生物技术通报 ›› 2023, Vol. 39 ›› Issue (11): 318-327.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0551
尤垂淮1(), 谢津津1, 张婷1, 崔天真2, 孙欣路2, 臧守建2, 武奕凝1, 孙梦瑶2, 阙友雄2, 苏亚春2()
收稿日期:
2023-06-12
出版日期:
2023-11-26
发布日期:
2023-12-20
通讯作者:
苏亚春,博士,副研究员,研究方向:植物逆境生物学与分子育种;E-mail: syc2009mail@163.com作者简介:
尤垂淮,博士,实验师,研究方向:药用植物逆境生物学;E-mail: you123chui@163.com
基金资助:
YOU Chui-huai1(), XIE Jin-jin1, ZHANG Ting1, CUI Tian-zhen2, SUN Xin-lu2, ZANG Shou-jian2, WU Yi-ning1, SUN Meng-yao2, QUE You-xiong2, SU Ya-chun2()
Received:
2023-06-12
Published:
2023-11-26
Online:
2023-12-20
摘要:
近年来,钩吻(Gelsemium elegans)的药用和饲用价值日益凸显,但钩吻在生长过程中不耐低温,挖掘其低温响应基因,为钩吻的抗寒育种研究奠定基础。植物中,脂氧合酶(lipoxygenase, LOX)在种子老化、抗逆境胁迫等方面的生理生化过程中有重要影响。基于课题组构建的钩吻转录组数据库,挖掘响应低温胁迫的钩吻LOX基因,运用RT-PCR技术,从中克隆到一条GeLOX1的cNDA全长序列,对其进行生物信息学、亚细胞定位、基因表达、原核表达及平板胁迫等分析。结果显示,GeLOX1所编码蛋白的氨基酸长度为761 aa,蛋白相对分子质量为87.00 kD,预测为不稳定的亲水性蛋白,含有28个丝氨酸磷酸化位点,22个苏氨酸磷酸化位点和9个酪氨酸磷酸化位点。进化树分析结果表明,GeLOX1属于9-LOX家族的成员。亚细胞定位检测结果显示,GeLOX1蛋白定位于细胞质中。实时荧光定量PCR分析发现,GeLOX1在钩吻的根中高表达,且其在4℃低温胁迫下的表达量呈现下调的趋势。经原核表达诱导后,GeLOX1的重组蛋白在约111 kD处出现目标条带,且重组蛋白的积累量在诱导8 h时达到峰值。此外,平板胁迫试验表明,GeLOX1的原核表达菌株相较于对照组对低温胁迫更敏感。钩吻GeLOX1能够应答低温胁迫。
尤垂淮, 谢津津, 张婷, 崔天真, 孙欣路, 臧守建, 武奕凝, 孙梦瑶, 阙友雄, 苏亚春. 钩吻脂氧合酶基因 GeLOX1 的鉴定及低温胁迫表达分析[J]. 生物技术通报, 2023, 39(11): 318-327.
YOU Chui-huai, XIE Jin-jin, ZHANG Ting, CUI Tian-zhen, SUN Xin-lu, ZANG Shou-jian, WU Yi-ning, SUN Meng-yao, QUE You-xiong, SU Ya-chun. Identification of the Lipoxygenase Gene GeLOX1 and Expression Analysis Under Low Temperature Stress in Gelsmium elegans[J]. Biotechnology Bulletin, 2023, 39(11): 318-327.
