生物技术通报 ›› 2023, Vol. 39 ›› Issue (11): 283-296.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0531
冯策婷(), 江律, 刘鑫颖, 罗乐, 潘会堂, 张启翔, 于超()
收稿日期:
2023-06-05
出版日期:
2023-11-26
发布日期:
2023-12-20
通讯作者:
于超,男,博士,教授,研究方向:观赏植物种质资源与遗传育种;E-mail: yuchao@bjfu.edu.cn作者简介:
冯策婷,女,硕士研究生,研究方向:花卉种质资源与遗传育种;E-mail: fengceting@qq.com
基金资助:
FENG Ce-ting(), JIANG Lyu, LIU Xin-ying, LUO Le, PAN Hui-tang, ZHANG Qi-xiang, YU Chao()
Received:
2023-06-05
Published:
2023-11-26
Online:
2023-12-20
摘要:
NAC转录因子在植物胁迫应答中起关键作用,单叶蔷薇(Rosa persica)主要分布于我国新疆,研究其耐旱能力对治理荒漠地区生态问题具有重要意义。对单叶蔷薇NAC基因家族进行全基因组鉴定,分析基因家族特征和表达模式,利用RT-qPCR验证NAC基因在干旱胁迫下的表达情况。NAC基因家族的基因特征变化较大,而基因结构和基序相对保守。启动子分析表明RbeNAC在调节激素合成和适应环境胁迫方面具有重要作用。基于转录组数据分析发现RbeNAC基因的表达表现出组织特异性和对干旱胁迫的响应。实时荧光定量PCR(RT-qPCR)结果表明,7个基因(RbeATAF、RbeSOG1、RbeNAC17、RbeNAC71、RbeNAC72、RbeNAC90和RbeNAC96)在根和叶中积极响应干旱胁迫。本研究鉴定了单叶蔷薇NAC基因,初步探究了不同基因可能发挥的功能,获得了7个响应干旱胁迫的候选基因,为后续开展单叶蔷薇抗逆性育种提供参考依据。
冯策婷, 江律, 刘鑫颖, 罗乐, 潘会堂, 张启翔, 于超. 单叶蔷薇NAC基因家族鉴定及干旱胁迫响应分析[J]. 生物技术通报, 2023, 39(11): 283-296.
FENG Ce-ting, JIANG Lyu, LIU Xin-ying, LUO Le, PAN Hui-tang, ZHANG Qi-xiang, YU Chao. Identification of the NAC Gene Family in Rosa persica and Response Analysis Under Drought Stress[J]. Biotechnology Bulletin, 2023, 39(11): 283-296.
基因Gene | 基因ID Gene ID | 正向引物Forward primer(5'-3') | 反向引物序列Reverse primer(5'-3') |
---|---|---|---|
GAPDH | ATCCATTCATCACCACCGACTACA | GCATCCTTACTTGGGGCAGAGA | |
RbeNAC71 | Rbe024972 | TGAAATGAATAAAGAGGCACAGGG | GCAACGCATTACAGTCACCA |
RbeNAC89 | Rbe024974 | ATTCCAGCCACAAGATTCCACA | TTGAAAGGAGTCTGTGCTGTTTG |
RbeNAC90 | Rbe028302 | AGACGACCTTCAGGCATTGG | TTGGAGCAGCTGGGATGATG |
RbeATAF | Rbe007404 | TTCGATCCGTGGCAGTTACC | CAATGTGCTTGTCTGCTCCG |
RbeNAC72 | Rbe002086 | ACAGGTTCTTCACTCTGCCG | CTTGTCCTTGGGCTTGGGTA |
RbeSOG1 | Rbe021851 | ACACTGGAACTCGAAAGCGT | TCTCAGCTTTGCCGCCTTTA |
RbeNAC17 | Rbe011929 | TGGGTCCTGAACCTTCAAACA | TGGAGGTGCTGGTTGTATCTG |
RbeNAC53 | Rbe023720 | GCCTGACGTGAAATTTGGACC | ATCATGCCAGCACGAACTGA |
RbeNAC96 | Rbe010166 | TGGGAACATGGATCGAGGGA | TCGGATGAGCGCTTGTTCTT |
表1 筛选的单叶蔷薇NAC和内参基因的引物信息
Table 1 Primer information for selected R. persica NAC and reference genes
基因Gene | 基因ID Gene ID | 正向引物Forward primer(5'-3') | 反向引物序列Reverse primer(5'-3') |
---|---|---|---|
GAPDH | ATCCATTCATCACCACCGACTACA | GCATCCTTACTTGGGGCAGAGA | |
RbeNAC71 | Rbe024972 | TGAAATGAATAAAGAGGCACAGGG | GCAACGCATTACAGTCACCA |
RbeNAC89 | Rbe024974 | ATTCCAGCCACAAGATTCCACA | TTGAAAGGAGTCTGTGCTGTTTG |
RbeNAC90 | Rbe028302 | AGACGACCTTCAGGCATTGG | TTGGAGCAGCTGGGATGATG |
RbeATAF | Rbe007404 | TTCGATCCGTGGCAGTTACC | CAATGTGCTTGTCTGCTCCG |
RbeNAC72 | Rbe002086 | ACAGGTTCTTCACTCTGCCG | CTTGTCCTTGGGCTTGGGTA |
RbeSOG1 | Rbe021851 | ACACTGGAACTCGAAAGCGT | TCTCAGCTTTGCCGCCTTTA |
RbeNAC17 | Rbe011929 | TGGGTCCTGAACCTTCAAACA | TGGAGGTGCTGGTTGTATCTG |
RbeNAC53 | Rbe023720 | GCCTGACGTGAAATTTGGACC | ATCATGCCAGCACGAACTGA |
RbeNAC96 | Rbe010166 | TGGGAACATGGATCGAGGGA | TCGGATGAGCGCTTGTTCTT |
