生物技术通报 ›› 2022, Vol. 38 ›› Issue (4): 4-19.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1598
• 作物品质遗传与改良专题(专题主编: 刘巧泉 教授) • 上一篇 下一篇
收稿日期:
2021-12-27
出版日期:
2022-04-26
发布日期:
2022-05-06
通讯作者:
高振宇,男,博士,研究员,研究方向:作物遗传育种;E-mail: gaozhenyu@caas.cn作者简介:
李然,男,硕士研究生,研究方向:作物遗传育种;E-mail: lr494303683@163.com
基金资助:
LI Ran(), QIAN Qian, GAO Zhen-yu()
Received:
2021-12-27
Published:
2022-04-26
Online:
2022-05-06
摘要:
随着人民生活水平的提高,在追求水稻高产的同时,优质已成为育种家的育种目标和消费者的关注重点。水稻品质包含碾磨品质、外观品质、蒸煮食味品质和营养品质四类指标,本文从水稻品质的遗传与改良两方面展开论述,回顾了水稻品质的遗传与育种改良研究进展,介绍了已克隆的稻米品质相关基因或QTL的功能及其在稻米品质改良中的应用。最后,在此基础上分析了现阶段水稻品质的遗传与改良存在的问题并对未来研究方向作了展望。
李然, 钱前, 高振宇. 水稻品质的遗传与育种改良研究进展[J]. 生物技术通报, 2022, 38(4): 4-19.
LI Ran, QIAN Qian, GAO Zhen-yu. Research Progress in the Inheritance and Breeding Improvement of Rice Quality[J]. Biotechnology Bulletin, 2022, 38(4): 4-19.
控制性状 Trait | 基因名 Gene | LOC号 LOC number | 编码产物 Encoded protein/Enzyme | 参考文献Reference |
---|---|---|---|---|
垩白Chalkiness | Chalk5 | LOC_Os05g06480 | 液泡膜质子转运焦磷酸酶Vacuolar H+-translocating pyrophosphatase | [ |
粒型 Grain shape | GS3 | Os03g0407400 | 异三聚体G蛋白γ亚基G protein gamma subunit | [ |
GW2 | LOC_Os02g14720 | E3泛素连接酶E3 ubiquitin ligase | [ | |
GL3-1 | LOC_Os03g44500 | 丝氨酸/苏氨酸磷酸酶Serine/threonine phosphatase | [ | |
GS2 | LOC_Os02g47280 | 生长调节因子4 Growth-regulating factor 4 | [ | |
GL7 | LOC_Os07g41200 | LONGIFOLIA蛋白LONGIFOLIA protein | [ | |
GW5 | LOC_Os05g09520 | 钙调素结合蛋白Calmodulin binding protein | [ | |
GS5 | LOC_Os05g06660 | 丝氨酸羧肽酶Serine carboxypeptidase | [ | |
GW8/ OsSPL16 | LOC_Os08g41940 | Squamosa启动子结合蛋白Squamosa promoter binding protein | [ | |
GIF1 | LOC_Os04g33740 | 细胞壁转化酶Cell wall invertase | [ | |
GE/BG2 | LOC_Os07g41240 | CYP78A13蛋白/细胞色素P450 CYP78A13 protein/cytochrome P450 | [ | |
蒸煮食 味品质 Eating and cooking quality | qGC6/Wx | LOC_Os06g04200 | 颗粒结合型淀粉合成酶Granule-bound starch synthase | [ |
DU1 | OSJNBa0017E08.20 | Prp1蛋白Prp1 protein | [ | |
ALK/OsSSSIIa | LOC_Os06g12450 | 可溶性淀粉合酶II Soluble starch synthase II | [ | |
SSSI | LOC_Os06g06560 | 可溶性淀粉合酶I Soluble starch synthase I | [ | |
SSSIIIa | LOC_Os08g09230 | 可溶性淀粉合酶III Soluble starch synthase III | [ | |
OsAGPL3 | LOC_Os05g50380 | 腺苷二磷酸葡萄糖焦磷酸化酶大亚基 Large subunit of ADP-glucose pyrophosphorylase | [ | |
OsAPS1 | LOC_Os09g12660 | 腺苷二磷酸葡萄糖焦磷酸化酶小亚基 Small subunit of ADP-glucose pyrophosphorylase | [ | |
OsAPS2 | LOC_Os08g25734 | 腺苷二磷酸葡萄糖焦磷酸化酶小亚基 Small subunit of ADP-glucose pyrophosphorylase | [ | |
OsAGPL1 | LOC_Os03g52460 | 腺苷二磷酸葡萄糖焦磷酸化酶大亚基 Large subunit of ADP-glucose pyrophosphorylase | [ | |
OsAGPL2/GIF2 | LOC_Os01g44220 | 腺苷二磷酸葡萄糖焦磷酸化酶大亚基 Large subunit of ADP-glucose pyrophosphorylase | [ | |
OsAGPL4 | LOC_Os07g13980 | 腺苷二磷酸葡萄糖焦磷酸化酶大亚基 Large subunit of ADP-glucose pyrophosphorylase | [ | |
BEIIb | LOC_Os02g32660 | 淀粉分支酶IIb Starch branching enzyme IIb | [ | |
营养品质Nutrient quality | OsAAP10 | LOC_Os02g49060 | 氨基酸通透酶Amino acid permease | [ |
OsBADH2/fgr | LOC_Os08g32870 | 甜菜碱醛脱氢酶Betaine aldehyde dehydrogenase | [ | |
qPC-1/OsAAP6 | LOC_Os01g65670 | 氨基酸通透酶Amino acid permease | [ | |
qGPC-10/OsGluA2 | LOC_Os10g26060 | 谷蛋白A2 Glutelin type-A2 precursor | [ | |
OsAAP3 | LOC_Os06g36180 | 氨基酸转运蛋白Amino acid transporter | [ | |
OsAAP5 | LOC_Os01g65660 | 氨基酸通透酶Amino acid permease | [ | |
OsAAP1 | LOC_Os07g04180 | 氨基酸转运蛋白Amino acid transporter | [ | |
OsLHT1 | LOC_Os08g03350 | 氨基酸转运蛋白Amino acid transporter | [ | |
OsLTPL36 | LOC_Os03g25350 | 植物非特异的脂质转运蛋白Lipid transfer protein | [ | |
LOX1/LOX5 | LOC_Os03g49380 | 脂氧合酶Lipoxygenase | [ | |
LOX2 | LOC_Os03g52860 | 脂氧合酶Lipoxygenase | [ | |
LOX3/r9-LOX1 | LOC_Os03g49260 | 脂氧合酶Lipoxygenase | [ | |
AK2 | LOC_Os01g70300 | 天冬氨酸激酶Aspartate kinase | [ |
表1 已克隆的水稻品质相关基因/QTL
Table 1 Cloned genes related to rice quality /QTLs
控制性状 Trait | 基因名 Gene | LOC号 LOC number | 编码产物 Encoded protein/Enzyme | 参考文献Reference |
---|---|---|---|---|