引物名称Primer name | 引物序列Primer sequence(5'-3') | 用途Usage |
---|---|---|
GeLOX1-F | ACCAAGAGGGAAACTAGGAAA | 基因克隆Gene cloning |
GeLOX1-R | CAAACATCTGAATAAACGAGTGA | |
GeLOX1-G-F | GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGGGACTCCTGGGGCCTT | Gateway入门载体构建 Construction of gateway entry vector |
GeLOX1-G-R | GGGGACCACTTTGTACAAGAAAGCTGGGTCGATGGAGACACTGTTAGGAA | |
GeLOX1-Q1F | AAATCTACGCCAGCCGAACTAT | RT-qPCR |
GeLOX1-Q1R | GCCAAACTGAGCCTTCAATACCA | |
GeCUL-Q1F | CAAATTGGGCAGAGGCCACC | |
GeCUL-Q1R | TCTGGGGCTGGCTGTAGAAT |
表1 引物序列及用途
Table 1 Primer sequence and usage
引物名称Primer name | 引物序列Primer sequence(5'-3') | 用途Usage |
---|---|---|
GeLOX1-F | ACCAAGAGGGAAACTAGGAAA | 基因克隆Gene cloning |
GeLOX1-R | CAAACATCTGAATAAACGAGTGA | |
GeLOX1-G-F | GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGGGACTCCTGGGGCCTT | Gateway入门载体构建 Construction of gateway entry vector |
GeLOX1-G-R | GGGGACCACTTTGTACAAGAAAGCTGGGTCGATGGAGACACTGTTAGGAA | |
GeLOX1-Q1F | AAATCTACGCCAGCCGAACTAT | RT-qPCR |
GeLOX1-Q1R | GCCAAACTGAGCCTTCAATACCA | |
GeCUL-Q1F | CAAATTGGGCAGAGGCCACC | |
GeCUL-Q1R | TCTGGGGCTGGCTGTAGAAT |
图2 钩吻GeLOX1蛋白与其他植物的LOX蛋白的系统进化树分析 OsLOX、r9-LOX:水稻LOX;ZmLOX:玉米LOX;AtLOX:拟南芥LOX;NtLOX:烟草LOX;CaLOX:辣椒LOX;TomLOX:番茄LOX;ScLOX:甘蔗LOX;StLOX:马铃薯LOX
Fig. 2 Phylogenetic tree analysis of GeLOX1 protein in G. elegans and LOX proteins in other plants OsLOX and r9-LOX: Oryza sativa LOX; ZmLOX: Zea mays LOX; AtLOX: Arabidopsis thaliana LOX; NtLOX: Nicotiana tabacum LOX; CaLOX: Capsicum annuum LOX; TomLOX: Lycopersicon esculentum LOX; ScLOX: Saccharum spp. LOX; StLOX: Solanum tuberosum LOX
图3 GeLOX1在钩吻不同组织(A)和4℃条件下(B)的RT-qPCR分析 不同小写字母表示在P<0.05水平差异显著
Fig. 3 RT-qPCR analysis of GeLOX1 gene in different tissues of G. elegans(A)and under 4℃ low-temperature treatment(B) Different lowercase letters indicate significant differences at P<0.05
图4 农杆菌转化的pFAST-R05-GFP空载(35S::GFP)和重组质粒pFAST-GeLOX1-GFP(35S::GeLOX1::GFP)注射本氏烟叶片3 d后的结果 本氏烟叶片表皮细胞被用于明场、绿色荧光和合并光捕获表皮细胞的图像;CholorophyII表示叶绿素自发荧光;比例尺为50 μm。35S::GFP:携带空载pFAST-R05-GFP的农杆菌菌株;35S::GeLOX1::GFP:携带重组载体pFAST-GeLOX1-GFP的农杆菌菌株
Fig. 4 Observations of Agrobacterium-transformed pFAST-R05-GFP empty vector(35S::GFP)and recombinant plasmid pFAST-GeLOX1-GFP(35S::GeLOX1::GFP)at 3 d after the injection into the leaves of Nicotiana benthamiana The epidermal cells of N. benthamiana leaf are used for capturing images of epidermal cells in bright-field, green fluorescence, and merged light. Cholorophy II indicates chlorophyll autofluorescence. Scale bar is 50 μm. 35S::GFP: Agrobacterium strains carrying empty vector pFAST-R05-GFP; 35S::GeLOX1::GFP: Agrobacterium strains carrying recombinant vector pFAST-GeLOX1-GFP
图5 钩吻GeLOX1重组蛋白在大肠杆菌BL21(DE3)中的原核表达分析 M:蛋白marker;1:不经诱导的空菌E. coli BL21(DE3);2:空菌诱导22 h;3:不经诱导的空载;4:空载诱导22 h;5:不经诱导的重组菌;6-9:重组菌诱导2、8、10和22 h;黑色箭头:被诱导的目标蛋白GeLOX1
Fig. 5 Prokaryotic expressions of GeLOX1 recombinant protein in G. elegans in Escherichia coli BL21(DE3) M: Protein marker. 1: Empty bacteria E. coli BL21(DE3)without induction. 2: Empty bacteria induced for 22 h. 3: Empty vector without induction. 4: Empty vector induction for 22 h. 5: Recombinant bacteria without induction. 6-9: Recombinant bacteria induced for 2, 8, 10 and 22 h. Black arrow: The induced target protein GeLOX1
图6 低温胁迫下原核表达重组菌BL21/pEZYHb-GeLOX1在LB板上的生长状况 以BL21/pEZYHb和BL21/pEZYHb-GeLOX1细胞在LB板上的生长性能作为对照,在LB琼脂平板上点板后,置于4℃黑暗培养3、7和10 d,再于37℃过夜培养拍照
Fig. 6 Growth status of prokaryotic expression recombinant strain BL21/pEZYHb-GeLOX1 on LB plate under low temperature stress The growth performance of BL21/pEZYHb and BL21/pEZYHb-GeLOX1 cells on LB plates was used as a control. After spotting the plates on LB agar plates, they were placed in dark culture at 4℃ for 3 d, 7 d and 10 d, and then cultured overnight at 37℃ for photography
[1] |
Liu YS, Tang Q, Cheng P, et al. Whole-genome sequencing and analysis of the Chinese herbal plant Gelsemium elegans[J]. Acta Pharm Sin B, 2020, 10(2): 374-382.