基因ID Gene ID | 长度 Length/aa | 等电点 pI | 分子量 MW/Da | 基因ID Gene ID | 长度 Length/aa | 等电点 pI | 分子量 MW/Da | |
---|---|---|---|---|---|---|---|---|
Rbe000437 | 238 | 9.50 | 26742.40 | Rbe015425 | 376 | 6.67 | 42077.99 | |
Rbe000577 | 342 | 7.78 | 38395.04 | Rbe015545 | 399 | 5.81 | 45802.91 | |
Rbe001198 | 307 | 8.95 | 35352.84 | Rbe015576 | 732 | 5.11 | 82140.75 | |
Rbe001377 | 362 | 7.02 | 41371.16 | Rbe015696 | 231 | 8.84 | 26081.39 | |
Rbe001406 | 347 | 4.97 | 39490.91 | Rbe016577 | 346 | 5.96 | 39956.38 | |
Rbe001560 | 322 | 8.05 | 36896.91 | Rbe016791 | 197 | 4.87 | 22500.07 | |
Rbe001607 | 291 | 8.11 | 32702.45 | Rbe016986 | 368 | 5.39 | 42000.66 | |
Rbe001675 | 97 | 6.90 | 11254.85 | Rbe017102 | 443 | 4.59 | 49942.32 | |
Rbe001680 | 252 | 5.82 | 29423.90 | Rbe017312 | 223 | 8.43 | 25796.15 | |
Rbe001684 | 181 | 9.94 | 21272.39 | Rbe017370 | 348 | 4.76 | 39766.49 | |
Rbe001687 | 213 | 5.63 | 24822.67 | Rbe017374 | 431 | 4.63 | 49283.85 | |
Rbe001793 | 458 | 4.86 | 52053.89 | Rbe017385 | 444 | 4.55 | 50806.24 | |
Rbe001840 | 357 | 5.06 | 41560.98 | Rbe017419 | 403 | 6.36 | 44863.19 | |
Rbe001892 | 410 | 4.44 | 47117.37 | Rbe017564 | 414 | 6.55 | 47093.99 | |
Rbe001938 | 360 | 8.09 | 40478.45 | Rbe017971 | 197 | 4.73 | 22842.29 | |
Rbe001942 | 413 | 4.44 | 47485.04 | Rbe018482 | 338 | 8.70 | 38084.18 | |
Rbe002086 | 360 | 8.64 | 40516.77 | Rbe019654 | 172 | 7.82 | 19889.40 | |
Rbe002090 | 342 | 7.77 | 38420.98 | Rbe021391 | 251 | 9.07 | 28538.35 | |
Rbe002324 | 310 | 5.57 | 36546.13 | Rbe021851 | 458 | 5.08 | 51616.50 | |
Rbe002753 | 476 | 4.30 | 54814.79 | Rbe022037 | 201 | 8.59 | 22769.20 | |
Rbe002755 | 353 | 4.41 | 40705.39 | Rbe022113 | 287 | 8.63 | 32863.08 | |
Rbe002766 | 258 | 7.70 | 29401.71 | Rbe022146 | 457 | 6.70 | 50844.68 | |
Rbe002769 | 254 | 6.46 | 28883.99 | Rbe023180 | 404 | 4.92 | 45588.37 | |
Rbe002801 | 383 | 6.68 | 43138.51 | Rbe023181 | 484 | 4.91 | 55066.39 | |
Rbe003148 | 547 | 5.44 | 62129.20 | Rbe023665 | 484 | 4.68 | 54311.74 | |
Rbe003554 | 346 | 6.68 | 39376.24 | Rbe023667 | 411 | 5.68 | 47110.37 | |
Rbe005498 | 495 | 6.65 | 55920.03 | Rbe023679 | 152 | 4.50 | 17723.53 | |
Rbe006018 | 362 | 5.06 | 41346.93 | Rbe023719 | 621 | 5.81 | 67734.40 | |
Rbe006711 | 135 | 7.67 | 15864.06 | Rbe023720 | 593 | 4.63 | 66279.49 | |
Rbe007404 | 315 | 6.55 | 36127.66 | Rbe024330 | 314 | 6.17 | 36186.69 | |
Rbe007596 | 577 | 5.40 | 64238.73 | Rbe024403 | 583 | 4.65 | 66052.22 | |
Rbe007658 | 379 | 8.97 | 41903.52 | Rbe024932 | 420 | 5.93 | 47167.13 | |
Rbe008463 | 443 | 8.48 | 49552.51 | Rbe024933 | 348 | 5.97 | 39746.40 | |
Rbe008464 | 224 | 8.22 | 24996.02 | Rbe024970 | 610 | 4.74 | 68426.60 | |
Rbe008978 | 334 | 8.05 | 38419.03 | Rbe024971 | 509 | 4.62 | 56551.30 | |
Rbe009057 | 364 | 4.56 | 41960.70 | Rbe024972 | 309 | 5.75 | 34860.02 | |
Rbe009768 | 193 | 7.80 | 22531.76 | Rbe024973 | 248 | 4.67 | 27472.93 | |
Rbe009867 | 335 | 6.34 | 38111.56 | Rbe024974 | 525 | 5.44 | 60098.24 | |