垩白Chalkiness | Chalk5 | LOC_Os05g06480 | 液泡膜质子转运焦磷酸酶Vacuolar H+-translocating pyrophosphatase | [ |
粒型 Grain shape | GS3 | Os03g0407400 | 异三聚体G蛋白γ亚基G protein gamma subunit | [ |
GW2 | LOC_Os02g14720 | E3泛素连接酶E3 ubiquitin ligase | [ | |
GL3-1 | LOC_Os03g44500 | 丝氨酸/苏氨酸磷酸酶Serine/threonine phosphatase | [ | |
GS2 | LOC_Os02g47280 | 生长调节因子4 Growth-regulating factor 4 | [ | |
GL7 | LOC_Os07g41200 | LONGIFOLIA蛋白LONGIFOLIA protein | [ | |
GW5 | LOC_Os05g09520 | 钙调素结合蛋白Calmodulin binding protein | [ | |
GS5 | LOC_Os05g06660 | 丝氨酸羧肽酶Serine carboxypeptidase | [ | |
GW8/ OsSPL16 | LOC_Os08g41940 | Squamosa启动子结合蛋白Squamosa promoter binding protein | [ | |
GIF1 | LOC_Os04g33740 | 细胞壁转化酶Cell wall invertase | [ | |
GE/BG2 | LOC_Os07g41240 | CYP78A13蛋白/细胞色素P450 CYP78A13 protein/cytochrome P450 | [ | |
蒸煮食 味品质 Eating and cooking quality | qGC6/Wx | LOC_Os06g04200 | 颗粒结合型淀粉合成酶Granule-bound starch synthase | [ |
DU1 | OSJNBa0017E08.20 | Prp1蛋白Prp1 protein | [ | |
ALK/OsSSSIIa | LOC_Os06g12450 | 可溶性淀粉合酶II Soluble starch synthase II | [ | |
SSSI | LOC_Os06g06560 | 可溶性淀粉合酶I Soluble starch synthase I | [ | |
SSSIIIa | LOC_Os08g09230 | 可溶性淀粉合酶III Soluble starch synthase III | [ | |
OsAGPL3 | LOC_Os05g50380 | 腺苷二磷酸葡萄糖焦磷酸化酶大亚基 Large subunit of ADP-glucose pyrophosphorylase | [ | |
OsAPS1 | LOC_Os09g12660 | 腺苷二磷酸葡萄糖焦磷酸化酶小亚基 Small subunit of ADP-glucose pyrophosphorylase | [ | |
OsAPS2 | LOC_Os08g25734 | 腺苷二磷酸葡萄糖焦磷酸化酶小亚基 Small subunit of ADP-glucose pyrophosphorylase | [ | |
OsAGPL1 | LOC_Os03g52460 | 腺苷二磷酸葡萄糖焦磷酸化酶大亚基 Large subunit of ADP-glucose pyrophosphorylase | [ | |
OsAGPL2/GIF2 | LOC_Os01g44220 | 腺苷二磷酸葡萄糖焦磷酸化酶大亚基 Large subunit of ADP-glucose pyrophosphorylase | [ | |
OsAGPL4 | LOC_Os07g13980 | 腺苷二磷酸葡萄糖焦磷酸化酶大亚基 Large subunit of ADP-glucose pyrophosphorylase | [ | |
BEIIb | LOC_Os02g32660 | 淀粉分支酶IIb Starch branching enzyme IIb | [ | |
营养品质Nutrient quality | OsAAP10 | LOC_Os02g49060 | 氨基酸通透酶Amino acid permease | [ |
OsBADH2/fgr | LOC_Os08g32870 | 甜菜碱醛脱氢酶Betaine aldehyde dehydrogenase | [ | |
qPC-1/OsAAP6 | LOC_Os01g65670 | 氨基酸通透酶Amino acid permease | [ | |
qGPC-10/OsGluA2 | LOC_Os10g26060 | 谷蛋白A2 Glutelin type-A2 precursor | [ | |
OsAAP3 | LOC_Os06g36180 | 氨基酸转运蛋白Amino acid transporter | [ | |
OsAAP5 | LOC_Os01g65660 | 氨基酸通透酶Amino acid permease | [ | |
OsAAP1 | LOC_Os07g04180 | 氨基酸转运蛋白Amino acid transporter | [ | |
OsLHT1 | LOC_Os08g03350 | 氨基酸转运蛋白Amino acid transporter | [ | |
OsLTPL36 | LOC_Os03g25350 | 植物非特异的脂质转运蛋白Lipid transfer protein | [ | |
LOX1/LOX5 | LOC_Os03g49380 | 脂氧合酶Lipoxygenase | [ | |
LOX2 | LOC_Os03g52860 | 脂氧合酶Lipoxygenase | [ | |
LOX3/r9-LOX1 | LOC_Os03g49260 | 脂氧合酶Lipoxygenase | [ | |
AK2 | LOC_Os01g70300 | 天冬氨酸激酶Aspartate kinase | [ |
[1] |
Zhang QF. Strategies for developing green super rice[J]. Proc Natl Acad Sci USA, 2007, 104(42):16402-16409.
doi: 10.1073/pnas.0708013104 URL |
[2] | Zhao XQ, Zhou LJ, Ponce K, et al. The usefulness of known genes/QTLs for grain quality traits in an indica population of diverse breeding lines tested using association analysis[J]. Rice(N Y), 2015, 8(1):29. |
[3] | 万娟, 陈嘉东, 钟国才, 等. 稻米的加工品质与其它品质性状的关系[C]. 中国粮油学会第五届学术年会论文选集. 2014. |
Wan J, Chen JD, Zhong GC, et al. Correlations between paddy mill quality and other qualitative characteristics[C]. 5th Annual Academic Conference of China Grain and Oil Society. 2014. | |
[4] | 张云康, 林榕辉, 闵捷, 等. 浙江水稻品种资源的品质研究[J]. 作物品种资源, 1992(4):23-25. |
Zhang YK, Lin RH, Min J, et al. Study on quality of rice germplasm resources in Zhejiang Province[J]. China Seeds, 1992(4):23-25. | |
[5] | 王丹英, 章秀福, 朱智伟, 等. 食用稻米品质性状间的相关性分析[J]. 作物学报, 2005, 31(8):1086-1091. |
Wang DY, Zhang XF, Zhu ZW, et al. Correlation analysis of rice grain quality characteristics[J]. Acta Agron Sin, 2005, 31(8):1086-1091. | |
[6] |
Zhao XQ, Daygon VD, McNally KL, et al. Identification of stable QTLs causing chalk in rice grains in nine environments[J]. Theor Appl Genet, 2016, 129(1):141-153.
