生物技术通报 ›› 2021, Vol. 37 ›› Issue (1): 32-51.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1374
收稿日期:
2020-11-12
出版日期:
2021-01-26
发布日期:
2021-01-15
作者简介:
殷志斌,男,博士,助理研究员,研究方向:质谱仪器研制及质谱成像;E-mail: 基金资助:
YIN Zhi-bin1(), HUANG Wen-jie1, WU Xin-zhou2(), YAN Shi-juan1()
Received:
2020-11-12
Published:
2021-01-26
Online:
2021-01-15
摘要:
空间分辨代谢组学即整合质谱成像和代谢组学技术,对动/植物组织和细胞中内/外源性代谢物的种类、含量和差异性空间分布进行精准测定。质谱成像技术因其具有无标记、非特异、高灵敏度、高化学覆盖、元素/分子同时检测等优势,被广泛应用于动/植物组织中各类代谢物、多肽和蛋白的时空分布研究。首先介绍了代谢组学和质谱成像技术的研究现状,然后重点综述了空间分辨代谢组学在动物组织、植物组织和单细胞水平上的前沿应用。最后展望了空间分辨代谢组学技术的现有瓶颈和未来发展方向。空间分辨代谢组学是继代谢组学之后又一门新兴的分子成像组学技术,能够无标记、可视化检测动物组织中外源性药物的吸收、分布、代谢和排泄,以及植物组织中多种代谢产物的生物合成、转运途径和积累规律。该技术将推动靶向药物发现、病理机制解析和动植物生长发育密切关联的空间代谢网络调控等前沿应用研究。
殷志斌, 黄文洁, 伍欣宙, 晏石娟. 空间分辨代谢组学进展和挑战[J]. 生物技术通报, 2021, 37(1): 32-51.
YIN Zhi-bin, HUANG Wen-jie, WU Xin-zhou, YAN Shi-juan. Spatially Resolved Metabolomics:Progress and Challenges[J]. Biotechnology Bulletin, 2021, 37(1): 32-51.
Year | Species | Lateral resolution | Imaging techniques | Nos. of metabolites | Imaging analytes | Involved pathway | Ref. |
---|---|---|---|---|---|---|---|
Animal Tissue Imaging | |||||||
2019 | Prostate cancer tissue | 150 μm | DESI | 25 | Phospholipids,fatty acids,and organic acids | Fatty acid and lipid biosynthesis | [64] |
2019 | Whole-body rat tissue sections | 500 μm | AFADESI | 17 | Epimeric drugs,neurotransmitters(GABA,glutamic acid,and glutamine) | Metabolic pathway of drugs | [65] |
2019 | Esophageal squamous cell carcinoma tissue | 200 μm | AFADESI | 27 | Amino acids,pyrimidines,fatty acids,saccharides,phospholipids,and organic acids | Proline/fatty acid/ polyamine biosynthesis,and glutamine/uridine/ histidine metabolism | [15] |
2020 | Breast cancer tissue | 100 μm | MALDI | 24 | Carnitines and long-chain acylcarnitines | Carnitine system-mediated fatty acid β-oxidation pathway | [62] |
2020 | Rat kidney tissue | 200 μm | AFADESI | 38 | Aristolochic acid I,amino acids,lipids,inosine,adenosine triphosphate,and carnitine | Arginine-creatinine metabolic pathway,urea cycle,and serine biosynthesis | [64] |
Plant Tissue Imaging | |||||||
2008 | Arabidopsis thaliana leaves | 200 μm | MALDI | 3 | Glucosinolates | Location of glucosinolates within a leaf regarding plant defenses | [79] |
2012 | Gossypium hirsutum seed | 50 μm | MALDI | 69 | TAGs,PAs,PEs,PCs,β-sitosterol,and polyphenolic gossypol | Location of TAGs and PCs in cotton embryos | [13] |
2014 | Accent grape berry surface | 20 μm | LA-ESI,MALDI,and ESI-MS | 41 | Amino acids,carbohydrates,and anthocyanins | Location of carbohydrates and anthocyanins in berry surface | [66] |
2014 | Glycyrrhiza glabra L. | 10-30 μm | MALDI | 24 | Flavonoids,flavonoid glycosides,and saponins | Biosynthetic pathway of flavonoids and saponins | [67] |
2015 | Brassica napus | 10 μm | MALDI | 93 | Sinapines,methyl sinapates,cyclic spermidine conjugates,triacylglycerols,and PCs | Translocation of metabolite in matureation and early germination stages | [68] |
2015 | H. perforatum and H. olympicum | 10-15 μm | MALDI | 11 | Naphthodianthrone and flavonoids | Biosynthetic pathway and storage location of hypericin and emodin | [72] |
2016 | Paeonia lactiflora | 10 μm | MALDI | 33 | Amino acids,carbohydrates,lipids,and monoterpenes | Biosynthetic pathway of gallotannins and monoterpene glucosides | [71] |
2017 | Brassica napus | 40 μm | MALDI | 27 | PCs and TAGs | Lipid synthesis in oil seeds | [73] |
2018 | Ginkgo biloba L. | 50 μm | MALDI | 69 | Flavonoids,organic acids,saccharides,phospholipids,chlorophylls,and ginkgolides | Biosynthesis pathways of ginkgo metabolites | [69] |
2018 | Solanum lycopersicum root | 60 μm | MALDI | 35 | Peptides,proteins,and secondary metabolites | Location of secondary metabolites,peptides,and proteins in plant tissues | [78] |
2019 | Emiliania huxleyi | 100 μm | MALDI | 24 | Chlorophyll,vGSLs,BLL,DGCC,PDPT,and PC | Host-virus interactions and their metabolic landscape | [77] |
2020 | Solanum lycopersicum root | 50 μm | MALDI | 9 | Acylsucrose,steroidal glycoalkaloids,lignans,hydroxycinnamic acids,and organic acids | Location of systemically induced root exudation of metabolites(SIREM) | [76] |
2020 | Solanum lycopersicum | 65 μm | MALDI | 23 | Steroidal glycoalkaloids(e.g.,α-tomatine,(dehydro-)α-tomatine,and dehydrotomatine)and anthocyanins | Trace the steroidal glycoalkaloids pathway in tomato fruit for gene function verification | [75] |
2020 | Camellia sinensis | 1.7 mm | LC-MS/MS | 56 | Catechins,alkaloids,theanine,theaflavins,flavone,amino acids,and phenolic acids | Metabolite changes of tea plant response to the wounding | [70] |
Single-Cell Imaging | |||||||
2012 | HeLa cells | 7 μm | MALDI | 22 | DIOC6 and phospholipids | Location of DIOC6 and phospholipids within a single cell | [86] |
2016 | Catharanthus Roseus cells | 20 μm | MALDI and Live single-cell MS | 12 | TIA including catharanthine,ajmalicine,and strictosidine | Synthetic pathway and accumulation location of TIA | [16] |