doi: 10.1016/j.apsb.2019.08.004 URL |
[2] |
Lin HL, Qiu HQ, Cheng Y, et al. Gelsemium elegans Benth: chemical components, pharmacological effects, and toxicity mechanisms[J]. Molecules, 2021, 26(23): 7145.
doi: 10.3390/molecules26237145 URL |
[3] | Cai J, Lei LS, Chi DB. Antineoplastic effect of koumine in mice bearing H22 solid tumor[J]. J Southem Med Univ, 2009, 29(9): 1851-1852. |
[4] |
Xu YK, Liao SG, Na Z, et al. Gelsemium alkaloids, immunosuppressive agents from Gelsemium elegans[J]. Fitoterapia, 2012, 83(6): 1120-1124.
doi: 10.1016/j.fitote.2012.04.023 URL |
[5] |
Yuan ZH, Matias FB, Wu J, et al. Koumine attenuates lipopolysaccaride-stimulated inflammation in RAW264.7 macrophages, coincidentally associated with inhibition of NF-kappa B, ERF and p38 pathways[J]. Int J Mol Sci, 2016, 17(3): 430.
doi: 10.3390/ijms17030430 URL |
[6] |
Que WC, Wu ZY, Chen MH, et al. Molecular mechanism of Gelsemium elegans(Gardner and champ.) Benth. against neuropathic pain based on network pharmacology and experimental evidence[J]. Front Pharmacol, 2022, 12: 792932.
doi: 10.3389/fphar.2021.792932 URL |
[7] | 王友顺, 高英立, 刘上云, 等. 盐酸钩吻碱眼药水散瞳与调节麻痹作用的临床观察[J]. 中药药理与临床, 1990, 6(6): 40-42. |
Wang YS, Gao YL, Liu SY, et al. A clinical study on effects of gelsemium hydrochloride on mydriasis and cycloplegia[J]. Pharmacol Clin Chin Mater Med, 1990, 6(6): 40-42. | |
[8] |
Wang QJ, Wang DJ, Zuo ZH, et al. Effects of dietary koumine on growth performance, intestinal morphology, microbiota, and intestinal transcriptional responses of Cyprinus carpio[J]. Int J Mol Sci, 2022, 23(19): 11860-11860.
doi: 10.3390/ijms231911860 URL |
[9] |
Zhang JY, Wang YX. Gelsemium analgesia and the spinal glycine receptor/allopregnanolone pathway[J]. Fitoterapia, 2015, 100: 35-43.
doi: 10.1016/j.fitote.2014.11.002 URL |
[10] | 尤垂淮, 刘安玉, 张婷, 等. 钩吻GeERF转录因子的鉴定及在低温胁迫下的表达[J]. 中国中药杂志, 2022, 47(18): 4908-4918. |
You CH, Liu AY, Zhang T, et al. Identification of GeERF transcription factors in Gelsmium elegans and their expression under low temperature stress[J]. China J Chin Mater Med, 2022, 47(18): 4908-4918. | |
[11] | 曹嵩晓, 张冲, 汤雨凡, 等. 植物脂氧合酶蛋白特性及其在果实成熟衰老和逆境胁迫中的作用[J]. 植物生理学报, 2014, 50(8): 1096-1108. |
Cao SX, Zhang C, Tang YF, et al. Protein characteristic of the plant lipoxygenase and the function on fruit ripening and senescence and adversity stress[J]. Plant Physiol J, 2014, 50(8): 1096-1108. | |
[12] | 沙伟, 任巍巍, 马天意. 脂氧合酶基因在植物中的研究进展[J]. 分子植物育种, 2019, 17(24): 8102-8107. |
Sha W, Ren WW, Ma TY. Research advances of lipoxygenase genes in plants[J]. Mol Plant Breed, 2019, 17(24): 8102-8107. | |
[13] | 李彩凤, 赵丽影, 陈业婷, 等. 高等植物脂氧合酶研究进展[J]. 东北农业大学学报, 2010, 41(10): 143-149. |
Li CF, Zhao LY, Chen YT, et al. Research advances on higher plant lipoxygenase[J]. J Northeast Agric Univ, 2010, 41(10)143-149. | |
[14] | Esquerre-Tugaye MT, Fournier J, Pouenat ML, et al. Lipoxygenases in plant signalling[M]// Developments in Plant Pathology. Dordrecht: Springer Netherlands, 1993: 202-210. |
[15] |
Borowski T, Brocławik E. Catalytic reaction mechanism of lipoxygenase. a density functional theory study[J]. J Phy Chem B, 2003, 107(19): 4639-4646.