doi: 10.1007/s00122-015-2616-8 URL |
[7] | 包劲松. 稻米淀粉品质遗传与改良研究进展[J]. 分子植物育种, 2007, 5(S1):1-20. |
Bao JS. Progress in studies on inheritance and improvement of rice starch quality[J]. Mol Plant Breed, 2007, 5(S1):1-20. | |
[8] |
Fitzgerald MA, McCouch SR, Hall RD. Not just a grain of rice:the quest for quality[J]. Trends Plant Sci, 2009, 14(3):133-139.
doi: 10.1016/j.tplants.2008.12.004 pmid: 19230745 |
[9] | 梅捍卫, 罗利军, 郭龙彪, 等. 水稻加工品质数量性状基因座(QTLs)分子定位研究[J]. 遗传学报, 2002, 29(9):791-797. |
Mei HW, Luo LJ, Guo LB, et al. Molecular mapping of QTLs for rice milling yield traits[J]. Acta Genet Sin, 2002, 29(9):791-797. | |
[10] | 梅德勇, 朱玉君, 樊叶杨. 籼稻稻米碾磨与外观品质性状的QTL定位[J]. 遗传, 2012, 34(12):1591-1598. |
Mei DY, Zhu YJ, Fan YY. Mapping QTL for rice milling and appearance quality traits in indica rice[J]. Hereditas, 2012, 34(12):1591-1598. | |
[11] |
Li YB, Fan CC, Xing YZ, et al. Chalk5 encodes a vacuolar H+- translocating pyrophosphatase influencing grain chalkiness in rice[J]. Nat Genet, 2014, 46(4):398-404.
doi: 10.1038/ng.2923 URL |
[12] |
Fan CC, Xing YZ, Mao HL, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theor Appl Genet, 2006, 112(6):1164-1171.
doi: 10.1007/s00122-006-0218-1 URL |
[13] |
Mao HL, Sun SY, Yao JL, et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proc Natl Acad Sci USA, 2010, 107(45):19579-19584.
doi: 10.1073/pnas.1014419107 URL |
[14] |
Song XJ, Huang W, Shi M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nat Genet, 2007, 39(5):623-630.
doi: 10.1038/ng2014 URL |
[15] |
Zhang XJ, Wang JF, Huang J, et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice[J]. Proc Natl Acad Sci USA, 2012, 109(52):21534-21539.
doi: 10.1073/pnas.1219776110 URL |
[16] |
Qi P, Lin YS, Song XJ, et al. The novel quantitative trait locus GL3. 1 controls rice grain size and yield by regulating Cyclin-T1;3[J]. Cell Res, 2012, 22(12):1666-1680.
doi: 10.1038/cr.2012.151 URL |
[17] |
Gao XY, Zhang XJ, Lan HX, et al. The additive effects of GS3 and qGL3 on rice grain length regulation revealed by genetic and transcriptome comparisons[J]. BMC Plant Biol, 2015, 15:156.
doi: 10.1186/s12870-015-0515-4 URL |
[18] |
Hu J, Wang YX, Fang YX, et al. A rare allele of GS2 enhances grain size and grain yield in rice[J]. Mol Plant, 2015, 8(10):1455-1465.
doi: 10.1016/j.molp.2015.07.002 URL |
[19] |
Wang YX, Xiong GS, Hu J, et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nat Genet, 2015, 47(8):944-948.
doi: 10.1038/ng.3346 URL |
[20] |
Wang SK, Li S, Liu Q, et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nat Genet, 2015, 47(8):949-954.
doi: 10.1038/ng.3352 URL |
[21] |
Weng JF, Gu SH, Wan XY, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Res, 2008, 18(12):1199-1209.
doi: 10.1038/cr.2008.307 URL |
[22] |
Liu JF, Chen J, Zheng XM, et al. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice[J]. Nat Plants, 2017, 3:17043.
doi: 10.1038/nplants.2017.43 URL |
[23] |
Li YB, Fan CC, Xing YZ, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nat Genet, 2011, 43(12):1266-1269.
doi: 10.1038/ng.977 URL |
[24] |
Wang SK, Wu K, Yuan QB, et al. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nat Genet, 2012, 44(8):950-954.
doi: 10.1038/ng.2327 URL |
[25] |
Wang ET, Wang JJ, Zhu XD, et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication[J]. Nat Genet, 2008, 40(11):1370-1374.
doi: 10.1038/ng.220 URL |
[26] | 阮成江, 何祯祥, 钦佩. 我国农作物QTL定位研究的现状和进展[J]. 植物学通报, 2003, 38(1):10-22. |
Ruan CJ, He ZX, Qin P. Research advancements on crop QTL mapping in China[J]. Chin Bull Bot, 2003, 38(1):10-22. | |
[27] | 李泽福, 万建民, 夏加发, 等. 水稻外观品质的数量性状基因位点分析[J]. 遗传学报, 2003, 30(3):251-259. |
Li ZF, Wan JM, Xia JF, et al. Mapping quantitative trait loci underlying appearance quality of rice grains(Oryza sativa L.)[J]. Acta Genet Sin, 2003, 30(3):251-259. | |
[28] | 沈圣泉, 庄杰云, 王淑珍, 等. 稻米透明度QTLs主效应、上位性效应和G×E互作效应检测[J]. 浙江大学学报:农业与生命科学版, 2006, 32(4):367-371. |
Shen SQ, Zhuang JY, Wang SZ, et al. Analysis of QTLs with genetic main effect, additive × additive epistatic effect and G × E interaction effect of rice transparency[J]. J Zhejiang Univ Agric Life Sci, 2006, 32(4):367-371. | |
[29] | Gao Y, Liu CL, Li YY, et al. QTL analysis for chalkiness of rice and fine mapping of a candidate gene for qACE9[J]. Rice(N Y), 2016, 9(1):41. |
[30] |
Jeon JS, Ryoo N, Hahn TR, et al. Starch biosynjournal in cereal endosperm[J]. Plant Physiol Biochem, 2010, 48(6):383-392.