Rbe009920 | 363 | 7.00 | 40900.71 | Rbe024976 | 576 | 5.06 | 64862.49 | |
Rbe010166 | 251 | 9.17 | 29202.10 | Rbe024978 | 618 | 4.44 | 68573.07 | |
Rbe010181 | 404 | 5.53 | 45245.49 | Rbe024980 | 475 | 4.75 | 53362.64 | |
Rbe010351 | 281 | 9.59 | 32122.23 | Rbe024981 | 451 | 5.11 | 50390.38 | |
Rbe010428 | 406 | 6.68 | 46160.96 | Rbe024984 | 477 | 6.08 | 53897.88 | |
Rbe011929 | 592 | 4.88 | 66676.94 | Rbe024986 | 325 | 6.09 | 37252.33 | |
Rbe012001 | 382 | 5.16 | 42689.74 | Rbe025006 | 348 | 6.07 | 39640.32 | |
Rbe012002 | 442 | 4.69 | 49961.94 | Rbe025809 | 333 | 6.31 | 38592.32 | |
Rbe012071 | 344 | 4.39 | 40039.95 | Rbe026285 | 567 | 5.09 | 63339.26 | |
Rbe012355 | 309 | 6.11 | 35776.03 | Rbe026837 | 241 | 5.85 | 27548.43 | |
Rbe012668 | 577 | 4.81 | 66799.58 | Rbe027180 | 296 | 5.97 | 34483.57 | |
Rbe012863 | 285 | 5.61 | 32829.91 | Rbe027926 | 357 | 8.32 | 40962.22 | |
Rbe013487 | 290 | 7.58 | 33044.33 | Rbe028089 | 498 | 5.57 | 55555.28 | |
Rbe013835 | 377 | 8.17 | 41907.56 | Rbe028302 | 291 | 6.61 | 32585.37 | |
Rbe014245 | 350 | 8.92 | 39026.85 | Rbe028714 | 654 | 5.59 | 76078.14 | |
Rbe014438 | 279 | 7.10 | 31333.13 | Rbe028715 | 172 | 8.56 | 20262.10 | |
Rbe014843 | 99 | 4.43 | 11155.44 | Rbe028783 | 429 | 7.72 | 48014.20 | |
Rbe014844 | 321 | 7.57 | 36154.30 | Rbe029101 | 687 | 5.64 | 78005.28 | |
Rbe015173 | 353 | 7.12 | 40042.08 | Rbe029577 | 465 | 6.07 | 51857.88 | |
Rbe015176 | 590 | 6.06 | 66049.28 | Rbe029972 | 395 | 7.13 | 44952.76 | |
Rbe015232 | 171 | 7.77 | 19860.37 | Rbe030070 | 433 | 4.51 | 48946.22 |
表2 单叶蔷薇NAC转录因子家族基因信息
Table 2 Gene information of NAC transcription factor family in R. persica
基因ID Gene ID | 长度 Length/aa | 等电点 pI | 分子量 MW/Da | 基因ID Gene ID | 长度 Length/aa | 等电点 pI | 分子量 MW/Da | |
---|---|---|---|---|---|---|---|---|
Rbe000437 | 238 | 9.50 | 26742.40 | Rbe015425 | 376 | 6.67 | 42077.99 | |
Rbe000577 | 342 | 7.78 | 38395.04 | Rbe015545 | 399 | 5.81 | 45802.91 | |
Rbe001198 | 307 | 8.95 | 35352.84 | Rbe015576 | 732 | 5.11 | 82140.75 | |
Rbe001377 | 362 | 7.02 | 41371.16 | Rbe015696 | 231 | 8.84 | 26081.39 | |
Rbe001406 | 347 | 4.97 | 39490.91 | Rbe016577 | 346 | 5.96 | 39956.38 | |
Rbe001560 | 322 | 8.05 | 36896.91 | Rbe016791 | 197 | 4.87 | 22500.07 | |
Rbe001607 | 291 | 8.11 | 32702.45 | Rbe016986 | 368 | 5.39 | 42000.66 | |
Rbe001675 | 97 | 6.90 | 11254.85 | Rbe017102 | 443 | 4.59 | 49942.32 | |
Rbe001680 | 252 | 5.82 | 29423.90 | Rbe017312 | 223 | 8.43 | 25796.15 | |
Rbe001684 | 181 | 9.94 | 21272.39 | Rbe017370 | 348 | 4.76 | 39766.49 | |
Rbe001687 | 213 | 5.63 | 24822.67 | Rbe017374 | 431 | 4.63 | 49283.85 | |
Rbe001793 | 458 | 4.86 | 52053.89 | Rbe017385 | 444 | 4.55 | 50806.24 | |
Rbe001840 | 357 | 5.06 | 41560.98 | Rbe017419 | 403 | 6.36 | 44863.19 | |
Rbe001892 | 410 | 4.44 | 47117.37 | Rbe017564 | 414 | 6.55 | 47093.99 | |
Rbe001938 | 360 | 8.09 | 40478.45 | Rbe017971 | 197 | 4.73 | 22842.29 | |
Rbe001942 | 413 | 4.44 | 47485.04 | Rbe018482 | 338 | 8.70 | 38084.18 | |