2017 | P. caudatum and Rotifera cells | 1.4 μm | MALDI | 19 | DAGs,PCs,phosphatidylserines,monoglycerides,ceramides,and small peptides | Subcellular imaging of lipid,metabolite,and peptide within a single cell | [87] |
2019 | HeLa cells | 250 nm | NDPI | 6 | Proflavine and its metabolites,methylthioninium chloride | Subcellular imaging of proflavine and its metabolites within a single cell | [88] |
2020 | HeLa cells | 250 nm | NDPI | 3 | Proflavine,ethacridine,and potential metabolites | Spatial differentiation of proflavine and ethacridine within a single cell | [89] |
2020 | HeLa cells | 250 nm | NDPI | 10 | AgNPs and AuNPs | Location of AuNPs and AgNPs within a single cell | [90] |
2020 | HeLa cells | 300 nm | NLP-based LDI | 6 | Acriflavine,azure B,folate acid,daunorubicin,SPIONs | Dynamic process of anticancer drug molecules release from nanoparticle carriers in lysosomes and entering the nucleus finally leading to apoptosis of cancer cells | [91] |
2020 | HeLa cells | 1 μm | SIMS | 24 | AICAR,phospholipids | De novo purine biosynthesis by purinosome | [92] |
2020 | Epithelial cells,sulfur-oxidizing and methane-oxidizing bacterium | 3 μm | MALDI and FISH microscopy | 2 506 | Carotenoids,phospholipids,TAGs,phosphoethanolamine ceramide,fatty acids | Host-microbe symbioses and their metabolic interactions | [93] |
表1 空间分辨代谢组学技术在动/植物组织、单细胞中最新应用汇总
Year | Species | Lateral resolution | Imaging techniques | Nos. of metabolites | Imaging analytes | Involved pathway | Ref. |
---|---|---|---|---|---|---|---|
Animal Tissue Imaging | |||||||
2019 | Prostate cancer tissue | 150 μm | DESI | 25 | Phospholipids,fatty acids,and organic acids | Fatty acid and lipid biosynthesis | [64] |
2019 | Whole-body rat tissue sections | 500 μm | AFADESI | 17 | Epimeric drugs,neurotransmitters(GABA,glutamic acid,and glutamine) | Metabolic pathway of drugs | [65] |
2019 | Esophageal squamous cell carcinoma tissue | 200 μm | AFADESI | 27 | Amino acids,pyrimidines,fatty acids,saccharides,phospholipids,and organic acids | Proline/fatty acid/ polyamine biosynthesis,and glutamine/uridine/ histidine metabolism | [15] |
2020 | Breast cancer tissue | 100 μm | MALDI | 24 | Carnitines and long-chain acylcarnitines | Carnitine system-mediated fatty acid β-oxidation pathway | [62] |
2020 | Rat kidney tissue | 200 μm | AFADESI | 38 | Aristolochic acid I,amino acids,lipids,inosine,adenosine triphosphate,and carnitine | Arginine-creatinine metabolic pathway,urea cycle,and serine biosynthesis | [64] |
Plant Tissue Imaging | |||||||
2008 | Arabidopsis thaliana leaves | 200 μm | MALDI | 3 | Glucosinolates | Location of glucosinolates within a leaf regarding plant defenses | [79] |
2012 | Gossypium hirsutum seed | 50 μm | MALDI | 69 | TAGs,PAs,PEs,PCs,β-sitosterol,and polyphenolic gossypol | Location of TAGs and PCs in cotton embryos | [13] |
2014 | Accent grape berry surface | 20 μm | LA-ESI,MALDI,and ESI-MS | 41 | Amino acids,carbohydrates,and anthocyanins | Location of carbohydrates and anthocyanins in berry surface | [66] |
2014 | Glycyrrhiza glabra L. | 10-30 μm | MALDI | 24 | Flavonoids,flavonoid glycosides,and saponins | Biosynthetic pathway of flavonoids and saponins | [67] |
2015 | Brassica napus | 10 μm | MALDI | 93 | Sinapines,methyl sinapates,cyclic spermidine conjugates,triacylglycerols,and PCs | Translocation of metabolite in matureation and early germination stages | [68] |
2015 | H. perforatum and H. olympicum | 10-15 μm | MALDI | 11 | Naphthodianthrone and flavonoids | Biosynthetic pathway and storage location of hypericin and emodin | [72] |
2016 | Paeonia lactiflora | 10 μm | MALDI | 33 | Amino acids,carbohydrates,lipids,and monoterpenes | Biosynthetic pathway of gallotannins and monoterpene glucosides | [71] |
2017 | Brassica napus | 40 μm | MALDI | 27 | PCs and TAGs | Lipid synthesis in oil seeds | [73] |
2018 | Ginkgo biloba L. | 50 μm | MALDI | 69 | Flavonoids,organic acids,saccharides,phospholipids,chlorophylls,and ginkgolides | Biosynthesis pathways of ginkgo metabolites | [69] |
2018 | Solanum lycopersicum root | 60 μm | MALDI | 35 | Peptides,proteins,and secondary metabolites | Location of secondary metabolites,peptides,and proteins in plant tissues | [78] |
2019 | Emiliania huxleyi | 100 μm | MALDI | 24 | Chlorophyll,vGSLs,BLL,DGCC,PDPT,and PC | Host-virus interactions and their metabolic landscape | [77] |
2020 | Solanum lycopersicum root | 50 μm | MALDI | 9 | Acylsucrose,steroidal glycoalkaloids,lignans,hydroxycinnamic acids,and organic acids | Location of systemically induced root exudation of metabolites(SIREM) | [76] |
2020 | Solanum lycopersicum | 65 μm | MALDI | 23 | Steroidal glycoalkaloids(e.g.,α-tomatine,(dehydro-)α-tomatine,and dehydrotomatine)and anthocyanins | Trace the steroidal glycoalkaloids pathway in tomato fruit for gene function verification | [75] |
2020 | Camellia sinensis | 1.7 mm | LC-MS/MS | 56 | Catechins,alkaloids,theanine,theaflavins,flavone,amino acids,and phenolic acids | Metabolite changes of tea plant response to the wounding | [70] |