doi: 10.1016/j.plaphy.2010.03.006 URL |
[31] |
Inukai T, Sako A, Hirano HY, et al. Analysis of intragenic recombination at wx in rice:correlation between the molecular and genetic maps within the locus[J]. Genome, 2000, 43(4):589-596.
pmid: 10984169 |
[32] |
Wang ZY, Zheng FQ, Shen GZ, et al. The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene[J]. Plant J, 1995, 7(4):613-622.
pmid: 7742858 |
[33] |
Tian ZX, Qian Q, Liu QQ, et al. Allelic diversities in rice starch biosynjournal lead to a diverse array of rice eating and cooking qualities[J]. Proc Natl Acad Sci USA, 2009, 106(51):21760-21765.
doi: 10.1073/pnas.0912396106 URL |
[34] |
Cai XL, Wang ZY, Xing YY, et al. Aberrant splicing of intron 1 leads to the heterogeneous 5' UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content[J]. Plant J, 1998, 14(4):459-465.
pmid: 9670561 |
[35] |
Mikami I, Uwatoko N, Ikeda Y, et al. Allelic diversification at the wx locus in landraces of Asian rice[J]. Theor Appl Genet, 2008, 116(7):979-989.
doi: 10.1007/s00122-008-0729-z pmid: 18305920 |
[36] |
Sato H, Suzuki Y, Sakai M, et al. Molecular characterization of Wx-mq, a novel mutant gene for low-amylose content in endosperm of rice(Oryza sativa L.)[J]. Breed Sci, 2002, 52(2):131-135.
doi: 10.1270/jsbbs.52.131 URL |
[37] |
Yang J, Wang J, Fan FJ, et al. Development of AS-PCR marker based on a key mutation confirmed by resequencing of Wx mp in Milky Princess and its application in japonica soft rice(Oryza sativa L.)breeding[J]. Plant Breed, 2013, 132(6):595-603.
doi: 10.1111/pbr.12088 URL |
[38] |
Liu LL, Ma XD, Liu SJ, et al. Identification and characterization of a novel Waxy allele from a Yunnan rice Landrace[J]. Plant Mol Biol, 2009, 71(6):609-626.
doi: 10.1007/s11103-009-9544-4 URL |
[39] | 蔡秀玲, 刘巧泉, 汤述翥, 等. 用于筛选直链淀粉含量为中等的籼稻品种的分子标记[J]. 植物生理与分子生物学学报, 2002, 28(2):137-144. |
Cai XL, Liu QQ, Tang SZ, et al. Development of a molecular marker for screening the rice cultivars with intermediate amylose content in Oryza sativa subsp. indica[J]. Acta Photophysiol Sin, 2002, 28(2):137-144. | |
[40] | 姚彩萍, 王宗阳, 蔡秀玲, 等. 水稻蜡质基因5'上游区缺失对基因表达的影响[J]. 植物生理学报, 1996, 22(4):431-436. |
Yao CP, Wang ZY, Cai XL, et al. Effects of 5'Upstream region deletion on rice waxy gene expression[J]. Acta Phytophisiologica Sin, 1996, 22(4):431-436. | |
[41] | 葛鸿飞, 王宗阳, 洪孟民. 水稻蜡质基因5'上游区中31bp序列增强基因表达的作用[J]. 植物生理学报, 2000, 26(2):159-163. |
Ge HF, Wang ZY, Hong MM. A 31 bp fragment within the 5' upstream region of rice waxy gene enhances gene expression[J]. Acta Photophysiol Sin, 2000, 26(2):159-163. | |
[42] | 程世军, 王宗阳, 洪孟民. 水稻bZIP蛋白REB结合Wx基因启动子中的GCN4基序[J]. 中国科学:C辑:生命科学, 2002, 32(1):23-29. |
Cheng SJ, Wang ZY, Hong MM. Rice bZIP protein, REB, interacts with GCN4 motif in promoter of waxy gene[J]. Sci China Serc, 2002, 32(1):23-29. | |
[43] |
Zeng DL, Yan MX, Wang YH, et al. Du1, encoding a novel Prp1 protein, regulates starch biosynjournal through affecting the splicing of Wxb pre-mRNAs in rice(Oryza sativa L.)[J]. Plant Mol Biol, 2007, 65(4):501-509.
doi: 10.1007/s11103-007-9186-3 URL |
[44] | 高振宇, 曾大力, 崔霞, 等. 水稻稻米糊化温度控制基因ALK的图位克隆及其序列分析[J]. 中国科学:生命科学, 2003, 33(6):481-487. |
Gao ZY, Zeng DL, Cui X, et al. Map-based cloning of the ALK gene, which controls the gelatinization temperature of rice[J]. Scientia Sinica Vitae, 2003, 33(6):481-487. | |
[45] | Gao ZY, Zeng DL, Cheng FM, et al. ALK, the key gene for gelatinization temperature, is a modifier gene for gel consistency in rice[J]. J Integr Plant Biol, 2011, 53(9):756-765. |
[46] |
Fujita N, Yoshida M, Asakura N, et al. Function and characterization of starch synthase I using mutants in rice[J]. Plant Physiol, 2006, 140(3):1070-1084.
pmid: 16443699 |
[47] |
Fujita N, Yoshida M, Kondo T, et al. Characterization of SSIIIa-deficient mutants of rice:the function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm[J]. Plant Physiol, 2007, 144(4):2009-2023.
pmid: 17586688 |
[48] |
Zhang GY, Cheng ZJ, Zhang X, et al. Double repression of soluble starch synthase genes SSIIa and SSIIIa in rice(Oryza sativa L.)uncovers interactive effects on the physicochemical properties of starch[J]. Genome, 2011, 54(6):448-459.
doi: 10.1139/g11-010 URL |
[49] |
姚姝, 张亚东, 刘燕清, 等. 水稻Wxmp背景下SSⅡa和SSⅢa等位变异及其互作对蒸煮食味品质的影响[J]. 作物学报, 2020, 46(11):1690-1702.
doi: 10.3724/SP.J.1006.2020.02006 |
Yao S, Zhang YD, Liu YQ, et al. Effects of SSⅡa and SSⅢa alleles and their interaction on eating and cooking quality under Wxmp background of rice[J]. Acta Agron Sin, 2020, 46(11):1690-1702. | |
[50] |
Su Y, Rao YC, Hu SK, et al. Map-based cloning proves qGC-6, a major QTL for gel consistency of Japonica/indica cross, responds by Waxy in rice(Oryza sativa L.)[J]. Theor Appl Genet, 2011, 123(5):859-867.