Rbe002086 | 360 | 8.64 | 40516.77 | Rbe019654 | 172 | 7.82 | 19889.40 | |
Rbe002090 | 342 | 7.77 | 38420.98 | Rbe021391 | 251 | 9.07 | 28538.35 | |
Rbe002324 | 310 | 5.57 | 36546.13 | Rbe021851 | 458 | 5.08 | 51616.50 | |
Rbe002753 | 476 | 4.30 | 54814.79 | Rbe022037 | 201 | 8.59 | 22769.20 | |
Rbe002755 | 353 | 4.41 | 40705.39 | Rbe022113 | 287 | 8.63 | 32863.08 | |
Rbe002766 | 258 | 7.70 | 29401.71 | Rbe022146 | 457 | 6.70 | 50844.68 | |
Rbe002769 | 254 | 6.46 | 28883.99 | Rbe023180 | 404 | 4.92 | 45588.37 | |
Rbe002801 | 383 | 6.68 | 43138.51 | Rbe023181 | 484 | 4.91 | 55066.39 | |
Rbe003148 | 547 | 5.44 | 62129.20 | Rbe023665 | 484 | 4.68 | 54311.74 | |
Rbe003554 | 346 | 6.68 | 39376.24 | Rbe023667 | 411 | 5.68 | 47110.37 | |
Rbe005498 | 495 | 6.65 | 55920.03 | Rbe023679 | 152 | 4.50 | 17723.53 | |
Rbe006018 | 362 | 5.06 | 41346.93 | Rbe023719 | 621 | 5.81 | 67734.40 | |
Rbe006711 | 135 | 7.67 | 15864.06 | Rbe023720 | 593 | 4.63 | 66279.49 | |
Rbe007404 | 315 | 6.55 | 36127.66 | Rbe024330 | 314 | 6.17 | 36186.69 | |
Rbe007596 | 577 | 5.40 | 64238.73 | Rbe024403 | 583 | 4.65 | 66052.22 | |
Rbe007658 | 379 | 8.97 | 41903.52 | Rbe024932 | 420 | 5.93 | 47167.13 | |
Rbe008463 | 443 | 8.48 | 49552.51 | Rbe024933 | 348 | 5.97 | 39746.40 | |
Rbe008464 | 224 | 8.22 | 24996.02 | Rbe024970 | 610 | 4.74 | 68426.60 | |
Rbe008978 | 334 | 8.05 | 38419.03 | Rbe024971 | 509 | 4.62 | 56551.30 | |
Rbe009057 | 364 | 4.56 | 41960.70 | Rbe024972 | 309 | 5.75 | 34860.02 | |
Rbe009768 | 193 | 7.80 | 22531.76 | Rbe024973 | 248 | 4.67 | 27472.93 | |
Rbe009867 | 335 | 6.34 | 38111.56 | Rbe024974 | 525 | 5.44 | 60098.24 | |
Rbe009920 | 363 | 7.00 | 40900.71 | Rbe024976 | 576 | 5.06 | 64862.49 | |
Rbe010166 | 251 | 9.17 | 29202.10 | Rbe024978 | 618 | 4.44 | 68573.07 | |
Rbe010181 | 404 | 5.53 | 45245.49 | Rbe024980 | 475 | 4.75 | 53362.64 | |
Rbe010351 | 281 | 9.59 | 32122.23 | Rbe024981 | 451 | 5.11 | 50390.38 | |
Rbe010428 | 406 | 6.68 | 46160.96 | Rbe024984 | 477 | 6.08 | 53897.88 | |
Rbe011929 | 592 | 4.88 | 66676.94 | Rbe024986 | 325 | 6.09 | 37252.33 | |
Rbe012001 | 382 | 5.16 | 42689.74 | Rbe025006 | 348 | 6.07 | 39640.32 | |
Rbe012002 | 442 | 4.69 | 49961.94 | Rbe025809 | 333 | 6.31 | 38592.32 | |
Rbe012071 | 344 | 4.39 | 40039.95 | Rbe026285 | 567 | 5.09 | 63339.26 | |
Rbe012355 | 309 | 6.11 | 35776.03 | Rbe026837 | 241 | 5.85 | 27548.43 | |
Rbe012668 | 577 | 4.81 | 66799.58 | Rbe027180 | 296 | 5.97 | 34483.57 | |
Rbe012863 | 285 | 5.61 | 32829.91 | Rbe027926 | 357 | 8.32 | 40962.22 | |
Rbe013487 | 290 | 7.58 | 33044.33 | Rbe028089 | 498 | 5.57 | 55555.28 | |
Rbe013835 | 377 | 8.17 | 41907.56 | Rbe028302 | 291 | 6.61 | 32585.37 | |
Rbe014245 | 350 | 8.92 | 39026.85 | Rbe028714 | 654 | 5.59 | 76078.14 | |
Rbe014438 | 279 | 7.10 | 31333.13 | Rbe028715 | 172 | 8.56 | 20262.10 | |
Rbe014843 | 99 | 4.43 | 11155.44 | Rbe028783 | 429 | 7.72 | 48014.20 | |
Rbe014844 | 321 | 7.57 | 36154.30 | Rbe029101 | 687 | 5.64 | 78005.28 | |
