible histone H2B monoubiquitination fine-tunes abscisic acid signaling and drought response in rice[J]. Molecular Plant, 2019, 12(2):263-277. [55] Zhou S, Chen Q, Sun Y, et al.Histone H2B monoubiquitination regulates salt stress-induced microtubule depolymerization in Arabidopsis[J]. Plant Cell and Environment, 2017, 40(8):1512-1530. |
[1] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[2] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[3] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[4] | 翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232. |
[5] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[6] | 张新博, 崔浩亮, 史佩华, 高锦春, 赵顺然, 陶晨雨. 低起始量的免疫共沉淀技术研究进展[J]. 生物技术通报, 2023, 39(4): 227-235. |
[7] | 杨春洪, 董璐, 陈林, 宋丽. 大豆VAS1基因家族的鉴定及参与侧根发育的研究[J]. 生物技术通报, 2023, 39(3): 133-142. |
[8] | 苗淑楠, 高宇, 李昕儒, 蔡桂萍, 张飞, 薛金爱, 季春丽, 李润植. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析[J]. 生物技术通报, 2023, 39(2): 96-106. |
[9] | 许睿, 祝英方. 中介体复合物在植物非生物胁迫应答中的功能[J]. 生物技术通报, 2023, 39(11): 54-60. |
[10] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[11] | 杨旭妍, 赵爽, 马天意, 白玉, 王玉书. 三个甘蓝WRKY基因的克隆及其对非生物胁迫的表达[J]. 生物技术通报, 2023, 39(11): 261-269. |
[12] | 刘媛媛, 魏传正, 谢永波, 仝宗军, 韩星, 甘炳成, 谢宝贵, 严俊杰. 金针菇II类过氧化物酶基因在子实体发育与胁迫应答过程的表达特征[J]. 生物技术通报, 2023, 39(11): 340-349. |
[13] | 安昌, 陆琳, 沈梦千, 陈盛圳, 叶康卓, 秦源, 郑平. 植物bHLH基因家族研究进展及在药用植物中的应用前景[J]. 生物技术通报, 2023, 39(10): 1-16. |
[14] | 李建建, 贺宸靖, 黄小平, 向太和. 植物长链非编码RNA调控发育与胁迫应答的研究进展[J]. 生物技术通报, 2023, 39(1): 48-58. |
[15] | 位欣欣, 兰海燕. 植物MYB转录因子调控次生代谢及逆境响应的研究进展[J]. 生物技术通报, 2022, 38(8): 12-23. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 649
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 520
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||