doi: 10.1007/s00122-011-1632-6 URL |
[51] | 黄祖六, 谭学林, 徐辰武, 等. 稻米胶稠度基因位点的标记和分析[J]. 中国农业科学, 2000, 33(6):1-5. |
Huang ZL, Tan XL, Xu CW, et al. Molecular mapping QTLs for gel consistency in rice(Oryza sativa L.)[J]. Sci Agric Sin, 2000, 33(6):1-5. | |
[52] |
Zhang AP, Gao Y, Li YY, et al. Genetic analysis for cooking and eating quality of super rice and fine mapping of a novel locus qGC10 for gel consistency[J]. Front Plant Sci, 2020, 11:342.
doi: 10.3389/fpls.2020.00342 URL |
[53] |
Bao JS, Lu Y, Yang F, et al. Nucleotide polymorphisms in OsAGP genes and their possible association with grain weight of rice[J]. J Cereal Sci, 2012, 55(3):312-317.
doi: 10.1016/j.jcs.2012.01.001 URL |
[54] | 严长杰, 房玉伟, 李敏, 等. 水稻淀粉脱分支酶基因PUL对稻米理化品质的影响[J]. 作物学报, 2010, 36(5):728-735. |
Yan CJ, Fang YW, Li M, et al. Effect of PUL allelic variation on rice cooking and eating quality[J]. Acta Agron Sin, 2010, 36(5):728-735. | |
[55] |
Akihiro T, Mizuno K, Fujimura T. Gene expression of ADP-glucose pyrophosphorylase and starch contents in rice cultured cells are cooperatively regulated by sucrose and ABA[J]. Plant Cell Physiol, 2005, 46(6):937-946.
doi: 10.1093/pcp/pci101 URL |
[56] |
Meng Q, Zhang WQ, Hu X, et al. Two ADP-glucose pyrophosphorylase subunits, OsAGPL1 and OsAGPS1, modulate phosphorus homeostasis in rice[J]. Plant J, 2020, 104(5):1269-1284.
doi: 10.1111/tpj.14998 URL |
[57] |
Lee SK, Hwang SK, Han M, et al. Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synjournal in the leaf and seed endosperm of rice(Oryza sativa L.)[J]. Plant Mol Biol, 2007, 65(4):531-546.
doi: 10.1007/s11103-007-9153-z URL |
[58] |
Rösti S, Fahy B, Denyer K. A mutant of rice lacking the leaf large subunit of ADP-glucose pyrophosphorylase has drastically reduced leaf starch content but grows normally[J]. Funct Plant Biol, 2007, 34(6):480-489.
doi: 10.1071/FP06257 URL |
[59] |
Wei XJ, Jiao GA, Lin HY, et al. GRAIN INCOMPLETE FILLING 2 regulates grain filling and starch synjournal during rice caryopsis development[J]. J Integr Plant Biol, 2017, 59(2):134-153.
doi: 10.1111/jipb.12510 URL |
[60] |
Tang XJ, Peng C, Zhang J, et al. ADP-glucose pyrophosphorylase large subunit 2 is essential for storage substance accumulation and subunit interactions in rice endosperm[J]. Plant Sci, 2016, 249:70-83.
doi: 10.1016/j.plantsci.2016.05.010 URL |
[61] |
Lee SK, Eom JS, Hwang SK, et al. Plastidic phosphoglucomutase and ADP-glucose pyrophosphorylase mutants impair starch synjournal in rice pollen grains and cause male sterility[J]. J Exp Bot, 2016, 67(18):5557-5569.
doi: 10.1093/jxb/erw324 URL |
[62] | 包劲松, 何平, 夏英武, 等. 稻米淀粉RVA谱特征主要受Wx基因控制[J]. 科学通报, 1999, 44(18):1973-1976. |
Bao JS, He P, Xia YW, et al. Starch RVA profile parameters of rice are mainly controlled by Wx gene[J]. Chin Sci Bull, 1999, 44(18):1973-1976. | |
[63] |
Bao JS, Wu YR, Hu B, et al. QTL for rice grain quality based on a DH population derived from parents with similar apparent amylose content[J]. Euphytica, 2002, 128(3):317-324.
doi: 10.1023/A:1021262926145 URL |
[64] | 张巧凤, 张亚东, 朱镇, 等. 稻米淀粉黏滞性(RVA谱)特征值的遗传及QTL定位分析[J]. 中国水稻科学, 2007, 21(6):591-598. |
Zhang QF, Zhang YD, Zhu Z, et al. Analysis of inheritance and QTLs of rice starch viscosity(RVA profile)characteristics[J]. Chin J Rice Sci, 2007, 21(6):591-598. | |
[65] |
Wang SY, Yang YH, Guo M, et al. Targeted mutagenesis of amino acid transporter genes for rice quality improvement using the CRISPR/Cas9 system[J]. Crop J, 2020, 8(3):457-464.
doi: 10.1016/j.cj.2020.02.005 URL |
[66] |
Chen SH, Yang Y, Shi WW, et al. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynjournal of 2-acetyl-1-pyrroline, a major component in rice fragrance[J]. Plant Cell, 2008, 20(7):1850-1861.
doi: 10.1105/tpc.108.058917 URL |
[67] | 黄发松, 孙宗修, 胡培松, 等. 食用稻米品质形成研究的现状与展望[J]. 中国水稻科学, 1998, 12(3):172-176. |
Huang FS, Sun ZX, Hu PS, et al. Present situations and prospects for the research on rice grain quality forming[J]. Chin J Rice Sci, 1998, 12(3):172-176. | |
[68] | 焦爱霞. 水稻籽粒蛋白质含量的遗传及QTL分析[D]. 海口:华南热带农业大学, 2007. |
Jiao AX. Genetic analysis and QTL mapping of the contents for protein in rice seed[D]. Haikou:South China University of Tropical Agriculture, 2007. | |
[69] | 张涛, 郑家奎, 吴先军, 等. 水稻糙米蛋白质含量的QTL定位[J]. 分子植物育种, 2009, 7(1):67-72. |
Zhang T, Zheng JK, Wu XJ, et al. QTL mapping of brown rice protein content in a RIL population of rice[J]. Mol Plant Breed, 2009, 7(1):67-72. | |
[70] |
Peng B, Kong HL, Li YB, et al. OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice[J]. Nat Commun, 2014, 5:4847.
doi: 10.1038/ncomms5847 pmid: 25209128 |
[71] |
Yang YH, Guo M, Sun SY, et al. Natural variation of OsGluA2 is involved in grain protein content regulation in rice[J]. Nat Commun, 2019, 10(1):1949.