Rbe015173 | 353 | 7.12 | 40042.08 | Rbe029577 | 465 | 6.07 | 51857.88 | |
Rbe015176 | 590 | 6.06 | 66049.28 | Rbe029972 | 395 | 7.13 | 44952.76 | |
Rbe015232 | 171 | 7.77 | 19860.37 | Rbe030070 | 433 | 4.51 | 48946.22 |
图3 RbeNAC蛋白基因结构分析 A:RbeNAC蛋白保守基序分析;B:基因结构分析
Fig. 3 Gene structure analysis of NAC transcription factor in R. persica A: Conservative motif analysis. B: Gene structure analysis
图6 单叶蔷薇的共线性分析 A:物种内共线性分析;B:物种间共线性分析
Fig. 6 Collinearity analysis of R. persica A: Intraspecies collinearity analysis. B: Inter species collinearity analysis
图8 单叶蔷薇NAC转录因子的表达分析 A:干旱胁迫响应热图;B:基因表达趋势;C:不同样品总基因表达水平
Fig. 8 Expression analysis of NAC transcription factors in R. persica A: Heat map of drought stress response; B: gene expression trends; C: total gene expression levels in different samples
图9 干旱胁迫下单叶蔷薇根和叶的 NAC 基因表达情况 以 GADPH 基因为内参,误差线为标准差,不同小写字母表示不同处理差异达到显著性水平(P<0.05)。CK为无处理组,LS为轻度干旱组,SS为重度干旱组
Fig. 9 NAC gene expressions in the roots and leaves of R. persica under drought stress GADPH is used as internal reference. Error bars are the standard deviation(SD). Different lowercase letters represent significant differences (P<0.05). CK is the control group, LS is the mild drought stress group and SS is the severe drought stress group
[1] |
Puranik S, Sahu PP, Srivastava PS, et al. NAC proteins: regulation and role in stress tolerance[J]. Trends Plant Sci, 2012, 17(6): 369-381.
doi: 10.1016/j.tplants.2012.02.004 pmid: 22445067 |
[2] |
Zhang L, Yao L, Zhang N, et al. Lateral root development in potato is mediated by stu-mi164 regulation of NAC transcription factor[J]. Front Plant Sci, 2018, 9: 383.
doi: 10.3389/fpls.2018.00383 pmid: 29651294 |
[3] |
Kucukoglu M. A novel NAC domain transcription factor XVP controls the balance of xylem formation and cambial cell divisions[J]. New Phytol, 2020, 226(1): 5-7.
doi: 10.1111/nph.16400 pmid: 31960459 |
[4] |
El Mannai Y, Akabane K, Hiratsu K, et al. The NAC transcription factor gene OsY37(ONAC011)promotes leaf senescence and accelerates heading time in rice[J]. Int J Mol Sci, 2017, 18(10): 2165.
doi: 10.3390/ijms18102165 URL |
[5] |
Liu GS, Li HL, Grierson D, et al. NAC transcription factor family regulation of fruit ripening and quality: a review[J]. Cells, 2022, 11(3): 525.
doi: 10.3390/cells11030525 URL |
[6] |
Wang JF, Wang YP, Zhang JE, et al. Correction: the NAC transcription factor ClNAC68 positively regulates sugar content and seed development in watermelon by repressing ClINV and ClGH3.6[J]. Hortic Res, 2021, 8(1)214.
doi: 10.1038/s41438-021-00649-1 URL |
[7] |
Li M, Wu ZY, Gu H, et al. AvNAC030, a NAC domain transcription factor, enhances salt stress tolerance in kiwifruit[J]. Int J Mol Sci, 2021, 22(21): 11897.
doi: 10.3390/ijms222111897 URL |
[8] |
Wang ZQ, Ni LJ, Liu DN, et al. Genome-wide identification and characterization of NAC family in Hibiscus hamabo Sieb. et Zucc. under various abiotic stresses[J]. Int J Mol Sci, 2022, 23(6): 3055.
