生物技术通报 ›› 2022, Vol. 38 ›› Issue (11): 112-121.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0016
收稿日期:
2022-01-05
出版日期:
2022-11-26
发布日期:
2022-12-01
作者简介:
董亚茹,女,硕士,助理研究员,研究方向:园林植物栽培与育种;E-mail:基金资助:
DONG Ya-ru(), ZHAO Dong-xiao, GENG Bing, LI Yun-zhi, WANG Zhao-hong()
Received:
2022-01-05
Published:
2022-11-26
Online:
2022-12-01
摘要:
乙烯响应因子(ethylene responsive factors,ERFs)是植物特异性转录因子,参与多种生物过程,特别是非生物胁迫耐受。研究干旱胁迫下MnERF2的表达情况,为研究桑树AP2/ERF转录因子的抗逆分子机制提供基础理论数据。从桑树中鉴定了一个ERF转录因子亚家族成员,命名为MnERF2,对其进行生物信息学分析,并通过瞬时转化分别获得过表达MnERF2和RNA干扰(RNAi)沉默MnERF2桑树植株,利用功能增益和功能损失方法分析其抗旱功能。结果显示,MnERF2开放阅读框为1 050 bp,编码349个氨基酸,编码蛋白质分子量为39.48 kD,理论等电点为5.6,具有一个典型的AP2/ERF保守结构域。过表达MnERF2显著提高桑树对干旱胁迫的耐受性,相比之下,MnERF2的沉默显著降低了对干旱胁迫的耐受性。进一步试验表明,MnERF2增强SOD、POD、CAT、GST活性,促进ASA、GSH、脯氨酸含量的升高,降低O2·-、H2O2、·OH、MDA的含量和电解质渗透率。MnERF2通过提高脯氨酸的生物合成来调节渗透势,通过提高抗氧化酶活性和抗氧化物质含量来提高活性氧的清除能力,从而提高桑树干旱胁迫的耐受性。
董亚茹, 赵东晓, 耿兵, 李云芝, 王照红. 桑树MnERF2的表达分析[J]. 生物技术通报, 2022, 38(11): 112-121.
DONG Ya-ru, ZHAO Dong-xiao, GENG Bing, LI Yun-zhi, WANG Zhao-hong. Expression Analysis of MnERF2 in Mulberry[J]. Biotechnology Bulletin, 2022, 38(11): 112-121.
引物名称 Primer name | 序列 Sequence(5'-3') | 用途 Application |
---|---|---|
MnERF2-F | ATGGCGACCATAAACGAAGTC | 基因克隆 Gene cloning |
MnERF2-R | TCACACAACCATTAGTTGTGG | |
MnERF2-F | TCCCGTTGGAAGCCGGGA | 实时荧光定量PCR Quantitative real-time PCR |
MnERF2-R | CGACAGAGGCGGGACGTT | |
MnRPL15-F | GGCTATGTGATTTACCGTGTT | |
MnRPL15-R | TTGGTCCAGTATGAGTTGAGAA | |
β-actin-F | AGCAACTGGGATGACATGGAGA | |
β-actin-R | CGACCACTGGCGTAAAGGGA |
表1 试验所用引物
Table 1 Primers used in this study
引物名称 Primer name | 序列 Sequence(5'-3') | 用途 Application |
---|---|---|
MnERF2-F | ATGGCGACCATAAACGAAGTC | 基因克隆 Gene cloning |
MnERF2-R | TCACACAACCATTAGTTGTGG | |
MnERF2-F | TCCCGTTGGAAGCCGGGA | 实时荧光定量PCR Quantitative real-time PCR |
MnERF2-R | CGACAGAGGCGGGACGTT | |
MnRPL15-F | GGCTATGTGATTTACCGTGTT | |
MnRPL15-R | TTGGTCCAGTATGAGTTGAGAA | |
β-actin-F | AGCAACTGGGATGACATGGAGA | |
β-actin-R | CGACCACTGGCGTAAAGGGA |
图2 MnERF2与来自拟南芥B-3组的其他ERF序列比对 *表示完全一致的残基;:表示性质特别相近的残基;.表示性质微弱相近的残基,箭头分别表示AP2/ERF结构域的第14位和第19位
Fig. 2 Multiple sequence alignments of MnERF2 with other group B-3 ERFs from A. thaliana * indicates positions which have a single,fully conserved residue.:indicates that one of the following ‘strong’ groups is fully conserved.. indicates that one of the following ‘weaker’ groups is fully conserved,and arrow indicates the amino acids at the position of 9 and 14 of the AP2/ERF domain respectively
图3 MnERF2瞬时转化桑树植株RT-qPCR检测 不同小写字母表示处理间差异显著(P<0.05)。下同
Fig. 3 RT-qPCR detection of mulberry transiently transfo-rmed with MnERF2 Different lowercase letters indicate significant difference at 0.05 level among treatments. The same below
图4 干旱协迫下OE、RNAi及CK桑树植株电解质渗透率及MDA含量分析
Fig. 4 Analysis of electrolyte permeability and MDA contents of mulberry plant OE,RNAi and CK under drought stress