doi: 10.1038/s41467-019-09919-y URL |
[72] |
Simon-Sarkadi L, Kocsy G, Várhegyi Á, et al. Stress-induced changes in the free amino acid composition in transgenic soybean plants having increased proline content[J]. Biol Plant, 2006, 50(4):793-796.
doi: 10.1007/s10535-006-0134-x URL |
[73] | 郑希, 吴建国, 楼向阳, 等. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(3):369-375. |
Zheng X, Wu JG, Lou XY, et al. Mapping and analysis of QTLs on maternal and endosperm genomes for histidine and arginine in rice(Oryza sativa L.)across environments[J]. Acta Agron Sin, 2008, 34(3):369-375.
doi: 10.1016/S1875-2780(08)60016-4 URL |
|
[74] | 周旭升, 何予卿. 利用RIL群体对精米氨基酸含量的QTL定位[J]. 湖北农业科学, 2011, 50(16):3408-3411, 3415. |
Zhou XS, He YQ. Identification of QTL for amino acid content in milled rice by RIL[J]. Hubei Agric Sci, 2011, 50(16):3408-3411, 3415. | |
[75] |
Lu K, Wu BW, Wang J, et al. Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice[J]. Plant Biotechnol J, 2018, 16(10):1710-1722.
doi: 10.1111/pbi.12907 URL |
[76] |
Wang J, Wu BW, Lu K, et al. The amino acid permease 5(OsAAP5)regulates tiller number and grain yield in rice[J]. Plant Physiol, 2019, 180(2):1031-1045.
doi: 10.1104/pp.19.00034 pmid: 30890663 |
[77] |
Ji YY, Huang WT, Wu BW, et al. The amino acid transporter AAP1 mediates growth and grain yield by regulating neutral amino acid uptake and reallocation in Oryza sativa[J]. J Exp Bot, 2020, 71(16):4763-4777.
doi: 10.1093/jxb/eraa256 URL |
[78] |
Guo N, Gu MJ, Hu JQ, et al. Rice OsLHT1 functions in leaf-to-panicle nitrogen allocation for grain yield and quality[J]. Front Plant Sci, 2020, 11:1150.
doi: 10.3389/fpls.2020.01150 URL |
[79] | 吴长明, 孙传清, 陈亮, 等. 控制稻米脂肪含量的QTLs分析[J]. 农业生物技术学报, 2000, 8(4):382-384. |
Wu CM, Sun CQ, Chen L, et al. Analysis of QTLs underlying content of fat using recombinant inbred lines in rice[J]. J Agric Biotechnol, 2000, 8(4):382-384. | |
[80] |
Liu WJ, Zeng J, Jiang GH, et al. QTLs identification of crude fat content in brown rice and its genetic basis analysis using DH and two backcross populations[J]. Euphytica, 2009, 169(2):197-205.
doi: 10.1007/s10681-009-9922-7 URL |
[81] |
Wang X, Zhou W, Lu ZH, et al. A lipid transfer protein, OsLTPL36, is essential for seed development and seed quality in rice[J]. Plant Sci, 2015, 239:200-208.
doi: 10.1016/j.plantsci.2015.07.016 pmid: 26398804 |
[82] | 汪仁, 沈文飚, 江玲, 等. 水稻种子脂氧合酶基因OsLOX1的原核表达、纯化及鉴定[J]. 中国水稻科学, 2008, 22(2):118-124. |
Wang R, Shen WB, Jiang L, et al. Prokaryotic expression, purification and characterization of a novel rice seed lipoxygenase gene OsLOX1[J]. Chin J Rice Sci, 2008, 22(2):118-124. | |
[83] |
Huang JX, Cai MH, Long QZ, et al. OsLOX2, a rice type I lipoxygenase, confers opposite effects on seed germination and longevity[J]. Transgenic Res, 2014, 23(4):643-655.
doi: 10.1007/s11248-014-9803-2 URL |
[84] |
Long QZ, Zhang WW, Wang P, et al. Molecular genetic characterization of rice seed lipoxygenase 3 and assessment of its effects on seed longevity[J]. J Plant Biol, 2013, 56(4):232-242.
doi: 10.1007/s12374-013-0085-7 URL |
[85] | 张琛, 滕斌, 李阳生, 等. 水稻种子脂肪氧化酶同工酶活性差异材料加速老化过程中MDA含量分析[J]. 核农学报, 2015, 29(12):2307-2312. |
Zhang C, Teng B, Li YS, et al. Analysis of malondialdehyde(MDA)content of rice materials with different lipoxygenase isoenzyme activities under accelerated aging periods[J]. J Nucl Agric Sci, 2015, 29(12):2307-2312. | |
[86] |
Sookwong P, Murata K, Nakagawa K, et al. Cross-fertilization for enhancing tocotrienol biosynjournal in rice plants and QTL analysis of their F2 progenies[J]. J Agric Food Chem, 2009, 57(11):4620-4625.
