生物技术通报 ›› 2022, Vol. 38 ›› Issue (7): 194-204.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1040

• 研究报告 • 上一篇    下一篇

介孔硅纳米粒作为植物细胞转基因载体的研究

陆新华(), 孙德权, 张秀梅()   

  1. 中国热带农业科学院南亚热带作物研究所 农业农村部热带果树生物学重点实验室,湛江 524091
  • 收稿日期:2021-08-15 出版日期:2022-07-26 发布日期:2022-08-09
  • 作者简介:陆新华,女,博士,副研究员,研究方向:纳米生物技术在作物上的应用;E-mail: sscrilu@163.com
  • 基金资助:
    中央级公益性科研院所基本科研业务费项目(1630062017037)

Genetic Transformation of Plant Cells Mediated by Mesoporous Silica Nanoparticles

LU Xin-hua(), SUN De-quan, ZHANG Xiu-mei()   

  1. South Subtropical Crops Research Institute,Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Tropical Fruit’s Biology,Ministry of Agriculture and Rural Affairs,Zhanjiang 524091
  • Received:2021-08-15 Published:2022-07-26 Online:2022-08-09

摘要:

随着纳米生物技术的快速发展,以纳米材料作为基因载体在植物细胞转导研究中取得了初步进展。本研究制备了两种尺寸的介孔硅纳米颗粒,氨基修饰后对其进行表征,并负载含smGFP基因的质粒DNA对拟南芥原生质体进行细胞转导。结果表明,直径约20 nm的氨基化介孔硅纳米颗粒(Am-MSN-20)呈类球形,花形结构的氨基化介孔硅纳米颗粒(Am-MSN-50)直径约50 nm,两者均带正电荷。Am-MSN-50结合DNA的能力高于Am-MSN-20,两种纳米载体都表现出了良好的稳定性,能够保护负载的pDNA不被细胞核酸酶降解,并且对原生质体没有毒害作用。与Am-MSN-20相比较,Am-MSN-50具备更高的转导效率。本研究表明,氨基修饰的MSNs有望成为一种安全高效的新型植物基因载体。

关键词: 介孔硅纳米粒, 氨基化, 遗传转化, 载体, 植物细胞

Abstract:

With the rapid development of nanobiotechnology,nanoparticles have been applied as vectors for gene transformation in plant cells. In this study,mesoporous silica nanoparticles(MSNs)with different particle sizes were synthesized and then amine-functionalized. The transformation efficiencies of amine-functionalized MSNs(Am-MSNs)for delivering plasmid DNA encoding green fluorescent protein(smGFP)were investigated in the protoplasts of Arabidopsis thaliana. As results,the Am-MSN-20 exhibited monodispersed spheroids with average particle size of 20 nm,while Am-MSN-50 showed a flower-like structure and had an average particle size of 50 nm. Both amine-functionalized MSNs were positively charged. Am-MSN-50 had higher binding capacity of pDNA than that of Am-MSN-20. The Am-MSNs/pDNA complex showed good stability,which suggested that both Am-MSNs protected bounded pDNA efficiently against degradation by cellular nucleases. The MSNs also exhibited no cytotoxic effects on the protoplasts of A. thaliana. The Am-MSN-50 enabled much higher transformation efficiency of the pDNA encoding smGFP compared to that of Am-MSN-20. The results suggest that Am-MSNs can be employed as promising carriers for safe and effective gene delivery.

Key words: mesoporous silica nanoparticles, amine-functionalized, gene transfer, carrier, plant cells