Single-Cell Imaging | |||||||
2012 | HeLa cells | 7 μm | MALDI | 22 | DIOC6 and phospholipids | Location of DIOC6 and phospholipids within a single cell | [86] |
2016 | Catharanthus Roseus cells | 20 μm | MALDI and Live single-cell MS | 12 | TIA including catharanthine,ajmalicine,and strictosidine | Synthetic pathway and accumulation location of TIA | [16] |
2017 | P. caudatum and Rotifera cells | 1.4 μm | MALDI | 19 | DAGs,PCs,phosphatidylserines,monoglycerides,ceramides,and small peptides | Subcellular imaging of lipid,metabolite,and peptide within a single cell | [87] |
2019 | HeLa cells | 250 nm | NDPI | 6 | Proflavine and its metabolites,methylthioninium chloride | Subcellular imaging of proflavine and its metabolites within a single cell | [88] |
2020 | HeLa cells | 250 nm | NDPI | 3 | Proflavine,ethacridine,and potential metabolites | Spatial differentiation of proflavine and ethacridine within a single cell | [89] |
2020 | HeLa cells | 250 nm | NDPI | 10 | AgNPs and AuNPs | Location of AuNPs and AgNPs within a single cell | [90] |
2020 | HeLa cells | 300 nm | NLP-based LDI | 6 | Acriflavine,azure B,folate acid,daunorubicin,SPIONs | Dynamic process of anticancer drug molecules release from nanoparticle carriers in lysosomes and entering the nucleus finally leading to apoptosis of cancer cells | [91] |
2020 | HeLa cells | 1 μm | SIMS | 24 | AICAR,phospholipids | De novo purine biosynthesis by purinosome | [92] |
2020 | Epithelial cells,sulfur-oxidizing and methane-oxidizing bacterium | 3 μm | MALDI and FISH microscopy | 2 506 | Carotenoids,phospholipids,TAGs,phosphoethanolamine ceramide,fatty acids | Host-microbe symbioses and their metabolic interactions | [93] |
Ionization technique | Probe | Environment | Lateral resolution | Requirements | LOD | Detected molecular species | |
---|---|---|---|---|---|---|---|
Typical | Optimal | ||||||
Dynamic SIMS | High-energy ion beams | High vacuum | 0.05-1 μm | 30 nm | Slicing,dehydrated,no matrix needed | pmol-fmol | Elements |
Static SIMS | Low-energy ion beams | High vacuum | 0.1-1 μm | 100 nm | Slicing,dehydrated,no matrix needed | pmol-fmol | Elements,metabolite fragments,drug fragments,and lipid fragments |
MALDI | UV laser | High vacuum,low vacuum,or AP | 10-100 μm | 1.7 μm | Slicing,dehydrated,and homogeneous matrix coating | fmol-amol | Metabolites(e.g.,amino acids,alkaloids,glycosides,phenolics,fatty acids,and glycerides),drugs,lipids,peptides,and proteins |
LDI | UV laser | High vacuum,low vacuum,or AP | 10-100 μm | 350 nm | Slicing,dehydrated,no matrix coating | fmol-amol | Metabolites(e.g.,terpenoids,alkaloids,saccharides,glycerides),drugs,and lipids |
DESI | Charged spray | AP | ~ 200 μm | 12 μm | No particular sample preparation needed,tissue imprinting if necessary | fmol | Metabolites(e.g.,amino acids,terpenoids,alkaloids,glycosides,and glycerides),drugs,lipids,and small peptides |
LA-ESI | IR laser and charged spray | AP | 200-300 μm | 30 μm | No particular sample preparation needed but require water content in sample | pmol-fmol | Metabolites(e.g.,amino acids,alkaloids,glycosides,and glycerides),drugs,and lipids,and small peptides |
表2 常用质谱成像技术的空间分辨率、样品制备要求、最佳检出限、适用分子种类等信息汇总
Ionization technique | Probe | Environment | Lateral resolution | Requirements | LOD | Detected molecular species | |
---|---|---|---|---|---|---|---|
Typical | Optimal | ||||||
Dynamic SIMS | High-energy ion beams | High vacuum | 0.05-1 μm | 30 nm | Slicing,dehydrated,no matrix needed | pmol-fmol | Elements |
Static SIMS | Low-energy ion beams | High vacuum | 0.1-1 μm | 100 nm | Slicing,dehydrated,no matrix needed | pmol-fmol | Elements,metabolite fragments,drug fragments,and lipid fragments |
MALDI | UV laser | High vacuum,low vacuum,or AP | 10-100 μm | 1.7 μm | Slicing,dehydrated,and homogeneous matrix coating | fmol-amol | Metabolites(e.g.,amino acids,alkaloids,glycosides,phenolics,fatty acids,and glycerides),drugs,lipids,peptides,and proteins |
LDI | UV laser | High vacuum,low vacuum,or AP | 10-100 μm | 350 nm | Slicing,dehydrated,no matrix coating | fmol-amol | Metabolites(e.g.,terpenoids,alkaloids,saccharides,glycerides),drugs,and lipids |
DESI | Charged spray | AP | ~ 200 μm | 12 μm | No particular sample preparation needed,tissue imprinting if necessary | fmol | Metabolites(e.g.,amino acids,terpenoids,alkaloids,glycosides,and glycerides),drugs,lipids,and small peptides |
LA-ESI | IR laser and charged spray | AP | 200-300 μm | 30 μm | No particular sample preparation needed but require water content in sample | pmol-fmol | Metabolites(e.g.,amino acids,alkaloids,glycosides,and glycerides),drugs,and lipids,and small peptides |
[1] | Sumner LW, Yang DS, Bench BJ, et al. Spatially resolved plant metabolomic[M]//. In:Biology of Plant Metabolomics. New Jersey:Wiley-Blackwell, 2011: 343-366. |
[2] |
Wurtzel ET, Kutchan TM. Plant metabolism, the diverse chemistry set of the future[J]. Science, 2016,353(6305):1232-1236.