图5 干旱胁迫下OE、RNAi及CK桑树植株O2·-、H2O2和·OH含量的变化
Fig. 5 Changes of O2·-,H2O2,and ·OH contents of mulberry plant transiently OE,RNAi and CK under drought stress
图6 干旱胁迫下OE、RNAi及CK桑树植株NBT、DAB和Evans Blue染色比较
Fig. 6 NBT,DAB,and Evans Blue staining comparisons between mulberry plant OE,RNAi and CK under drought stress
[1] |
Hilker M, Schmülling T. Stress priming, memory, and signalling in plants[J]. Plant Cell Environ, 2019, 42(3):753-761.
doi: 10.1111/pce.13526 |
[2] |
Faraji S, Filiz E, Kazemitabar SK, et al. The AP2/ERF gene family in Triticum durum:genome-wide identification and expression analysis under drought and salinity stresses[J]. Genes, 2020, 11(12):1464.
doi: 10.3390/genes11121464 URL |
[3] |
Ma ZM, Wu T, Huang K, et al. A novel AP2/ERF transcription factor, OsRPH1, negatively regulates plant height in rice[J]. Front Plant Sci, 2020, 11:709.
doi: 10.3389/fpls.2020.00709 URL |
[4] | 董亚茹, 赵东晓, 杜建勋, 等. 外源NO对NaCl胁迫下桑树种子萌发及幼苗生理生化特性的影响[J]. 蚕业科学, 2018, 44(6):821-827. |
Dong YR, Zhao DX, Du JX, et al. Effects of exogenous nitric oxide on mulberry seed germination and physiological characteristics of mulberry seedling upon salt stress[J]. Sci Seric, 2018, 44(6):821-827. | |
[5] | Zhu M, Wang ZJ, He YJ, et al. Bioguided isolation, identification and bioactivity evaluation of anti-MRSA constituents from Morus alba Linn[J]. J Ethnopharmacol, 2021, 281:114542. |
[6] |
Liu D, Zeng Y, Qiu C, et al. Molecular cloning and adversity stress expression analysis of SPDS genes in mulberry(Morus notabilis)[J]. Russ J Plant Physiol, 2021, 68(6):1186-1193.
doi: 10.1134/S1021443721060108 URL |
[7] | 周宏. 桑树抗旱相关4个转录因子家族鉴定与表达分析[D]. 镇江: 江苏科技大学, 2017. |
Zhou H. Identification and expression analysis of drought-resistant related 4 transcription factor families in mulberry(Morus L.)[D]. Zhenjiang: Jiangsu University of Science and Technology, 2017. | |
[8] | 何宁佳, 向仲怀. 桑树基因组[M]. 北京: 中国林业出版社, 2016. |
He NJ, Xiang ZH. Mulberry genome[M]. Beijing: China Forestry Publishing House, 2016. | |
[9] |
Feng K, Hou XL, Xing GM, et al. Advances in AP2/ERF super-family transcription factors in plant[J]. Crit Rev Biotechnol, 2020, 40(6):750-776.
doi: 10.1080/07388551.2020.1768509 pmid: 32522044 |
[10] |
Chen LH, Han JP, Deng XM, et al. Expansion and stress responses of AP2/EREBP superfamily in Brachypodium distachyon[J]. Sci Rep, 2016, 6:21623.
doi: 10.1038/srep21623 URL |
[11] | Sharma R, Singh G, Bhattacharya S, et al. Comparative transcriptome meta-analysis of Arabidopsis thaliana under drought and cold stress[J]. PLoS One, 2018, 13(9):e0203266. |
[12] |
Zhang HN, Pan XL, Liu SH, et al. Genome-wide analysis of AP2/ERF transcription factors in pineapple reveals functional divergence during flowering induction mediated by ethylene and floral organ development[J]. Genomics, 2021, 113(2):474-489.