doi: 10.1021/jf900394t URL |
[87] | 张晓娜. 水稻糙米中维生素E含量及组成相关QTL的定位与分析[D]. 武汉:华中农业大学, 2013. |
Zhang XN. QTL mapping and analysis of vitamin E content and composition in brown rice[D]. Wuhan:Huazhong Agricultural University, 2013. | |
[88] | 孙明茂. 水稻籽粒铁、硒、锌、铜等矿质元素和花色苷含量的遗传及QTL分析[D]. 泰安:山东农业大学, 2006. |
Sun MM. Genetic analysis and QTL mapping of the contents for mineral elements such as Fe, Se, Zn, Cu and anthocyanins in rice seed[D]. Tai'an:Shandong Agricultural University, 2006. | |
[89] | 崔文刚. 稻米微量元素含量的遗传研究[D]. 武汉:华中农业大学, 2008. |
Cui WG. Genetic research on trace minerals content in rice seed[D]. Wuhan:Huazhong Agricultural University, 2008. | |
[90] | 孙正海, 曾亚文, 杨树明, 等. 十和田近等基因系糙米锌含量QTL定位[J]. 分子植物育种, 2009, 7(2):264-268. |
Sun ZH, Zeng YW, Yang SM, et al. Identification of QTLs about zinc content in brown rice for near-isogenic lines for towada[J]. Mol Plant Breed, 2009, 7(2):264-268. | |
[91] | 钟林. 稻米矿质元素含量的QTL分析[D]. 雅安:四川农业大学, 2010. |
Zhong L. QTL analysis on mineral elements content in rice[D]. Ya'an:Sichuan Agricultural University, 2010. | |
[92] | Norton GJ, Douglas A, Lahner B, et al. Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice(Oryza sativa L.)grown at four international field sites[J]. PLoS One, 2014, 9(2):e89685. |
[93] | 王才林, 朱镇, 张亚东, 等. 粳稻外观品质的选择效果[J]. 江苏农业学报, 2007, 23(2):81-86. |
Wang CL, Zhu Z, Zhang YD, et al. Breeding efficiency on appearance quality of rice grains(Oryza sativa L. ssp. Japonica)[J]. Jiangsu J Agric Sci, 2007, 23(2):81-86. | |
[94] | 方珊茹, 吴春珠, 刘玉芹, 等. 分子标记辅助选择改良Ⅱ-32B的外观品质[J]. 分子植物育种, 2013, 11(6):673-679. |
Fang SR, Wu CZ, Liu YQ, et al. Molecular marker-assisted selection for improving appearance quality of Ⅱ-32B[J]. Mol Plant Breed, 2013, 11(6):673-679. | |
[95] | 黄海祥, 钱前. 水稻粒形遗传与长粒型优质粳稻育种进展[J]. 中国水稻科学, 2017, 31(6):665-672. |
Huang HX, Qian Q. Progress in genetic research of rice grain shape and breeding achievements of long-grain shape and good quality Japonica rice[J]. Chin J Rice Sci, 2017, 31(6):665-672. | |
[96] | Haverkamp S, H Wässle. Genetic analysis of a low-amylose content rice variety, ‘Milky Queen’[J]. Breed Res, 2000, 2(1):1-23. |
[97] | Tomita K, Horiuchi H, Terada K, et al. ‘New-hikari’, a new rice cultivar[J]. Bulletin Fukui Agric Exp Station(Japan), 2007, 44:1-20. |
[98] |
Jin L, Lu Y, Shao YF, et al. Molecular marker assisted selection for improvement of the eating, cooking and sensory quality of rice(Oryza sativa L.)[J]. J Cereal Sci, 2010, 51(1):159-164.
doi: 10.1016/j.jcs.2009.11.007 URL |
[99] |
毛艇, 李旭, 李振宇, 等. 水稻Wx复等位基因基于PCR的功能标记开发与利用[J]. 作物学报, 2017, 43(11):1715-1723.
doi: 10.3724/SP.J.1006.2017.01715 |
Mao T, Li X, Li ZY, et al. Development of PCR functional markers for multiple alleles of Wx and their application in rice[J]. Acta Agron Sin, 2017, 43(11):1715-1723.
doi: 10.3724/SP.J.1006.2017.01715 URL |
|
[100] | 侯军亮, 鄢阳天, 李泽桦, 等. 利用MAS技术改良香稻R15的直链淀粉含量[J]. 分子植物育种, 2020, 18(1):168-175. |
Hou JL, Yan YT, Li ZH, et al. Reducing amylose content of aromatic rice variety R15 by molecular marker-assisted selection[J]. Mol Plant Breed, 2020, 18(1):168-175. | |
[101] |
Tanaka N, Fujita N, Nishi A, et al. The structure of starch can be manipulated by changing the expression levels of starch branching enzyme IIb in rice endosperm[J]. Plant Biotechnol J, 2004, 2(6):507-516.
pmid: 17147623 |
[102] | Yang RF, Sun CL, Bai JJ, et al. A putative gene sbe3-rs for resistant starch mutated from SBE3 for starch branching enzyme in rice(Oryza sativa L.)[J]. PLoS One, 2012, 7(8):e43026. |
[103] | 冯璇. 利用CRISPR/Cas9基因编辑技术定向改良水稻两个品质性状[D]. 南宁:广西大学, 2017. |
Feng X. Using CRISPR/Cas9 gene editing technique to transform two quality traits of rice[D]. Nanning:Guangxi University, 2017. | |
[104] | 杨平, 陈春莲, 姚晓云, 等. 利用基因编辑技术改良水稻直链淀粉含量与香味[J]. 分子植物育种, 2020, 18(3):915-923. |
Yang P, Chen CL, Yao XY, et al. Improvement of amylase and fragrance levels of rice by CRISPR/Cas9 system[J]. Mol Plant Breed, 2020, 18(3):915-923. | |
[105] | 周俊飞, 高利芬, 汪伟航, 等. 利用CRISPR/Cas9技术对水稻香味品质进行遗传改良[J]. 华北农学报, 2020, 35(2):57-64. |
Zhou JF, Gao LF, Wang WH, et al. Genetic improvement of fragrance quality in rice using CRISPR/Cas9 technology[J]. Acta Agric Boreali Sin, 2020, 35(2):57-64. | |
[106] |
Hui SZ, Li HJ, Mawia AM, et al. Production of aromatic three-line hybrid rice using novel alleles of BADH2[J]. Plant Biotechnol J, 2022, 20(1):59-74.
doi: 10.1111/pbi.13695 URL |
[107] |
Singh Sindhu A, Zheng ZW, Murai N. The pea seed storage protein legumin was synthesized, processed, and accumulated stably in transgenic rice endosperm[J]. Plant Sci, 1997, 130(2):189-196.
doi: 10.1016/S0168-9452(97)00219-7 URL |
[108] | 洪亚辉, 董延瑜, 赵燕, 等. 密穗高粱总DNA导入水稻的研究[J]. 湖南农业大学学报:自然科学版, 1999(2):87-91. |
Hong YH, Dong YY, Zhao Y, et al. Studies on the introduction of Sorghum total DNA into rice[J]. J Hunan Agric Univ Nat Sci, 1999(2):87-91. | |
[109] |
Wenefrida I, Utomo HS, Linscombe SD. Development and registration of ‘frontière’, a high-protein rice cultivar[J]. J Plant Regist, 2017, 11(3):240-244.
doi: 10.3198/jpr2016.11.0067crc URL |
[110] | 张昌泉, 赵冬生, 李钱峰, 等. 稻米品质性状基因的克隆与功能研究进展[J]. 中国农业科学, 2016, 49(22):4267-4283. |
Zhang CQ, Zhao DS, Li QF, et al. Progresses in research on cloning and functional analysis of key genes involving in rice grain quality[J]. Sci Agric Sin, 2016, 49(22):4267-4283. | |
[111] | 王为民, 赵倩, 于静娟, 等. 水稻转高赖氨酸蛋白质基因(sb401)植株的获得及种子中蛋白质和氨基酸的含量分析[J]. 作物学报, 2005, 31(5):603-607. |
Wang WM, Zhao Q, Yu JJ, et al. Transfer of high lysine gene sb401 into rice and analysis for protein and amino acid content in transgenic rice seeds[J]. Acta Agron Sin, 2005, 31(5):603-607. | |
[112] |
Yang QQ, Zhang CQ, Chan ML, et al. Biofortification of rice with the essential amino acid lysine:molecular characterization, nutritional evaluation, and field performance[J]. J Exp Bot, 2016, 67(14):4285-4296.