doi: 10.1126/science.aad2062 URL pmid: 27634523 |
[3] | 孙俊聪, 侯柄竹, 陈晓亚, 等, 新中国成立70年来我国植物代谢领域的重要进展[J]. 中国科学:生命科学, 2019,10:1213-1226. |
Sun JC, Hou BZ, Chen XY, et al. Important progress in plant metabolism in China since the establishment of the People’s Republic of China 70 years ago[J]. Sci Sin Vitae, 2019,49:1213-1226. | |
[4] |
Etalo DW, De Vos RCH, Joosten MHAJ, et al. Spatially resolved plant metabolomics:some potentials and limitations of laser-ablation electrospray ionization mass spectrometry metabolite imaging[J]. Plant Physiology, 2015,169(3):1424-1435.
doi: 10.1104/pp.15.01176 URL pmid: 26392264 |
[5] | 青蒿素结构研究协作组, 一种新型的倍半萜内酯-青蒿素[J]. 科学通报, 1997,22:142. |
Artemisinin structure research collaboration group. A new sesquiterpene lactone-artemisinin[J]. Science China Bulletin, 1997,22:142. | |
[6] |
Tian X, Ruan JX, Huang JQ, et al. Characterization of gossypol biosynthetic pathway[J]. PNAS, 2018,115(23):E5410-E5418.
doi: 10.1073/pnas.1805085115 URL pmid: 29784821 |
[7] |
Zhang L, Ding R, Chai Y, et al. Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures[J]. PNAS, 2004,101(17):6786-6791.
doi: 10.1073/pnas.0401391101 URL pmid: 15084741 |
[8] | Zhu G, Wang S, Huang Z, et al. Rewiring of the fruit metabolome in tomato breeding[J]. Cell, 2018, 172(1):249-261. |
[9] |
Wen W, Jin M, Li K, et al. An integrated multi-layered analysis of the metabolic networks of different tissues uncovers key genetic components of primary metabolism in maize[J]. The Plant Journal, 2018,93(6):1116-1128.
doi: 10.1111/tpj.2018.93.issue-6 URL |
[10] | Wen W, Li D, Li X, et al. Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights[J]. Nature Communications, 2014,5(1):3438. |
[11] |
Chen W, Gao Y, Xie W, et al. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism[J]. Nature Genetics, 2014,46(7):714-721.
doi: 10.1038/ng.3007 URL pmid: 24908251 |
[12] | Watson BS, Urbanczyk-Wochniak E, Lei Z, et al. Spatially resolved metabolomics and proteomics of Medicago truncatula border cells and root tips[C]. Joint Annual Meeting of the American-Fern-Society/American-Society-of-Plant-Biologists/American-Society-of-Plant-Taxonomists/Botanical-Society-of-America, 2007: 78. |
[13] |
Lee YJ, Perdian DC, Song Z, et al. Use of mass spectrometry for imaging metabolites in plants[J]. The Plant Journal, 2012,70(1):81-95.
URL pmid: 22449044 |
[14] | Horn PJ, Silva JE, Anderson D, et al. Imaging heterogeneity of membrane and storage lipids in transgenic Camelina sativa seeds with altered fatty acid profiles[J]. The Plant Journal, 2013,76(1):138-150. |
[15] |
Sun C, Li T, Song X, et al. Spatially resolved metabolomics to discover tumor-associated metabolic alterations[J]. PNAS, 2019,116(1):52-57.
doi: 10.1073/pnas.1808950116 URL |
[16] |
Yamamoto K, Takahashi K, Mizuno H, et al. Cell-specific localization of alkaloids in Catharanthus roseus stem tissue measured with Imaging MS and Single-cell MS[J]. PNAS, 2016,113(14):3891-3896.
doi: 10.1073/pnas.1521959113 URL pmid: 27001858 |
[17] |
Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’:understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 1999,29(11):1181-1189.
URL pmid: 10598751 |
[18] | Fiehn O, Kopka J, Dörmann P, et al. Metabolite profiling for plant functional genomics[J]. Nature Biotechnology, 2000,18(11):1157-1161. |
[19] | Fiehn O. Metabolomics-the link between genotypes and phenotypes[J]. Plant Molecular Biology, 2002,48(1):155-171. |
[20] | Wishart DS. Quantitative metabolomics using NMR[J]. Trends in Analytical Chemistry, 2008,27(3):228-237. |
[21] |
Chong J, Wishart DS, Xia J, Using MetaboAnalyst 4. 0 for comprehensive and integrative metabolomics data analysis[J]. Current Protocols in Bioinformatics, 2019,68(1):e86.
doi: 10.1002/cpbi.86 URL pmid: 31756036 |
[22] | Chong J, Soufan O, Li C, et al. MetaboAnalyst 4. 0:towards more transparent and integrative metabolomics analysis[J]. Nucleic Acids Research, 2018,46(W1):W486-W494. |
[23] |
Witting M. Bio- and chemoinformatics approaches for metabolomics data analysis[J]. Methods in Molecular Biology, 2018,1738:41-61.
doi: 10.1007/978-1-4939-7643-0_4 URL pmid: 29654582 |
[24] | Liu P, Zhou H, Zheng Q, et al. An automatic UPLC-HRMS data analysis platform for plant metabolomics[J]. Plant Biotechnology Journal, 2019,17(11):2038-2040. |
[25] |
Zhang YY, Zhang Q, Zhang YM, et al. A comprehensive automatic data analysis strategy for gas chromatography-mass spectrometry based untargeted metabolomics[J]. Journal of Chromatography A, 2020,1616:460787.
URL pmid: 31864723 |
[26] |
Dong Y, Feldberg L, Aharoni A. Miso:an R package for multiple isotope labeling assisted metabolomics data analysis[J]. Bioinformatics, 2019,35(18):3524-3526.
URL pmid: 30726876 |
[27] | Cui Q, Lewis IA, Hegeman AD, et al. Metabolite identification via the madison metabolomics consortium database[J]. Nature Biotechnology, 2008,26(2):162-164. |
[28] | Horai H, Arita M, Kanaya S, et al. MassBank:a public repository for sharing mass spectral data for life sciences[J]. Journal of Mass Spectrometry, 2010,45(7):703-714. |
[29] |
Afendi FM, Okada T, Yamazaki M, et al. KNApSAcK family databases:integrated metabolite-plant species databases for multifaceted plant research[J]. Plant and Cell Physiology, 2011,53(2):e1-e1.