doi: 10.1016/j.ygeno.2020.10.040 pmid: 33359830 |
[13] | Lv KW, Li J, Zhao K, et al. Overexpression of an AP2/ERF family gene, BpERF13, in birch enhances cold tolerance through upregulating CBF genes and mitigating reactive oxygen species[J]. Plant Sci, 2020, 292:110375. |
[14] | Kavas M, Gökdemir G, Seçgin Z, et al. Ectopic expression of common bean ERF transcription factor PvERF35 promotes salt stress tolerance in tobacco[J]. Plant Biol(Stuttg), 2020, 22(6):1102-1112. |
[15] |
An JP, Zhang XW, Bi SQ, et al. The ERF transcription factor MdERF38 promotes drought stress-induced anthocyanin biosynthesis in apple[J]. Plant J, 2020, 101(3):573-589.
doi: 10.1111/tpj.14555 URL |
[16] |
Djemal R, Khoudi H. The barley SHN1-type transcription factor HvSHN1 imparts heat, drought and salt tolerances in transgenic tobacco[J]. Plant Physiol Biochem, 2021, 164:44-53.
doi: 10.1016/j.plaphy.2021.04.018 URL |
[17] |
Li Z, Wang G, Liu XH, et al. Genome-wide identification and expression profiling of DREB genes in Saccharum spontaneum[J]. BMC Genomics, 2021, 22(1):456.
doi: 10.1186/s12864-021-07799-5 URL |
[18] |
Zhao Q, Hu RS, Liu D, et al. The AP2 transcription factor NtERF172 confers drought resistance by modifying NtCAT[J]. Plant Biotechnol J, 2020, 18(12):2444-2455.
doi: 10.1111/pbi.13419 URL |
[19] | Ji XY, Nie XG, Liu YJ, et al. A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation[J]. Tree Physiol, 2016, 36(2):193-207. |
[20] |
He ZH, Wang ZB, Nie XG, et al. UNFERTILIZED EMBRYO SAC 12 phosphorylation plays a crucial role in conferring salt tolerance[J]. Plant Physiol, 2022, 188(2):1385-1401.
doi: 10.1093/plphys/kiab549 URL |
[21] |
Chai GH, Qi G, Cao YP, et al. Poplar PdC3H17 and PdC3H18 are direct targets of PdMYB3 and PdMYB21, and positively regulate secondary wall formation in Arabidopsis and poplar[J]. New Phytol, 2014, 203(2):520-534.
doi: 10.1111/nph.12825 URL |
[22] |
赵东晓, 施新琴, 董亚茹, 等. 60Co-γ辐射及PEG胁迫对桑树幼苗生理特性和相关基因表达的影响[J]. 核农学报, 2021, 35(7):1485-1494.
doi: 10.11869/j.issn.100-8551.2021.07.1485 |
Zhao DX, Shi XQ, Dong YR, et al. Effects of 60Co-γ radiation and PEG stress on physiological characteristics and related gene expression of mulberry seedlings[J]. J Nucl Agric Sci, 2021, 35(7):1485-1494. | |
[23] | 陈建勋, 王晓峰. 植物生理学实验指导[M]. 广州: 华南理工大学出版社, 2002. |
Chen JX, Wang XF. Plant physiology experiment guide[M]. Guangzhou: South China University of Technology Press, 2002. | |
[24] |
Elstner EF, Heupel A. Inhibition of nitrite formation from hydroxylammoniumchloride:a simple assay for superoxide dismutase[J]. Anal Biochem, 1976, 70(2):616-620.
pmid: 817618 |
[25] |
Patterson BD, MacRae EA, Ferguson IB. Estimation of hydrogen peroxide in plant extracts using titanium(IV)[J]. Anal Biochem, 1984, 139(2):487-492.
pmid: 6476384 |
[26] |
Pandey P, Srivastava RK, Rajpoot R, et al. Water deficit and aluminum interactive effects on generation of reactive oxygen species and responses of antioxidative enzymes in the seedlings of two rice cultivars differing in stress tolerance[J]. Environ Sci Pollut Res Int, 2016, 23(2):1516-1528.
doi: 10.1007/s11356-015-5392-8 URL |
[27] |
董亚茹, 张艳波, 赵东晓, 等. 外源24-表油菜素内酯对NaCl胁迫下桑树幼苗的缓解效应[J]. 核农学报, 2021, 35(6):1466-1475.