doi: 10.3390/ijms23063055 URL |
[9] |
Guo WW, Zhang JX, Zhang N, et al. The wheat NAC transcription factor TaNAC2L is regulated at the transcriptional and post-translational levels and promotes heat stress tolerance in transgenic Arabidopsis[J]. PLoS One, 2015, 10(8): e0135667.
doi: 10.1371/journal.pone.0135667 URL |
[10] |
Yan HF, Ma GH, Teixeira da Silva JA, et al. Genome-wide identification and analysis of NAC transcription factor family in two diploid wild relatives of cultivated sweet potato uncovers potential NAC genes related to drought tolerance[J]. Front Genet, 2021, 12: 744220.
doi: 10.3389/fgene.2021.744220 URL |
[11] |
Li WH, Zeng YL, Yin FL, et al. Genome-wide identification and comprehensive analysis of the NAC transcription factor family in sunflower during salt and drought stress[J]. Sci Rep. 2021, 11(1):19865.
doi: 10.1038/s41598-021-98107-4 pmid: 34615898 |
[12] |
Geng LF, Su L, Fu LF, et al. Genome-wide analysis of the rose(Rosa chinensis)NAC family and characterization of RcNAC091[J]. Plant Mol Biol, 2022, 108(6): 605-619.
doi: 10.1007/s11103-022-01250-3 |
[13] |
Jia DF, Jiang Q, van Nocker S, et al. An apple(Malus domestica)NAC transcription factor enhances drought tolerance in transgenic apple plants[J]. Plant Physiol Biochem, 2019, 139: 504-512.
doi: 10.1016/j.plaphy.2019.04.011 URL |
[14] |
Tran LS P, Nakashima K, Sakuma Y, et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter[J]. Plant Cell, 2004, 16(9): 2481-2498.
doi: 10.1105/tpc.104.022699 URL |
[15] |
Yang CF, Huang YZ, Lv PY, et al. NAC transcription factor GmNAC12 improved drought stress tolerance in soybean[J]. Int J Mol Sci, 2022, 23(19): 12029.
doi: 10.3390/ijms231912029 URL |
[16] |
Park S, Im J, Park S, et al. Drought monitoring using high resolution soil moisture through multi-sensor satellite data fusion over the Korean peninsula[J]. Agric For Meteorol, 2017, 237/238: 257-269.
doi: 10.1016/j.agrformet.2017.02.022 URL |
[17] | 罗广科. 梭梭NAC转录因子HaNAC38功能及结合特性分析[D]. 乌鲁木齐: 新疆农业大学, 2022. |
Luo GK. Analysis of the function and binding properties of A NAC transcription factor HaNAC38 in Haloxylon ammodendron[D]. Urumqi: Xinjiang Agricultural University, 2022. | |
[18] |
Zhao WZ, Hu GL, Zhang ZH, et al. Shielding effect of oasis-protection systems composed of various forms of wind break on sand fixation in an arid region: a case study in the Hexi Corridor, northwest China[J]. Ecol Eng, 2008, 33(2): 119-125.
doi: 10.1016/j.ecoleng.2008.02.010 URL |
[19] | Harkness J. Breeding with hulthemia persica(Rosa persica)[J]. The Australian Rose Annual, 1977, 62:123-130. |
[20] |
Vaezi J, Arjmandi AA, Sharghi HR. Origin of Rosa × binaloudensis(Rosaceae), a new natural hybrid species from Iran[J]. Phytotaxa, 2019, 411(1): 23-38.
doi: 10.11646/phytotaxa.411.1 URL |
[21] | 刘鑫颖, 冯策婷, 杨晨, 等. 带花斑现代月季育种研究进展[J]. 江苏农业学报, 2022, 38(5): 1432-1440. |
Liu XY, Feng CT, Yang C, et al. Research progress on breeding of modern rose cultivars with floral blotches[J]. Jiangsu J Agric Sci, 2022, 38(5): 1432-1440. | |
[22] | 惠俊爱, 张霞, 王绍明. 新疆野生单叶蔷薇生物学特性分析[J]. 山东林业科技, 2013, 43(4): 61-63. |
Hui JA, Zhang X, Wang SM. Analysis of biological characteristics of wild hulthemia berberifolia(pall.) dumort. in Xinjiang[J]. J Shandong For Sci Technol, 2013, 43(4): 61-63. | |
[23] | 张晓龙, 邓童, 刘学森, 等. 单叶蔷薇幼苗根系对不同潜水埋深的适应机制[J]. 生态学报, 2022, 42(15): 6137-6149. |
Zhang XL, Deng T, Liu XS, et al. Adaptability mechanism of Rosa persica seedlings root in different groundwater levels[J]. Acta Ecol Sin, 2022, 42(15): 6137-6149. | |
[24] | 惠俊爱, 张霞, 王绍明. 新疆野生单叶蔷薇的显微结构特征[J]. 江苏农业科学, 2014, 42(3): 126-127. |
Hui JA, Zhang X, Wang SM. Microstructure characteristics of wild Rosa simplex in Xinjiang[J]. Jiangsu Agric Sci, 2014, 42(3): 126-127. | |
[25] | 孙彦琳, 于超, 罗乐, 等. 单叶蔷薇bZIP转录因子家族鉴定与表达分析[J]. 西北农林科技大学学报: 自然科学版, 2022, 50(6): 82-92. |
Sun YL, Yu C, Luo L, et al. Identification and expression analysis of bZIP transcription factor family in Rosa persica[J]. J Northwest A F Univ, 2022, 50(6): 82-92. | |
[26] |
Ooka H, Satoh K, Doi K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Res, 2003, 10(6): 239-247.