URL pmid: 22123792 |
[30] |
Bais P, Moon-Quanbeck SM, Nikolau BJ, et al. Plantmetabolomics. org:mass spectrometry-based Arabidopsis metabolomics—database and tools update[J]. Nucleic Acids Research, 2011,40:D1216-D1220.
doi: 10.1093/nar/gkr969 URL pmid: 22080512 |
[31] |
Tautenhahn R, Cho K, Uritboonthai W, et al. An accelerated workflow for untargeted metabolomics using the METLIN database[J]. Nature Biotechnology, 2012,30(9):826-828.
doi: 10.1038/nbt.2349 URL pmid: 22965048 |
[32] | Sawada Y, Nakabayashi R, Yamada Y, et al. RIKEN tandem mass spectral database(ReSpect)for phytochemicals:a plant-specific MS/MS-based data resource and database[J]. Phytochemistry, 2012,82(2):38-45. |
[33] |
Neuweger H, Albaum SP, Dondrup M, et al. MeltDB:a software platform for the analysis and integration of metabolomics experiment data[J]. Bioinformatics, 2008,24(23):2726-2732.
doi: 10.1093/bioinformatics/btn452 URL pmid: 18765459 |
[34] |
Kopka J, Schauer N, Krueger S, et al. GMD@CSB. DB:the golm metabolome database[J]. Bioinformatics, 2005,21(8):1635-1638.
doi: 10.1093/bioinformatics/bti236 URL pmid: 15613389 |
[35] |
Qiu F, Fine DD, Wherritt DJ, et al. PlantMAT:a metabolomics tool for predicting the specialized metabolic potential of a system and for large-scale metabolite identifications[J]. Analytical Chemistry, 2016,88(23):11373-11383.
doi: 10.1021/acs.analchem.6b00906 URL pmid: 27934098 |
[36] |
Naake T, Fernie AR. MetNet:metabolite network prediction from high-resolution mass spectrometry data in R aiding metabolite annotation[J]. Analytical Chemistry, 2019,91(3):1768-1772.
URL pmid: 30500168 |
[37] |
Morreel K, Saeys Y, Dima O, et al. Systematic structural characterization of metabolites in Arabidopsis via candidate substrate-product pair networks[J]. The Plant Cell, 2014,26(3):929-945.
doi: 10.1105/tpc.113.122242 URL pmid: 24685999 |
[38] |
Shen X, Wang R, Xiong X, et al. Metabolic reaction network-based recursive metabolite annotation for untargeted metabolomics[J]. Nature Communications, 2019,10(1):1516.
URL pmid: 30944337 |
[39] |
Zhou Z, Luo M, Chen X, et al. Ion mobility collision cross-section atlas for known and unknown metabolite annotation in untargeted metabolomics[J]. Nature Communications, 2020,11(1):4334.
doi: 10.1038/s41467-020-18171-8 URL pmid: 32859911 |
[40] |
Baniasadi H, Vlahakis C, Hazebroek J, et al. Effect of environment and genotype on commercial maize hybrids using LC/MS-based metabolomics[J]. Journal of Agricultural and Food Chemistry, 2014,62(6):1412-1422.
doi: 10.1021/jf404702g URL pmid: 24479624 |
[41] |
Chang Y, Zhang L, Lu X, et al. A simultaneous extraction method for metabolome and lipidome and its application in cry1Ac and sck-transgenic rice leaf treated with insecticide based on LC-MS analysis[J]. Metabolomics, 2014,10(6):1197-1209.
doi: 10.1007/s11306-014-0658-6 URL |
[42] |
Sun J, Monagas M, Jang S, et al. A high fat, high cholesterol diet leads to changes in metabolite patterns in pigs-a metabolomic study[J]. Food Chemistry, 2015,173:171-178.
doi: 10.1016/j.foodchem.2014.09.161 URL pmid: 25466009 |
[43] |
De Pascali SA, Gambacorta L, Oswald IP, et al. 1H NMR and MVA metabolomic profiles of urines from piglets fed with boluses contaminated with a mixture of five mycotoxins[J]. Biochemistry and Biophysics Reports, 2017,11:9-18.
doi: 10.1016/j.bbrep.2017.05.004 URL pmid: 28955762 |
[44] | Xia Y, Yu J, Miao W, et al. A UPLC-Q-TOF-MS-based metabolomics approach for the evaluation of fermented mare’s milk to koumiss[J]. Food Chemistry, 2020,320:126619. |
[45] |
Potts DM, Peterson DG. Identification of small molecule flavor compounds that contribute to the somatosensory attributes of bovine milk products[J]. Food Chemistry, 2019,294:27-34.
doi: 10.1016/j.foodchem.2019.05.010 URL pmid: 31126463 |
[46] | Liebl H. Ion microprobe mass analyzer[J]. Journal of Applied Physics, 1967,38(13):5277-5283. |
[47] | Tanaka K. Detection of high mass molecules by laser desorption time-of-flight mass spectrometry[C]. Proceedings of the Second Japan-China Joint Symposium on Mass Spectrometry, 1987: 185-188. |
[48] |
Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10, 000 daltons[J]. Analytical Chemistry, 1988,60(20):2299-2301.
doi: 10.1021/ac00171a028 URL pmid: 3239801 |
[49] | Spengler B, Hubert M, Kaufmann R. MALDI ion imaging and biological ion imaging with a new scanning UV-laser microprobe[C]. Proceedings of the 42nd ASMS Conference on Mass Spectrometry and Allied, 1994: 104. |
[50] |
Caprioli RM, Farmer TB, Gile J. Molecular imaging of biological samples:localization of peptides and proteins using MALDI-TOF MS[J]. Analytical Chemistry, 1997,69(23):4751-4760.
doi: 10.1021/ac970888i URL pmid: 9406525 |
[51] | Davies N, Weibel DE, Blenkinsopp P, et al. Development and experimental application of a gold liquid metal ion source[J]. Applied Surface Science, 2003,203:223-227. |
[52] |
Touboul D, Kollmer F, Niehuis E, et al. Improvement of biological time-of-flight-secondary ion mass spectrometry imaging with a bismuth cluster ion source[J]. Journal of the American Society for Mass Spectrometry, 2005,16(10):1608-1618.
doi: 10.1016/j.jasms.2005.06.005 URL pmid: 16112869 |
[53] | Winograd N. The magic of cluster SIMS[J]. Analytical Chemistry, 2005,77(7):142A-149A. |
[54] | Weibel D, Wong S, Lockyer N, et al. A C60 primary ion beam system for time of flight secondary ion mass spectrometry:its development and secondary ion yield characteristics[J]. Analytical Chemistry, 2003,75(7):1754-1764. |
[55] |
Tian H, Six DA, Krucker T, et al. Subcellular chemical imaging of antibiotics in single bacteria using C60-secondary ion mass spectrometry[J]. Analytical Chemistry, 2017,89(9):5050-5057.
doi: 10.1021/acs.analchem.7b00466 URL pmid: 28332827 |
[56] |
Nanita SC, Takats Z, Cooks RG, S. et al. Chiral enrichment of serine via formation, dissociation, and soft-landing of octameric cluster ions[J]. Journal of the American Society for Mass Spectrometry, 2004,15(9):1360-1365.
doi: 10.1016/j.jasms.2004.06.010 URL pmid: 15337517 |
[57] | Laskin J, Heath BS, Roach PJ, et al. Tissue imaging using nanospray desorption electrospray ionization mass spectrometry[J]. Analytical Chemistry, 2012,84(1):141-148. |
[58] |
Nemes P, Vertes A. Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry[J]. Analytical Chemistry, 2007,79(21):8098-8106.