doi: 10.11869/j.issn.100-8551.2021.06.1466 |
Dong YR, Zhang YB, Zhao DX, et al. Alleviation effect of exogenous 24-epigenolide on mulberry seedlings under NaCl stress[J]. J Nucl Agric Sci, 2021, 35(6):1466-1475.
doi: 10.11869/j.issn.100-8551.2021.06.1466 |
|
[28] |
Fuerst EP, Irzyk GP, Miller KD. Partial characterization of glutathione S-transferase isozymes induced by the herbicide safener benoxacor in maize[J]. Plant Physiol, 1993, 102(3):795-802.
pmid: 12231867 |
[29] |
Singh N, Ma LQ, Srivastava M, et al. Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L and Pteris ensiformis L[J]. Plant Sci, 2006, 170(2):274-282.
doi: 10.1016/j.plantsci.2005.08.013 URL |
[30] |
de Vos CH, Vonk MJ, Vooijs R, et al. Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene Cucubalus[J]. Plant Physiol, 1992, 98(3):853-858.
doi: 10.1104/pp.98.3.853 pmid: 16668756 |
[31] |
Xie ZL, Nolan TM, Jiang H, et al. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis[J]. Front Plant Sci, 2019, 10:228.
doi: 10.3389/fpls.2019.00228 URL |
[32] |
Klay I, Gouia S, Liu MC, et al. Ethylene Response Factors(ERF)are differentially regulated by different abiotic stress types in tomato plants[J]. Plant Sci, 2018, 274:137-145.
doi: 10.1016/j.plantsci.2018.05.023 URL |
[33] | Zhang J, Shi SZ, Jiang YN, et al. Genome-wide investigation of the AP2/ERF superfamily and their expression under salt stress in Chinese willow(Salix matsudana)[J]. PeerJ, 2021, 9:e11076. |
[34] |
Kirienko DR, Luo AD, Sylvester AW. Reliable transient transformation of intact maize leaf cells for functional genomics and experimental study[J]. Plant Physiol, 2012, 159(4):1309-1318.
doi: 10.1104/pp.112.199737 pmid: 22706447 |
[35] |
Chen XL, Equi R, Baxter H, et al. A high-throughput transient gene expression system for switchgrass(Panicum virgatum L.)seedlings[J]. Biotechnol Biofuels, 2010, 3:9.
doi: 10.1186/1754-6834-3-9 URL |
[36] | Lu YM, Chen X, Wu YX, et al. Directly transforming PCR-amplified DNA fragments into plant cells is a versatile system that facilitates the transient expression assay[J]. PLoS One, 2013, 8(2):e57171. |
[37] | He ZH, Li ZY, Lu HJ, et al. The NAC protein from Tamarix hispida, ThNAC7, confers salt and osmotic stress tolerance by increasing reactive oxygen species scavenging capability[J]. Plants(Basel), 2019, 8(7):221. |
[38] | Liu YJ, Ji XY, Nie XG, et al. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs[J]. New Phytol, 2015, 207 |
3):692-709. | |
[39] | 张群, 及晓宇, 贺子航, 等. 白桦BpGRAS1基因的克隆及耐盐功能分析[J]. 南京林业大学学报:自然科学版, 2021, 45(5):38-46. |
Zhang Q, Ji XY, He ZH, et al. Cloning and salt tolerance analysis of BpGRAS1 gene in Betula platyphylla[J]. J Nanjing For Univ Nat Sci Ed, 2021, 45(5):38-46. | |
[40] |
Qin LP, Wang LQ, Guo Y, et al. An ERF transcription factor from Tamarix hispida, ThCRF1, can adjust osmotic potential and reactive oxygen species scavenging capability to improve salt tolerance[J]. Plant Sci, 2017, 265:154-166.
doi: 10.1016/j.plantsci.2017.10.006 URL |
[41] |
Gao Y, Han D, Jia W, et al. Molecular characterization and systematic analysis of NtAP2/ERF in tobacco and functional determination of NtRAV-4 under drought stress[J]. Plant Physiol Biochem, 2020, 156:420-435.
doi: 10.1016/j.plaphy.2020.09.027 URL |
[42] |
Wu DD, Sun YH, Wang HF, et al. The SlNAC8 gene of the halophyte Suaeda liaotungensis enhances drought and salt stress tolerance in transgenic Arabidopsis thaliana[J]. Gene, 2018, 662:10-20.