doi: 10.1021/jp027616q URL |
[16] |
Feussner I, Kühn H, Wasternack C. Lipoxygenase-dependent degradation of storage lipids[J]. Trends Plant Sci, 2001, 6(6): 268-273.
pmid: 11378469 |
[17] | 陈慧. 茶树被茶尺蠖取食诱导的一个13-脂氧合酶基因的分离、功能鉴定与表达分析[D]. 合肥: 安徽农业大学, 2011. |
Chen H. Isolation, functional identification and expression analysis of a 13-lipoxygenase gene induced by feeding on tea plants by Ectropis obliqua.[D]. Hefei: Anhui Agricultural University, 2011. | |
[18] |
Heitz T, Bergey DR, Ryan CA. A gene encoding a chloroplast-targeted lipoxygenase in tomato leaves is transiently induced by wounding, systemin, and methyl jasmonate[J]. Plant Physiol, 1997, 114(3): 1085-1093.
doi: 10.1104/pp.114.3.1085 pmid: 9232884 |
[19] |
梁馨元, 郭星秀, 齐红岩. 乙烯与脂氧合酶在番茄果实香气合成中的作用[J]. 园艺学报, 2017, 44(11): 2117-2125.
doi: 10.16420/j.issn.0513-353x.2017-0057 |
Liang XY, Guo XX, Qi HY. Role of lipoxygenase and ethylene in tomato fruit aroma synthesis[J]. Acta Hortic Sin, 2017, 44(11): 2117-2125.
doi: 10.16420/j.issn.0513-353x.2017-0057 |
|
[20] |
Park YS, Kunze SS, Ni XZ, et al. Comparative molecular and biochemical characterization of segmentally duplicated 9- lipoxygenase genes ZmLOX4, and ZmLOX5, of maize[J]. Planta, 2010, 231(6): 1425-1437.
doi: 10.1007/s00425-010-1143-8 URL |
[21] | 田寿乐, 周俊义. 不同贮藏温度与鲜枣果实中保护酶及脂氧合酶活性变化的关系[J]. 河北农业大学学报, 2006, 29(1): 46-49. |
Tian SL, Zhou JY. Relationship between different storage temperature and changes of protective enzyme or LOX in fresh Chinese Jujube[J]. J Agric Univ Hebei, 2006, 29(1): 46-49. | |
[22] |
Guo SL, Song ZZ, Ma RJ, et al. Genome-wide identification and expression analysis of the lipoxygenase gene family during peach fruit ripening under different postharvest treatments[J]. Acta Physiol Plant, 2017, 39(5): 111.
doi: 10.1007/s11738-017-2409-6 URL |
[23] | 刘梦, 魏玉磊, 丁冬, 等. 高粱LOX基因家族全基因组鉴定及表达模式分析[J]. 河南农业科学, 2020, 49(11): 37-44. |
Liu M, Wei YL, Ding D, et al. Genome-wide identification and expression pattern of LOX gene family of Sorghum bicolor[J]. J Henan Agric Sci, 2020, 49(11): 37-44. | |
[24] | 苏亚春. 甘蔗应答黑穗病菌侵染的转录组与蛋白组研究及抗性相关基因挖掘[D]. 福州: 福建农林大学, 2014. |
Su YC. Study on transcriptome and proteome of sugarcane in response to smut infection and mining resistance-related genes[D]. Fuzhou: Fujian Agriculture and Forestry University, 2014. | |
[25] | 苏亚春, 王竹青, 李竹, 等. 甘蔗过氧化物酶基因ScPOD02的克隆与功能鉴定[J]. 作物学报, 2017, 43(4): 510-521. |
Su YC, Wang ZQ, Li Z, et al. Molecular cloning and functional identification of peroxidase gene ScPOD02 in sugarcane[J]. Acta Agron Sin, 2017, 43(4): 510-521.
