生物技术通报 ›› 2021, Vol. 37 ›› Issue (1): 24-32.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1383
收稿日期:
2020-11-13
出版日期:
2021-01-26
发布日期:
2021-01-15
作者简介:
田鹤,男,博士,研究方向:基于MS技术的代谢组学应用研究;E-mail: 基金资助:
Received:
2020-11-13
Published:
2021-01-26
Online:
2021-01-15
摘要:
基于质谱技术的代谢组学分析,已广泛用于不同生物样本中小分子代谢物的定性、定量研究,以揭示细胞在受到外源性刺激后发生的内源性代谢变化。由于生物样本成分复杂,所含的代谢物极性跨越大,覆盖范围从水溶性到脂溶性,从而需要多种前处理提取方法和与之匹配的不同色谱质谱条件,来准确获取目标成分的定性、定量信息。因此,小分子代谢物结构与理化性质的多样性,在一定程度上制约了生物样本中整体代谢轮廓信息的高通量获取。重点介绍并讨论不同类型代谢物的前处理提取方法研究进展,以及相应代谢物的液相色谱质谱分析条件。
田鹤, 税光厚. 基于质谱技术的代谢组学分析方法研究进展[J]. 生物技术通报, 2021, 37(1): 24-32.
TIAN He, SHUI Guang-hou. Advances in Analysis Methods of Mass Spectrometry-based Metabolomics[J]. Biotechnology Bulletin, 2021, 37(1): 24-32.
1H-NMR | GC-MS | LC-MS | |
---|---|---|---|
灵敏度 | nmol/L | amol/L | amol/L |
特异性 | 质子信号易重叠干扰定性、定量 | 强 | 强 |
稳定性 | 无需内标校准 | 依赖内标校准 | 依赖内标校准 |
样品前处理 | 要求低或无需前处理 | 要求高,除蛋白与杂质 | 要求高,除蛋白与杂质 |
代谢组定性数目 | 一般小于100个 | 几千到几万个 | 几千到几万个 |
检测代谢物种类 | 氨基酸、有机酸、碳水化合物等 | 热稳定、易挥发或衍生化后易挥发 | 热不稳定、难挥发 |
分子量 | 动物样品一般小于400,植物样品通常小于800 | 小于1 000 | 分子量没有上限 |
表1 NMR、GC/LC-MS在代谢组分析中的优势和不足
1H-NMR | GC-MS | LC-MS | |
---|---|---|---|
灵敏度 | nmol/L | amol/L | amol/L |
特异性 | 质子信号易重叠干扰定性、定量 | 强 | 强 |
稳定性 | 无需内标校准 | 依赖内标校准 | 依赖内标校准 |
样品前处理 | 要求低或无需前处理 | 要求高,除蛋白与杂质 | 要求高,除蛋白与杂质 |
代谢组定性数目 | 一般小于100个 | 几千到几万个 | 几千到几万个 |
检测代谢物种类 | 氨基酸、有机酸、碳水化合物等 | 热稳定、易挥发或衍生化后易挥发 | 热不稳定、难挥发 |
分子量 | 动物样品一般小于400,植物样品通常小于800 | 小于1 000 | 分子量没有上限 |
[1] | Bar N, Korem T, Omer W, et al. A reference map of potential determinants for the human serum metabolome[J]. Nature, 2020. https//doi.org/10.1038/s41586-020-2896-2. |
[2] |
Song JW, Lam SM, Fan X, et al. Omics-driven systems interrogation of metabolic dysregulation in COVID-19 pathogenesis[J]. Cell Metab, 2020, 32:188-2020e5.
doi: 10.1016/j.cmet.2020.06.016 URL pmid: 32610096 |
[3] | Tian H, Zhou Z, Shui G, et al. Extensive profiling of polyphenols from two trollius species using a combination of untargeted and targeted approaches[J]. Metabolites, 2020,10:119. |
[4] |
Li R, Sun Q, Lam SM, et al. Sex-dependent effects of ambient PM2. 5 pollution on insulin sensitivity and hepatic lipid metabolism in mice[J]. Part Fibre Toxicol, 2020,17:14.