doi: 10.1093/dnares/10.6.239 URL |
[27] |
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T)method[J]. Nat Protoc, 2008, 3(6): 1101-1108.
doi: 10.1038/nprot.2008.73 pmid: 18546601 |
[28] |
Mao HD, Li SM, Chen B, et al. Variation in cis-regulation of a NAC transcription factor contributes to drought tolerance in wheat[J]. Mol Plant, 2022, 15(2): 276-292.
doi: 10.1016/j.molp.2021.11.007 URL |
[29] |
Gong X, Zhao LY, Song XF, et al. Genome-wide analyses and expression patterns under abiotic stress of NAC transcription factors in white pear(Pyrus bretschneideri)[J]. BMC Plant Biol, 2019, 19(1): 1-18.
doi: 10.1186/s12870-018-1600-2 |
[30] |
Su HY, Zhang SZ, Yuan XW, et al. Genome-wide analysis and identification of stress-responsive genes of the NAM-ATAF1, 2-CUC2 transcription factor family in apple[J]. Plant Physiol Biochem, 2013, 71: 11-21.
doi: 10.1016/j.plaphy.2013.06.022 URL |
[31] |
Zhuo XK, Zheng TC, Zhang ZY, et al. Genome-wide analysis of the NAC transcription factor gene family reveals differential expression patterns and cold-stress responses in the woody plant Prunus mume[J]. Genes, 2018, 9(10): 494.
doi: 10.3390/genes9100494 URL |
[32] |
由玉婉, 张雨, 孙嘉毅, 等. ‘月月粉’月季NAC家族全基因组鉴定及皮刺发育相关成员的筛选[J]. 中国农业科学, 2022, 55(24): 4895-4911.
doi: 10.3864/j.issn.0578-1752.2022.24.009 |
You YW, Zhang Y, Sun JY, et al. Genome-wide identification of NAC family and screening of its members related to prickle development in Rosa chinensis old blush[J]. Sci Agric Sin, 2022, 55(24): 4895-4911. | |
[33] |
Moyano E, Martínez-Rivas FJ, Blanco-Portales R, et al. Genome-wide analysis of the NAC transcription factor family and their expression during the development and ripening of the Fragaria × ananassa fruits[J]. PLoS One, 2018, 13(5): e0196953.
doi: 10.1371/journal.pone.0196953 URL |
[34] |
Fan K, Li F, Chen JH, et al. Asymmetric evolution and expansion of the NAC transcription factor in polyploidized cotton[J]. Front Plant Sci, 2018, 9: 47.
doi: 10.3389/fpls.2018.00047 pmid: 29441080 |
[41] |
Yong YB, Zhang Y, Lyu YM. A stress-responsive NAC transcription factor from tiger lily(LlNAC2)interacts with LlDREB1 and LlZHFD4 and enhances various abiotic stress tolerance in Arabidopsis[J]. Int J Mol Sci, 2019, 20(13): 3225.
doi: 10.3390/ijms20133225 URL |
[42] |
Jiang GM, Jiang XQ, Lü PT, et al. The rose(Rosa hybrida)NAC transcription factor 3 gene, RhNAC3, involved in ABA signaling pathway both in rose and Arabidopsis[J]. PLoS One, 2014, 9(10): e109415.
doi: 10.1371/journal.pone.0109415 URL |
[43] |
Jia X, Zeng Z, Lyu YM, et al. Drought-responsive NAC transcription factor RcNAC72 is recognized by RcABF4, interacts with RcDREB2A to enhance drought tolerance in Arabidopsis[J]. Int J Mol Sci, 2022, 23(3): 1755.
doi: 10.3390/ijms23031755 URL |
[44] |
Hickman R, Hill C, Penfold CA, et al. A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves[J]. Plant J, 2013, 75(1): 26-39.
doi: 10.1111/tpj.2013.75.issue-1 URL |
[45] |
Gong L, Zhang HW, Liu X, et al. Ectopic expression of HaNAC1, an ATAF transcription factor from Haloxylon ammodendron, improves growth and drought tolerance in transgenic Arabidopsis[J]. Plant Physiol Biochem, 2020, 151: 535-544.
doi: 10.1016/j.plaphy.2020.04.008 URL |
[35] |
Hu HC, Ma L, Chen X, et al. Genome-wide identification of the NAC gene family in Zanthoxylum bungeanum and their transcriptional responses to drought stress[J]. Int J Mol Sci, 2022, 23(9): 4769.