URL pmid: 17900146 |
[59] |
Shrestha B, Vertes A. In situ metabolic profiling of single cells by laser ablation electrospray ionization mass spectrometry[J]. Analytical Chemistry, 2009,81(20):8265-8271.
doi: 10.1021/ac901525g URL pmid: 19824712 |
[60] |
Shrestha B, Patt JM, Vertes A. In situ cell-by-cell imaging and analysis of small cell populations by mass spectrometry[J]. Analytical Chemistry, 2011,83(8):2947-2955.
URL pmid: 21388149 |
[61] |
Coello Y, Jones AD, Gunaratne TC, et al. Atmospheric pressure femtosecond laser imaging mass spectrometry[J]. Analytical Chemistry, 2010,82(7):2753-2758.
doi: 10.1021/ac9026466 URL pmid: 20210322 |
[62] |
Sun C, Sun F, Sun Y, et al. Mass spectrometry imaging-based metabolomics to visualize the spatially resolved reprogramming of carnitine metabolism in breast cancer[J]. Theranostics, 2020,10(16):7070-7082.
doi: 10.7150/thno.45543 URL pmid: 32641979 |
[63] | Morse N, Jamaspishvili T, Simon D, et al. Reliable identification of prostate cancer using mass spectrometry metabolomic imaging in needle core biopsies[J]. Laboratory Investigation, 2019,99(10):1561-1571. |
[64] | Wang Z, He B, Liu Y, et al. In situ metabolomics in nephrotoxicity of aristolochic acids based on air flow-assisted desorption electrospray ionization mass spectrometry imaging[J]. Acta Pharmaceutica Sinica B, 2020,10(6):1083-1093. |
[65] | Luo Z, Liu D, Pang X, et al. Whole-body spatially-resolved metabolomics method for profiling the metabolic differences of epimer drug candidates using ambient mass spectrometry imaging[J]. Talanta, 2019,202:198-206. |
[66] | Berisha A, Dold S, Guenther S, et al. A comprehensive high-resolution mass spectrometry approach for characterization of metabolites by combination of ambient ionization, chromatography and imaging methods[J]. Rapid Communications in Mass Spectrometry, 2014,28(16):1779-1791. |
[67] |
Li B, Bhandari DR, Janfelt C, et al. Natural products in Glycyrrhiza glabra(licorice)rhizome imaged at the cellular level by atmospheric pressure matrix-assisted laser desorption/ionization tandem mass spectrometry imaging[J]. The Plant Journal, 2014,80(1):161-171.
URL pmid: 25040821 |
[68] | Bhandari DR, Wang Q, Friedt W, et al. High resolution mass spectrometry imaging of plant tissues:towards a plant metabolite atlas[J]. Analyst, 2015,140(22):7696-7709. |
[69] | Li B, Neumann EK, Ge J, et al. Interrogation of spatial metabolome of Ginkgo biloba with high-resolution matrix-assisted laser desorption/ionization and laser desorption/ionization mass spectrometry imaging[J]. Plant Cell and Environment, 2018,41(11):2693-2703. |
[70] |
Dai W, Hu Z, Xie D, et al. A novel spatial-resolution targeted metabolomics method in a single leaf of the tea plant(Camellia sinensis)[J]. Food Chemistry, 2020,311:126007.
URL pmid: 31855776 |
[71] |
Li B, Bhandari DR, Römpp A, et al. High-resolution MALDI mass spectrometry imaging of gallotannins and monoterpene glucosides in the root of Paeonia lactiflora[J]. Scientific Reports, 2016,6:36074.
URL pmid: 27796322 |
[72] | Kusari S, Sezgin S, Nigutova K, et al. Spatial chemo-profiling of hypericin and related phytochemicals in Hypericum species using MALDI-HRMS imaging[J]. Analytical and Bioanalytical Chemistry, 2015,407(16):4779-4791. |
[73] | Woodfield HK, Sturtevant D, Borisjuk L, et al. Spatial and temporal mapping of key lipid species in Brassica napus seeds[J]. Plant Physiology, 2017,173(4):1998-2009. |
[74] | Horn PJ, Korte AR, Neogi PB, et al. Spatial mapping of lipids at cellular resolution in embryos of cotton[J]. The Plant Cell, 2012,24(2):622-636. |
[75] | Dong Y, Sonawane P, Cohen H, et al. High mass resolution, spatial metabolite mapping enhances the current plant gene and pathway discovery toolbox[J]. New Phytologist, 2020,228:1986-2002. |
[76] | Korenblum E, Dong Y, Szymanski J, et al. Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020,117(7):3874-3883. |
[77] | Schleyer G, Shahaf N, Ziv C, et al. In plaque-mass spectrometry imaging of a bloom-forming alga during viral infection reveals a metabolic shift towards odd-chain fatty acid lipids[J]. Nature Microbiology, 2019,4(3):527-538. |
[78] | Barbosa EA, Bonfim MFJ, Bloch CJ, et al. Imaging mass spectrometry of endogenous polypeptides and secondary metabolites from galls induced by root-knot nematodes in tomato roots[J]. Molecular Plant-Microbe Interactions, 2018,31(10):1048-1059. |
[79] | Shroff R, Vergara F, Muck A, et al. Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(16):6196-6201. |
[80] | Mizuno H, Tsuyama N, Harada T, et al. Live single-cell video-mass spectrometry for cellular and subcellular molecular detection and cell classification[J]. Journal of Mass Spectrometry, 2008,43(12):1692-1700. |
[81] | Masujima T. Live single-cell mass spectrometry[J]. Analytical Sciences, 2009,25(8):953-960. |