URL pmid: 32321544 |
[5] | Suceveanu AI, Mazilu L, Katsiki N, et al. NLRP3 inflammasome biomarker-could be the new tool for improved cardiometabolic syndrome outcome[J]. Metabolites, 2020,10:E448. |
[6] | 邓静, 林丽美, 张鹏, 等. 基于GC-MS 的妇科千金胶囊挥发油治疗盆腔炎大鼠的血清代谢组学研究[J]. 中国新药与临床药理, 2020,31(12):1462-1469. |
Deng J, Lin L, Zhang P, et al. GC-MS based profiling of serum metabolomics in rats with pelvic inflammatory disease intervened by volatile oil from Fuke Qianjin capsules[J]. Traditional Chinese Drug Research & Clinical Pharmacology, 2020,31:1462-1469. | |
[7] | 李雪嘉, 郭茜, 张娜, 等. 黄芪-山药药对治疗2 型糖尿病大鼠的粪便代谢组学研究[J]. 中国新药与临床药理, 2020,31(11):1360-1367. |
Li X, Guo Q, Zhang N, et al. Study on fecal metabolism of astragali radix and dioscoreae rhizoma in the treatment of type 2 diabetic rats[J]. Traditional Chinese Drug Research & Clinical Pharmacology, 2020,31:1360-1367. | |
[8] | Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’:understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 1999,29:1181-1189. |
[9] | Tian H, Lam SM, Shui G. Metabolomics, a powerful tool for agricultural research[J]. Int J Mol Sci, 2016,17:1871. |
[10] |
Crook AA, Powers R. Quantitative NMR-based biomedical metabolomics:current status and applications[J]. Molecules, 2020,25:E5128.
URL pmid: 33158172 |
[11] |
Murgia F, Angioni S, D’Alterio MN, et al. Metabolic profile of patients with severe endometriosis:a prospective experimental study[J]. Reprod Sci, 2020. DOI: 10. 1007/s43032-020-00370-9.
doi: 10.1007/s43032-020-00428-8 URL pmid: 33449351 |
[12] | Brittain EL, Niswender K, Agrawal V, et al. Mechanistic phase II clinical trial of metformin in pulmonary arterial hypertension[J]. J Am Heart Assoc, 2020,22(9):e018349. |
[13] |
Siddiqui MA, Pandey S, Azim A, et al. Metabolomics:an emerging potential approach to decipher critical illnesses[J]. Biophys Chem, 2020,267:106462.
URL pmid: 32911125 |
[14] |
Zeki ÖC, Eylem CC, Reçber T, et al. Integration of GC-MS and LC-MS for untargeted metabolomics profiling[J]. J Pharm Biomed Anal, 2020,190:113509.
doi: 10.1016/j.jpba.2020.113509 URL pmid: 32814263 |
[15] |
Hebra T, Eparvier V, Touboul D. Atmospheric pressure photoionization versus electrospray for the dereplication of highly conjugated natural products using molecular networks[J]. J Chromatogr A, 2020,1630:461533.
URL pmid: 32950817 |
[16] |
Tian H, Bai J, An Z, et al. Plasma metabolome analysis by integrated ionization rapid-resolution liquid chromatography/tandem mass spectrometry[J]. Rapid Commun Mass Spectrom, 2013,27:2071-2080.
doi: 10.1002/rcm.6666 URL pmid: 23943328 |
[17] | Audano M, Pedretti S, Ligorio S, et al. Investigating metabolism by mass spectrometry:From steady state to dynamic view[J]. J Mass Spectrom, 2020: e4658. |
[18] | Gallart-Ayala H, Konz I, Mehl F, et al. A global HILIC-MS approach to measure polar human cerebrospinal fluid metabolome:Exploring gender-associated variation in a cohort of elderly cognitively healthy subjects[J]. Anal Chim Acta, 2018,1037:327-337. |
[19] | Zimmermann M, Sauer U, Zamboni N. Quantification and mass isotopomer profiling of α-keto acids in central carbon metabolism[J]. Anal Chem, 2014,86:3232-3237. |
[20] |
Zhang R, Shen W, Du J, et al. Selective knockdown of hexokinase 2 in rods leads to age-related photoreceptor degeneration and retinal metabolic remodeling[J]. Cell Death Dis, 2020,11:885.