doi: 10.3724/SP.J.1006.2017.00510 URL |
|
[26] | 孙夫德, 任美娜, 赵丽娜, 等. 磷酸化调节的膜蛋白结构及其功能研究进展[J]. 河北工业大学学报, 2023, 52(1): 1-12. |
Sun FD, Ren MN, Zhao LN, et al. Structure and function of membrane proteins modulated by phosphorylation[J]. J Hebei Univ Technol, 2023, 52(1): 1-12 | |
[27] |
Floyd BM, Drew K, Marcotte EM. Systematic identification of protein phosphorylation-mediated interactions[J]. J Proteome Res, 2021, 20(2): 1359-1370.
doi: 10.1021/acs.jproteome.0c00750 pmid: 33476154 |
[28] |
Wang DJ, Qin LQ, Wu MX, et al. Identification and characterization of WAK gene family in Saccharum and the negative roles of ScWAK1 under the pathogen stress[J]. Int J Bio Macromol, 2023, 224: 1-19.
doi: 10.1016/j.ijbiomac.2022.11.300 URL |
[29] | 权威, 薛文通, 赵天瑶, 等. 植物对低温胁迫的响应机制研究进展[J]. 中国农业大学学报, 2023, 28(2): 14-22. |
Quan W, Xue WT, Zhao TY, et al. A review on the response mechanism of plant to low temperature stress[J]. J China Agric Univ, 2023, 28(2): 14-22. | |
[30] | 张琦, 陈瑶, 黄乾明. 逆境胁迫下植物不饱和脂肪酸衍生物介导的防卫信号途径及转录因子研究进展[J]. 分子植物育种, 2018, 16(5): 1494-1502. |
Zhang Q, Chen Y, Huang QM. Research advances in the defense signaling pathway and transcription factors mediated by plant unsaturated fatty acid derivatives under abiotic stress[J]. Mol Plant Breed, 2018, 16(5): 1494-1502. | |
[31] | 赵训超, 盖胜男, 魏玉磊, 等. 低温胁迫下玉米根系生理变化及相关基因表达分析[J]. 农业生物技术学报, 2020, 28(1): 32-41. |
Zhao XC, Wei YL, et al. Analysis of root physiology and related gene expression in maize(Zea mays)under low temperature stress[J]. J Agric Biotechnol, 2020, 28(1): 32-41. | |
[32] |
Yang XY, Jiang WJ, Yu HJ. The expression profiling of the lipoxygenase(LOX)family genes during fruit development, abiotic stress and hormonal treatments in cucumber(Cucumis sativus L.)[J]. Int J Mol Sci, 2012, 13(2): 2481-2500.
doi: 10.3390/ijms13022481 URL |
[33] |
朱利利, 庆军, 杜庆鑫, 等. 杜仲脂氧合酶基因家族全基因组鉴定及其表达特性研究[J]. 植物研究, 2019, 39(6): 927-934.
doi: 10.7525/j.issn.1673-5102.2019.06.016 |
Zhu LL, Qing J, Du QX, et al. Genome-wide identification and expression characteristics of LOX gene family in Eucommia ulmoides[J]. Bull Bot Res, 2019, 39(6): 927-934. | |
[34] |
孙婷婷, 王文举, 娄文月, 等. 甘蔗脂氧合酶基因ScLOX1的克隆与表达分析[J]. 作物学报, 2019, 45(7): 1002-1016.
doi: 10.3724/SP.J.1006.2019.84143 |
Sun TT, Wang WJ, Lou WY, et al. Cloning and expression analysis of sugarcane lipoxygenase gene ScLOX1[J]. Acta Agron Sin, 2019, 45(7): 1002-1016. | |
[35] | 李志远, 宋青松, 刘江, 等. 普通烟草脂氧合酶基因家族鉴定及表达模式分析[J]. 中国烟草科学, 2021, 42(5): 86-94. |
Li ZY, Song QS, Liu J, et al. Identification and expression analysis of the lipoxygenase gene family in tobacco(Nicotiana tabacum L.)[J]. Chin Tob Sci, 2021, 42(5): 86-94. | |
[36] |
Vellosillo T, Martínez M, López MA, et al. Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade[J]. Plant Cell, 2007, 19(3): 831-846.