[82] | Gong X, Zhao Y, Cai S, et al. Single cell analysis with probe ESI-mass spectrometry:detection of metabolites at cellular and subcellular levels[J]. Analytical Chemistry, 2014,86(8):3809-3816. |
[83] | Wei Z, Han S, Gong X, et al. Rapid removal of matrices from small-volume samples by step-voltage nanoelectrospray[J]. Angewandte Chemie International Edition in English, 2013,52(42):11025-11028. |
[84] | Wei Z, Xiong X, Guo C, et al. Pulsed direct current electrospray:enabling systematic analysis of small volume sample by boosting sample economy[J]. Analytical Chemistry, 2015,87(22):11242-11248. |
[85] | Wang T, Cheng X, Xu H, et al. Perspective on advances in laser-based high-resolution mass spectrometry imaging[J]. Analytical Chemistry, 2020,92(1):543-553. |
[86] | Schober Y, Guenther S, Spengler B, et al. Single cell matrix-assisted laser desorption/ionization mass spectrometry imaging[J]. Analytical Chemistry, 2012,84(15):6293-6297. |
[87] | Kompauer M, Heiles S, Spengler B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1. 4-µm lateral resolution[J]. Nature Methods, 2017,14(1):90-96. |
[88] | Yin Z, Cheng X, Liu R, et al. Chemical and topographical single-cell imaging by near-field desorption mass spectrometry[J]. Angewandte Chemie International Edition, 2019,58(14):4541-4546. |
[89] | Cheng X, Yin Z, Rong L, et al. Subcellular chemical imaging of structurally similar acridine drugs by near-field laser desorption/laser postionization mass spectrometry[J]. Nano Research, 2020,13(3):745-751. |
[90] | Cheng X, Wang T, Yin Z, et al. Single-cell imaging of AuNPs and AgNPs by near-field desorption ionization mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2020,35(5):927-932. |
[91] | Meng Y, Cheng X, Wang T, et al. Micro-lensed fiber laser desorption mass spectrometry imaging reveals subcellular distribution of drugs within single cells[J]. Angewandte Chemie International Edition, 2020,59(41):17864-17871. |
[92] | Pareek V, Tian H, Winograd N, et al. Metabolomics and mass spectrometry imaging reveal channeled de novo purine synjournal in cells[J]. Science, 2020,368(6488):283-290. |
[93] | Geier B, Sogin EM, Michellod D, et al. Spatial metabolomics of in situ host-microbe interactions at the micrometre scale[J]. Nature Microbiology, 2020,5(3):498-510. |
[94] | Soltwisch J, Kettling H, Vens-Cappell S, et al. Mass spectrometry imaging with laser-induced postionization[J]. Science, 2015,348(6231):211-215. |
[95] | Spivey EC, McMillen JC, Ryan DJ, et al. Combining MALDI-2 and transmission geometry laser optics to achieve high sensitivity for ultra-high spatial resolution surface analysis[J]. Journal of the American Society for Mass Spectrometry, 2019,54(4):366-370. |
[96] | Niehaus M, Soltwisch J, Belov ME, et al. Transmission-mode MALDI-2 mass spectrometry imaging of cells and tissues at subcellular resolution[J]. Nature Methods, 2019,16(9):925-931. |
[97] | Yin Z, Xu Z, Liu R, et al. Microtrace analysis of rare earth element residues in femtogram quantities by laser desorption and laser postionization mass spectrometry[J]. Analytical Chemistry, 2017,89(14):7455-7461. |
[98] | Yin Z, Cheng X, Liu R, et al. Depth profiling of nanometer thin layers by laser desorption and laser postionization time-of-flight mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2017,32(10):1878-1884. |
[99] | Stolee JA, Walker BN, Zorba V, et al. Laser-nanostructure interactions for ion production[J]. Physical Chemistry Chemical Physics, 2012,14(24):8453-8471. |
[100] | Wei J, Buriak JM, Siuzdak G. Desorption-ionization mass spectrometry on porous silicon[J]. Nature, 1999,399(6733):243-246. |
[101] | Wu X, Qin R, Wu H, et al. Nanoparticle-immersed paper imprinting mass spectrometry imaging reveals uptake and translocation mechanism of pesticides in plants[J]. Nano Research, 2020,13(3):611-620. |
[102] | Samarah LZ, Khattar R, Tran TH, et al. Single-cell metabolic profiling:metabolite formulas from isotopic fine structures in heterogeneous plant cell populations[J]. Analytical Chemistry, 2020,92(10):7289-7298. |
[103] | Plaβ WR, Dickel T, Scheidenberger C. Multiple-reflection time-of-flight mass spectrometry[J]. International Journal of Mass Spectrometry, 2013 3349-50:134-144. |
[104] | Passarelli MK, Pirkl A, Moellers R, et al. The 3D OrbiSIMS-label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power[J]. Nature Methods, 2017,14(12):1175-1183. |
[105] | Jun J, Song Z, Liu Z, et al. High-spatial and high-mass resolution imaging of surface metabolites of Arabidopsis thaliana by laser desorption-ionization mass spectrometry using colloidal silver[J]. Analytical Chemistry, 2010,82(8):3255-3265. |
[106] | Wu X, Li W, Guo P, et al. Rapid trace detection and isomer quantitation of pesticide residues via matrix-assisted laser desorption/ionization fourier transform ion cyclotron resonance mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2018,66(15):3966-3974. |