URL pmid: 33082308 |
[21] | Lam SM, Zhou TX, Li J, et al. A robust, integrated platform for comprehensive analyses of acylcoenzyme As and acyl-carnitines revealed chain length-dependent disparity in fatty acyl metabolic fates across Drosophila development[J]. Science Bulletin, 2020,65:1840-1848. |
[22] | Jang C, Chen L, Rabinowitz JD. Metabolomics and isotope tracing[J]. Cell, 2018,173:822-837. |
[23] |
Forgacsova A, Galba J, Mojzisova J. Ultra-high performance hydrophilic interaction liquid chromatography - Triple quadrupole tandem mass spectrometry method for determination of cysteine, homocysteine, cysteinyl-glycine and glutathione in rat plasma[J]. J Pharm Biomed Anal, 2019,164:442-451.
URL pmid: 30447532 |
[24] |
Dmitrieva E, Temerdashev A, Azaryan A, et al. Quantification of steroid hormones in human urine by DLLME and UHPLC-HRMS detection[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2020,1159:122390.
doi: 10.1016/j.jchromb.2020.122390 URL pmid: 33126074 |
[25] |
Sato K, Kakiyama G, Suzuki M, et al. Changes in conjugated urinary bile acids across age groups[J]. Steroids, 2020,164:108730.
doi: 10.1016/j.steroids.2020.108730 URL |
[26] | Danese E, Negrini D, Pucci M, et al. Bile acids quantification by liquid chromatography-tandem mass spectrometry:method validation, reference range, and interference study[J]. Diagnostics(Basel), 2020,10:462. |
[27] |
Wang R, Li B, Lam SM, et al. Integration of lipidomics and metabolomics for in-depth understanding of cellular mechanism and disease progression[J]. J Genet Genomics, 2020,47:69-83.
doi: 10.1016/j.jgg.2019.11.009 URL pmid: 32178981 |
[28] | Lam SM, Tian H, Shui GH. Lipidomics, en route to accurate quantitation[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2017,1862:752-761. |
[29] | 李丽, 薛芸, 王彦, 等. 磷脂组学二维检测平台的建立及其在血清中的应用研究[J]. 化学与生物工程, 2017,34(5):61-70. |
Li L, Xue Y, Wang Y, et al. Establishment of offline two-dimensional liquid chromatography-mass spectrometry method for phospholipidomic and its application in serum[J]. Chemistry & Bioengineering, 2017,34:61-71. | |
[30] |
Lam SM, Tong L, Duan X, et al. Extensive characterization of human tear fluid collected using different techniques unravels the presence of novel lipid amphiphiles[J]. J Lipid Res, 2014,55:289-298.
doi: 10.1194/jlr.M044826 URL pmid: 24287120 |
[31] |
Shui GH, Cheong WF, Jappar IA, Derivatization-independent cholesterol analysis in crude lipid extracts by liquid chromatography/mass spectrometry:applications to a rabbit model for atherosclerosis[J]. J Chromatogr A, 2011,1218:4357-4365.
doi: 10.1016/j.chroma.2011.05.011 URL pmid: 21621788 |
[32] |
Shui GH, Guan XL, Low CP, et al. Toward one step analysis of cellular lipidomes using liquid chromatography coupled with mass spectrometry:application to Saccharomyces cerevisiae and Schizosaccharomyces pombe lipidomics[J]. Mol Biosyst, 2010,6:1008-1017.
doi: 10.1039/b913353d URL pmid: 20485745 |
[33] |
Tian H, Wang WY, Zheng N, et al. Identification of diagnostic biomarkers andmetabolic pathway shifts of heat-stressed lactating dairy cows[J]. J Proteomics, 2016,146:99-108.
doi: 10.1016/j.jprot.2016.06.008 URL pmid: 27321583 |
[34] | 杨兆鹏, 徐芳, 赵欣捷, 等. 基于液相色谱-质谱联用技术的多囊卵巢综合征患者血清脂质组学分析[J]. 分析化学, 2015,43(10):1445-1451. |
Yang Z, Xu F, Zhao X, et al. Serum lipidomics study of polycystic ovarian syndrome based on liquid chromatography-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2015,43:1445-1451. | |
[35] |
梁春瑜, 曹玉萍, 严翊. 9-12 岁超重/ 肥胖男童血脂代谢谱研究[J]. 中国当代儿科杂志, 2020,22(8):874-881.
pmid: 32800035 |
Liang C, Cao Y, Yan Y. Blood lipid metabolic profile of overweight/obese boys aged 9-12 years[J]. Chinese Journal of Contemporary Pediatrics, 2020,22:874-881.