doi: 10.1093/jxb/erw209 URL |
[113] |
Yang QQ, Yu WH, Wu HY, et al. Lysine biofortification in rice by modulating feedback inhibition of aspartate kinase and dihydrodipicolinate synthase[J]. Plant Biotechnol J, 2021, 19(3):490-501.
doi: 10.1111/pbi.13478 URL |
[114] | Hu ZJ, Xiong QQ, Wang K, et al. Identification of a new giant embryo allele, and integrated transcriptomics and metabolomics analysis of giant embryo development in rice[J]. Front Plant Sci, 2021, 12:697889. |
[115] | 万建民, 江玲, 沈文飚, 等. 一种耐贮藏水稻品种的选育方法:CN1561693A[P]. 2005-01-12. |
Wan JM, Jiang L, Shen WB, et al. A breeding method of storable rice varieties:CN1561693A[P]. 2005-01-12. | |
[116] |
Ye X, Al-Babili S, Klöti A, et al. Engineering the provitamin A(β-carotene)biosynthetic pathway into(carotenoid-free)rice endosperm[J]. Science, 2000, 287(5451):303-305.
pmid: 10634784 |
[117] |
Beyer P, Al-Babili S, Ye XD, et al. Golden Rice:introducing the beta-carotene biosynjournal pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency[J]. J Nutr, 2002, 132(3):506S-510S.
doi: 10.1093/jn/132.3.506S URL |
[118] |
Botella-Pavia P, Rodriguez-Concepcion M. Carotenoid biotechnology in plants for nutritionally improved foods[J]. Physiol Plant, 2006, 126(3):369-381.
doi: 10.1111/j.1399-3054.2006.00632.x URL |
[119] |
Goto F, Yoshihara T, Shigemoto N, et al. Iron fortification of rice seed by the soybean ferritin gene[J]. Nat Biotechnol, 1999, 17(3):282-286.
pmid: 10096297 |
[120] | 徐晓晖, 郭泽建, 程志强, 等. 铁蛋白基因的水稻转化及其功能初步分析[J]. 浙江大学学报:农业与生命科学版, 2003, 29(1):49-54. |
Xu XH, Guo ZJ, Cheng ZQ, et al. Introduction of ferritin gene into rice and the functional analysis of transgenic plants[J]. J Zhejiang Agric Univ Agric& Life Sci, 2003, 29(1):49-54. | |
[121] |
Mendoza C, Viteri FE, Lönnerdal B, et al. Effect of genetically modified, low-phytic acid maize on absorption of iron from tortillas[J]. Am J Clin Nutr, 1998, 68(5):1123-1127.
doi: 10.1093/ajcn/68.5.1123 pmid: 9808232 |
[122] |
Larson SR, Rutger JN, Young KA, et al. Isolation and genetic mapping of a non-lethal rice(Oryza sativa L.)low phytic acid 1 mutation[J]. Crop Sci, 2000, 40(5):1397-1405.
doi: 10.2135/cropsci2000.4051397x URL |
[123] |
Lucca P, Hurrell R, Potrykus I. Approaches to improving the bioavailability and level of iron in rice seeds[J]. J Sci Food Agric, 2001, 81(9):828-834.
doi: 10.1002/jsfa.886 URL |
[124] |
Xu F, Fang J, Ou SJ, et al. Variations in CYP78A13 coding region influence grain size and yield in rice[J]. Plant Cell Environ, 2015, 38(4):800-811.
doi: 10.1111/pce.12452 URL |
[125] |
Sakthivel K, Sundaram RM, Shobha Rani N, et al. Genetic and molecular basis of fragrance in rice[J]. Biotechnol Adv, 2009, 27(4):468-473.
doi: 10.1016/j.biotechadv.2009.04.001 pmid: 19371779 |
[1] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[2] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[3] | 李雪琪, 张素杰, 于曼, 黄金光, 周焕斌. 基于CRISPR/CasX介导的水稻基因组编辑技术的建立[J]. 生物技术通报, 2023, 39(9): 40-48. |
[4] | 何宇航, 胡涛, 吴震, 贺煜, 程安春, 陈舜. YFV17D非感染性报告复制子及假病毒包装系统的建立[J]. 生物技术通报, 2023, 39(8): 165-172. |
[5] | 吴元明, 林佳怡, 柳雨汐, 李丹婷, 张宗琼, 郑晓明, 逄洪波. 基于BSA-seq和RNA-seq挖掘水稻株高相关QTL[J]. 生物技术通报, 2023, 39(8): 173-184. |
[6] | 张道磊, 甘雨军, 乐亮, 普莉. 玉米产量性状的表观遗传调控机制和育种应用[J]. 生物技术通报, 2023, 39(8): 31-42. |
[7] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[8] | 李宇, 李素贞, 陈茹梅, 卢海强. 植物bHLH转录因子调控铁稳态的研究进展[J]. 生物技术通报, 2023, 39(7): 26-36. |
[9] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[10] | 任沛东, 彭健玲, 刘圣航, 姚姿婷, 朱桂宁, 陆光涛, 李瑞芳. 沙福芽孢杆菌GX-H6的分离鉴定及对水稻细菌性条斑病的防病效果[J]. 生物技术通报, 2023, 39(5): 243-253. |
[11] | 李怡君, 吴晨晨, 李睿, 王喆, 何山文, 韦善君, 张晓霞. 水稻内生细菌新资源分离培养方案探究[J]. 生物技术通报, 2023, 39(4): 201-211. |
[12] | 周晓杰, 杨思琪, 张译文, 徐佳琪, 杨晟. CRISPR相关转座酶及其细菌基因组编辑应用[J]. 生物技术通报, 2023, 39(4): 49-58. |
[13] | 魏明, 王欣玉, 伍国强, 赵萌. NAD依赖型去乙酰化酶SRT在植物表观遗传调控中的作用[J]. 生物技术通报, 2023, 39(4): 59-70. |
[14] | 李凯航, 王浩臣, 程可心, 杨艳, 金一, 何晓青. 全基因组关联分析研究植物与微生物组的互作遗传机制[J]. 生物技术通报, 2023, 39(2): 24-34. |
[15] | 卢振万, 李雪琪, 黄金光, 周焕斌. 利用胞嘧啶碱基编辑技术创制耐草甘膦水稻[J]. 生物技术通报, 2023, 39(2): 63-69. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||