doi: 10.1016/j.gene.2018.04.012 URL |
[43] |
Choudhury FK, Rivero RM, Blumwald E, et al. Reactive oxygen species, abiotic stress and stress combination[J]. Plant J, 2017, 90(5):856-867.
doi: 10.1111/tpj.13299 URL |
[44] |
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiol Biochem, 2010, 48(12):909-930.
doi: 10.1016/j.plaphy.2010.08.016 URL |
[45] | Yang GY, Peng SB, Wang TY, et al. Walnut ethylene response factor JrERF2-2 interact with JrWRKY7 to regulate the GSTs in plant drought tolerance[J]. Ecotoxicol Environ Saf, 2021, 228:112945. |
[46] |
Zhu JK. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2):313-324.
doi: 10.1016/j.cell.2016.08.029 URL |
[47] | Ren YR, Yang YY, Zhao Q, et al. MdCIB1, an apple bHLH transcription factor, plays a positive regulator in response to drought stress[J]. Environ Exp Bot, 2021, 188:104523. |
[48] |
Ashraf M, Foolad MR. Roles of glycine betaine and proline in improving plant abiotic stress resistance[J]. Environ Exp Bot, 2007, 59(2):206-216.
doi: 10.1016/j.envexpbot.2005.12.006 URL |
[1] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[2] | 刘雯锦, 马瑞, 刘升燕, 杨江伟, 张宁, 司怀军. 马铃薯StCIPK11的克隆及响应干旱胁迫分析[J]. 生物技术通报, 2023, 39(9): 147-155. |
[3] | 陈中元, 王玉红, 代为俊, 张艳敏, 叶倩, 刘旭平, 谭文松, 赵亮. 柠檬酸铁铵对悬浮HEK293细胞转染的影响机制探究[J]. 生物技术通报, 2023, 39(9): 311-318. |
[4] | 丁凯鑫, 王立春, 田国奎, 王海艳, 李凤云, 潘阳, 庞泽, 单莹. 烯效唑缓解植物干旱损伤的研究进展[J]. 生物技术通报, 2023, 39(6): 1-11. |
[5] | 王春语, 李政君, 王平, 张丽霞. 高粱表皮蜡质缺失突变体sb1抗旱生理生化分析[J]. 生物技术通报, 2023, 39(5): 160-167. |
[6] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[7] | 王琪, 胡哲, 富薇, 李光哲, 郝林. 伯克霍尔德氏菌GD17对黄瓜幼苗耐干旱的调节[J]. 生物技术通报, 2023, 39(3): 163-175. |
[8] | 蒋铭轩, 李康, 罗亮, 刘建祥, 芦海平. 植物表达外源蛋白研究进展及展望[J]. 生物技术通报, 2023, 39(11): 110-122. |
[9] | 于波, 秦晓惠, 赵杨. 植物感应干旱信号的机制[J]. 生物技术通报, 2023, 39(11): 6-17. |
[10] | 陈楚怡, 杨小梅, 陈胜艳, 陈斌, 岳莉然. ABA和干旱胁迫下菊花脑ZF-HD基因家族的表达分析[J]. 生物技术通报, 2023, 39(11): 270-282. |
[11] | 冯策婷, 江律, 刘鑫颖, 罗乐, 潘会堂, 张启翔, 于超. 单叶蔷薇NAC基因家族鉴定及干旱胁迫响应分析[J]. 生物技术通报, 2023, 39(11): 283-296. |
[12] | 鄢梦雨, 韦晓薇, 曹婧, 兰海燕. 异子蓬SabHLH169基因的克隆及抗旱功能分析[J]. 生物技术通报, 2023, 39(11): 328-339. |
[13] | 史光珍, 王兆晔, 孙琦, 朱新霞. 雪莲SikCDPK1启动子的克隆和活性分析[J]. 生物技术通报, 2022, 38(9): 191-197. |
[14] | 关志秀, 汪燕, 梁成刚, 韦春玉, 黄娟, 陈庆富. 苦荞FtCBL基因的鉴定及对干旱与高钙胁迫的响应[J]. 生物技术通报, 2022, 38(8): 101-109. |
[15] | 陈佳敏, 刘永杰, 马锦绣, 李丹, 公杰, 赵昌平, 耿洪伟, 高世庆. 小麦组蛋白甲基化酶在杂交种中干旱胁迫表达模式分析[J]. 生物技术通报, 2022, 38(7): 51-61. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||