[107] | Hofmann J, Pagel K, Glycan analysis by ion mobility-mass spectrometry[J]. Angewandte Chemie International Edition, 2017,56(29):8342-8349. |
[108] | Wu X, Zhang Y, Qin R, et al. Discrimination of isomeric monosaccharide derivatives using collision-induced fingerprinting coupled to ion mobility mass spectrometry[J]. Talanta, 2020. https://doi.org/10.1016/j.talanta. 20200. 121901. |
[109] | McLean JA, Ridenour WB, Caprioli RM. Profiling and imaging of tissues by imaging ion mobility-mass spectrometry[J]. Journal of Mass Spectrometry, 2007,42(8):1099-1105. |
[110] | Giles K, Ujma KJ, Wildgoose J, et al. A cyclic ion mobility-mass spectrometry system[J]. Analytical Chemistry, 2019,91(13):8564-8573. |
[111] | Ellis SR, Paine MRL, Eijkel GB, et al. Automated, parallel mass spectrometry imaging and structural identification of lipids[J]. Nature Methods, 2018,15(7):515-518. |
[112] | Lu Q, Lin R, Du C, et al. Metal probe microextraction coupled to dielectric barrier discharge ionization-mass spectrometry for detecting drug residues in organisms[J]. Analytical Chemistry, 2020,92(8):5921-5928. |
[113] | Ibáñez AJ, Fagerer SR, Schmidt AM, et al. Mass spectrometry-based metabolomics of single yeast cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(22):8790-8794. |
[114] | Walker BN, Stolee JA, Vertes A. Nanophotonic ionization for ultratrace and single-cell analysis by mass spectrometry[J]. Analytical Chemistry, 2012,84(18):7756-7762. |
[115] | Kuznetsov I, Filevich J, Dong F, et al. Three-dimensional nanoscale molecular imaging by extreme ultraviolet laser ablation mass spectrometry[J]. Nature Communications, 2015,6:6944. |
[116] | Wang J, Wang Z, Liu F, et al. Vacuum ultraviolet laser desorption/ionization mass spectrometry imaging of single cells with submicron craters[J]. Analytical Chemistry, 2018,90(16):10009-10015. |
[117] | Liang Z, Zhang S, Li X, et al. Tip-enhanced ablation and ionization mass spectrometry for nanoscale chemical analysis[J]. Science Advances, 2017, 3(12):eaaq1059. |
[118] | Hansen HT, Janfelt C. Aspects of quantitation in mass spectrometry imaging investigated on cryo-sections of spiked tissue homogenates[J]. Analytical Chemistry, 2016,88(23):11513-11520. |
[119] | Chen Y, Tang W, Gordon A, et al. Development of an integrated tissue pretreatment protocol for enhanced MALDI MS imaging of drug distribution in the brain[J]. Journal of the American Society for Mass Spectrometry, 2020,31(5):1066-1073. |
[120] | Chen K, Baluya D, Tosun M, et al. Metabolites imaging mass spectrometry:a new tool to assess molecular underpinnings of neurodegeneration[J]. Metabolites, 2019,9(7):135. |
[121] | Cobice DF, Livingstone DEW, Mackay CL, et al. Spatial localization and quantitation of androgens in mouse testis by mass spectrometry imaging[J]. Analytical Chemistry, 2016,88(21):10362-10367. |
[122] | Bergman HM, Lundin E, Andersson M, et al. Quantitative mass spectrometry imaging of small-molecule neurotransmitters in rat brain tissue sections using nanospray desorption electrospray ionization[J]. Analyst, 2016,141(12):3686-3695. |
[123] | Chumbley CW, Reyzer ML, Allen JL, et al. Absolute quantitative MALDI imaging mass spectrometry:a case of rifampicin in liver tissues[J]. Analytical Chemistry, 2016,88(4):2392-2398. |
[124] | Maeno K. Direct quantification of natural moisturizing factors in stratum corneum using direct analysis in real time mass spectrometry with inkjet-printing technique[J]. Scientific Reports, 2019,9(1):17789. |
[1] | 周嫒婷, 彭睿琦, 王芳, 伍建榕, 马焕成. 生防菌株DZY6715在不同生长期的代谢差异分析[J]. 生物技术通报, 2023, 39(9): 225-235. |
[2] | 韩华蕊, 杨宇琭, 门艺涵, 韩尚玲, 韩渊怀, 霍轶琼, 侯思宇. 基于代谢组学研究谷子SiYABBYs参与花发育过程中鼠李糖苷的生物合成[J]. 生物技术通报, 2023, 39(6): 189-198. |
[3] | 王伟宸, 赵进, 黄薇颐, 郭芯竹, 李婉颖, 张卓. 芽胞杆菌代谢产物防治三种常见植物病原真菌的研究进展[J]. 生物技术通报, 2023, 39(3): 59-68. |
[4] | 和梦颖, 刘文彬, 林震鸣, 黎尔彤, 汪洁, 金小宝. 一株抗革兰阳性菌的戈登氏菌WA4-43全基因组测序与分析[J]. 生物技术通报, 2023, 39(2): 232-242. |
[5] | 徐扬, 丁红, 张冠初, 郭庆, 张智猛, 戴良香. 盐胁迫下花生种子萌发期代谢组学分析[J]. 生物技术通报, 2023, 39(1): 199-213. |
[6] | 古丽加马力·艾萨, 邢军, 李安, 张瑞. 开菲尔粒中微生物对苯并(α)芘的非靶向代谢组学分析[J]. 生物技术通报, 2022, 38(5): 123-135. |
[7] | 杨玉萍, 张霞, 王翀翀, 王晓艳. 不同年龄大鼠尿液代谢组学研究[J]. 生物技术通报, 2022, 38(2): 166-172. |
[8] | 苗玉娇, 朱龙佼, 许文涛. 质谱成像新基质及其在分析生物样本方面的研究进展[J]. 生物技术通报, 2022, 38(12): 156-167. |
[9] | 吴玉苹, 周勇, 蒲娟, 李会, 章金刚, 朱艳平. 代谢组学在肿瘤药物靶点筛选中的应用进展[J]. 生物技术通报, 2022, 38(1): 311-318. |
[10] | 张凤, 陈伟. 代谢组学在植物逆境生物学中的研究进展[J]. 生物技术通报, 2021, 37(8): 1-11. |
[11] | 王楠, 苏誉, 刘文杰, 封明, 毛瑜, 张新国. 植物内生菌中抗耐药微生物活性成分的研究进展[J]. 生物技术通报, 2021, 37(8): 263-274. |
[12] | 梁振霆, 唐婷. 内生菌对植物次生代谢产物的生物合成影响和抗逆功能研究[J]. 生物技术通报, 2021, 37(8): 35-45. |
[13] | 陈倩, 张露源, 陈伯昌, 吴海燕. 大豆孢囊线虫生防菌株Myrothecium verrucaria ZW-2发酵条件优化及活性物质分析[J]. 生物技术通报, 2021, 37(7): 127-136. |
[14] | 田鹤, 税光厚. 基于质谱技术的代谢组学分析方法研究进展[J]. 生物技术通报, 2021, 37(1): 24-32. |
[15] | 黄小丹, 陈梦雨, 黄文洁, 张名位, 晏石娟. 基于代谢组学的植物多酚及其肠道健康效应研究进展[J]. 生物技术通报, 2021, 37(1): 123-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||