doi: 10.3390/ijms23094769 URL |
[36] |
Li M, Hou L, Liu SS, et al. Genome-wide identification and expression analysis of NAC transcription factors in Ziziphus jujuba Mill. reveal their putative regulatory effects on tissue senescence and abiotic stress responses[J]. Ind Crops Prod, 2021, 173: 114093.
doi: 10.1016/j.indcrop.2021.114093 URL |
[37] |
Fu JE, Wu HA, Ma SQ, et al. OsJAZ1 attenuates drought resistance by regulating JA and ABA signaling in rice[J]. Front Plant Sci, 2017, 8: 2108.
doi: 10.3389/fpls.2017.02108 URL |
[38] |
Mohi-Ud-Din M, Talukder D, Rohman M, et al. Exogenous application of methyl jasmonate and salicylic acid mitigates drought-induced oxidative damages in French bean(Phaseolus vulgaris L.)[J]. Plants, 2021, 10(10): 2066.
doi: 10.3390/plants10102066 URL |
[39] |
Sun TT, Zhang JK, Zhang Q, et al. Exogenous application of acetic acid enhances drought tolerance by influencing the MAPK signaling pathway induced by ABA and JA in apple plants[J]. Tree Physiol, 2022, 42(9): 1827-1840.
doi: 10.1093/treephys/tpac034 URL |
[40] |
Nuruzzaman M, Sharoni AM, Kikuchi S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants[J]. Front Microbiol, 2013, 4: 248.
doi: 10.3389/fmicb.2013.00248 pmid: 24058359 |
[1] | 胡雅丹, 伍国强, 刘晨, 魏明. MYB转录因子在调控植物响应逆境胁迫中的作用[J]. 生物技术通报, 2024, 40(6): 5-22. |
[2] | 秦健, 李振月, 何浪, 李俊玲, 张昊, 杜荣. 肌源性细胞分化的单细胞转录谱变化及细胞间通讯分析[J]. 生物技术通报, 2024, 40(6): 330-342. |
[3] | 文洁, 杜元欣, 吴安波, 杨广容, 鲁敏, 安华明, 南红. 刺梨SOD基因家族鉴定与表达模式分析[J]. 生物技术通报, 2024, 40(5): 153-166. |
[4] | 陈春林, 李白雪, 李金玲, 杜清洁, 李猛, 肖怀娟. 甜瓜CmEPF基因家族的鉴定及表达分析[J]. 生物技术通报, 2024, 40(4): 130-138. |
[5] | 陈强, 黄馨慧, 张峥, 张冲, 柳叶飞. 褪黑素对薄皮甜瓜采后软化和乙烯合成的影响[J]. 生物技术通报, 2024, 40(4): 139-147. |
[6] | 张玉, 石磊, 巩檑, 聂峰杰, 杨江伟, 刘璇, 杨文静, 张国辉, 颉瑞霞, 张丽. 马铃薯WOX基因家族的鉴定及在离体再生和非生物胁迫中的表达分析[J]. 生物技术通报, 2024, 40(3): 170-180. |
[7] | 吴星星, 洪海波, 甘志承, 李瑞宁, 黄先忠. 辣椒CaPI的克隆与功能分析[J]. 生物技术通报, 2024, 40(3): 193-201. |
[8] | 江林琪, 赵佳莹, 郑飞雄, 姚馨怡, 李效贤, 俞振明. 铁皮石斛14-3-3基因家族鉴定及表达分析[J]. 生物技术通报, 2024, 40(3): 229-241. |
[9] | 吴圳, 张明英, 闫锋, 李依民, 高静, 颜永刚, 张岗. 掌叶大黄(Rheum palmatum L.)WRKY基因家族鉴定与分析[J]. 生物技术通报, 2024, 40(1): 250-261. |
[10] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[11] | 刘雯锦, 马瑞, 刘升燕, 杨江伟, 张宁, 司怀军. 马铃薯StCIPK11的克隆及响应干旱胁迫分析[J]. 生物技术通报, 2023, 39(9): 147-155. |
[12] | 杨志晓, 侯骞, 刘国权, 卢志刚, 曹毅, 芶剑渝, 王轶, 林英超. 不同抗性烟草品系Rubisco及其活化酶对赤星病胁迫的响应[J]. 生物技术通报, 2023, 39(9): 202-212. |
[13] | 丁凯鑫, 王立春, 田国奎, 王海艳, 李凤云, 潘阳, 庞泽, 单莹. 烯效唑缓解植物干旱损伤的研究进展[J]. 生物技术通报, 2023, 39(6): 1-11. |
[14] | 李帜奇, 袁月, 苗荣庆, 庞秋颖, 张爱琴. 盐胁迫盐芥和拟南芥褪黑素含量及合成相关基因表达模式分析[J]. 生物技术通报, 2023, 39(5): 142-151. |
[15] | 王春语, 李政君, 王平, 张丽霞. 高粱表皮蜡质缺失突变体sb1抗旱生理生化分析[J]. 生物技术通报, 2023, 39(5): 160-167. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||