doi: 10.1105/tpc.106.046052 pmid: 17369372 |
[37] | 陈竹. 杨树脂氧合酶(LOX)家族的全基因组分析及PtLOX11基因的功能研究[D]. 合肥: 安徽农业大学, 2017. |
Chen Z. Genome-wide analysis of poplar resin oxygenase(LOX)family and functional study of PtLOX11 gene[D]. Hefei: Anhui Agricultural University, 2017. | |
[38] | 汪仁, 沈文飚, 江玲, 等. 水稻种子脂氧合酶基因OsLOX1的原核表达、纯化及鉴定[J]. 中国水稻科学, 2008, 22(2): 118-124. |
Wang R, Shen WB, Jiang L, et al. Prokaryotic expression, purification and characterization of a novel rice seed lipoxygenase gene OsLOX1[J]. Chin J Rice Sci, 2008, 22(2): 118-124. | |
[39] | 张雨潇. 水稻脂肪氧化酶3(LOX3)互作蛋白的筛选及蛋白组学分析结果验证[D]. 福建: 福建农林大学, 2018. |
Zhang YX. Screening of lipoxygenase-3(LOX-3)interaction proteins in rice and validation of proteomic analysis results[D]. Fuzhou: Fujian Agriculture and Forestry University, 2018. | |
[40] | 曹嵩晓. 薄皮甜瓜脂氧合酶CmLOX10和CmLOX13的原核表达、生化特性及启动子分析[D]. 沈阳: 沈阳农业大学, 2016. |
Cao SX. Prokaryotic expression, biochemical characteristics and promoter analysis of lipoxygenase CmLOX10 and CmLOX13 in thin-skinned melon[D]. Shenyang: Shenyang Agricultural University, 2016. | |
[41] | 田英, 刘廷旭, 赵彩平, 等. 桃脂氧合酶基因的原核表达分析[J]. 西北植物学报, 2011, 31(3): 499-503. |
Tian Y, Liu TX, Zhao CP, et al. Expression of peach PpLOX-3 in prokaryotic cells[J]. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(3): 499-503. |
[1] | 王佳蕊, 孙培媛, 柯瑾, 冉彬, 李洪有. 苦荞糖基转移酶基因FtUGT143的克隆及表达分析[J]. 生物技术通报, 2023, 39(8): 204-212. |
[2] | 饶紫环, 谢志雄. 一株Olivibacter jilunii 纤维素降解菌株的分离鉴定与降解能力分析[J]. 生物技术通报, 2023, 39(8): 283-290. |
[3] | 陈晓, 于茗兰, 吴隆坤, 郑晓明, 逄洪波. 植物lncRNA及其对低温胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(7): 1-12. |
[4] | 孙明慧, 吴琼, 刘丹丹, 焦小雨, 王文杰. 茶树CsTMFs的克隆与表达分析[J]. 生物技术通报, 2023, 39(7): 151-159. |
[5] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[6] | 潘国强, 吴思源, 刘璐, 郭惠明, 程红梅, 苏晓峰. 大丽轮枝菌(Verticillim dahliae)突变体库的构建与分析[J]. 生物技术通报, 2023, 39(5): 112-119. |
[7] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[8] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[9] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[10] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[11] | 刘思佳, 王浩楠, 付宇辰, 闫文欣, 胡增辉, 冷平生. ‘西伯利亚’百合LiCMK基因克隆及功能分析[J]. 生物技术通报, 2023, 39(3): 196-205. |
[12] | 王涛, 漆思雨, 韦朝领, 王艺清, 戴浩民, 周喆, 曹士先, 曾雯, 孙威江. CsPPR和CsCPN60-like在茶树白化叶片中的表达分析及互作蛋白验证[J]. 生物技术通报, 2023, 39(3): 218-231. |
[13] | 蒋路园, 丰美静, 杜雨晴, 邸葆, 陈段芬, 邱德有, 杨艳芳. 红豆杉低温半致死温度和低温胁迫下紫杉烷含量[J]. 生物技术通报, 2023, 39(3): 232-242. |
[14] | 庞强强, 孙晓东, 周曼, 蔡兴来, 张文, 王亚强. 菜心BrHsfA3基因克隆及其对高温胁迫的响应[J]. 生物技术通报, 2023, 39(2): 107-115. |
[15] | 苗淑楠, 高宇, 李昕儒, 蔡桂萍, 张飞, 薛金爱, 季春丽, 李润植. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析[J]. 生物技术通报, 2023, 39(2): 96-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||