URL pmid: 32800035 |
|
[36] |
Buchberger AR, DeLaney K, Johnson J, et al. Mass spectrometry imaging:a review of emerging advancements and future insights[J]. Anal Chem, 2017,90:240-265.
doi: 10.1021/acs.analchem.7b04733 URL pmid: 29155564 |
[37] |
Kertesz V, Cahill JF. Spatially resolved absolute quantitation in thin tissue by mass spectrometry[J]. Anal Bioanal Chem, 2020. DOI: 10.1007/s00216-020-02964-3.
doi: 10.1007/s00216-020-03126-1 URL pmid: 33483839 |
[1] | 周嫒婷, 彭睿琦, 王芳, 伍建榕, 马焕成. 生防菌株DZY6715在不同生长期的代谢差异分析[J]. 生物技术通报, 2023, 39(9): 225-235. |
[2] | 罗阳兰, 曹乃馨, 杨玉梅, 黄丽玲, 阎勇, 黄世旅. 三种桑黄子实体脂溶性成分的GC-MS分析及抗氧化活性[J]. 生物技术通报, 2023, 39(6): 149-157. |
[3] | 韩华蕊, 杨宇琭, 门艺涵, 韩尚玲, 韩渊怀, 霍轶琼, 侯思宇. 基于代谢组学研究谷子SiYABBYs参与花发育过程中鼠李糖苷的生物合成[J]. 生物技术通报, 2023, 39(6): 189-198. |
[4] | 王昕璐, 王蒙, 翟文磊. 脂质组学在毒理学研究中的应用[J]. 生物技术通报, 2023, 39(3): 69-80. |
[5] | 徐扬, 丁红, 张冠初, 郭庆, 张智猛, 戴良香. 盐胁迫下花生种子萌发期代谢组学分析[J]. 生物技术通报, 2023, 39(1): 199-213. |
[6] | 古丽加马力·艾萨, 邢军, 李安, 张瑞. 开菲尔粒中微生物对苯并(α)芘的非靶向代谢组学分析[J]. 生物技术通报, 2022, 38(5): 123-135. |
[7] | 杨玉萍, 张霞, 王翀翀, 王晓艳. 不同年龄大鼠尿液代谢组学研究[J]. 生物技术通报, 2022, 38(2): 166-172. |
[8] | 苗玉娇, 朱龙佼, 许文涛. 质谱成像新基质及其在分析生物样本方面的研究进展[J]. 生物技术通报, 2022, 38(12): 156-167. |
[9] | 张健, 才恒, 申振豪, 刘仲浩, 赵娟, 张巧珍, 高强. 烟酸促进短乳杆菌合成γ-氨基丁酸的机制[J]. 生物技术通报, 2022, 38(10): 235-242. |
[10] | 吴玉苹, 周勇, 蒲娟, 李会, 章金刚, 朱艳平. 代谢组学在肿瘤药物靶点筛选中的应用进展[J]. 生物技术通报, 2022, 38(1): 311-318. |
[11] | 张凤, 陈伟. 代谢组学在植物逆境生物学中的研究进展[J]. 生物技术通报, 2021, 37(8): 1-11. |
[12] | 蔡国磊, 陆小凯, 娄水珠, 杨海英, 杜刚. 芽孢杆菌LM基于全基因组的分类鉴定及抑菌原理的研究[J]. 生物技术通报, 2021, 37(8): 176-185. |
[13] | 陈倩, 张露源, 陈伯昌, 吴海燕. 大豆孢囊线虫生防菌株Myrothecium verrucaria ZW-2发酵条件优化及活性物质分析[J]. 生物技术通报, 2021, 37(7): 127-136. |
[14] | 刘娟, 朱春晓, 肖雪琼, 莫陈汨, 王高峰, 肖炎农. 淡紫紫孢菌亲环蛋白PlCYP6 互作蛋白的筛选[J]. 生物技术通报, 2021, 37(7): 137-145. |
[15] | 顾翰琦, 邵玲智, 刘冉, 刘晓光, 李玲, 刘倩, 李洁, 张雅丽. 酿酒酵母酚类抑制物耐受性脂质组学研究[J]. 生物技术通报, 2021, 37(1): 15-23. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||