生物技术通报 ›› 2022, Vol. 38 ›› Issue (6): 112-119.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1338
周国彦(), 银珊珊, 高佳鑫, 武春成, 闫立英, 谢洋()
收稿日期:
2021-10-23
出版日期:
2022-06-26
发布日期:
2022-07-11
作者简介:
周国彦,男,硕士研究生,研究方向:蔬菜栽培生理及分子生物学;E-mail: 基金资助:
ZHOU Guo-yan(), YIN Shan-shan, GAO Jia-xin, WU Chun-cheng, YAN Li-ying, XIE Yang()
Received:
2021-10-23
Published:
2022-06-26
Online:
2022-07-11
摘要:
组氨酸磷酸转运蛋白(AHP)是细胞分裂素信号转导途径中重要蛋白之一,在植物生长发育和抵御系列非生物胁迫过程中发挥着重要作用。探讨黄瓜AHP的分子特征与表达模式,可为进一步探究黄瓜AHP基因功能和提高植物的非生物胁迫耐受性提供理论依据。通过对黄瓜AHP基因家族成员的数量、进化关系、顺式作用元件、基因结构、发育及非生物胁迫下基因表达模式进行分析。结果表明,黄瓜AHP基因家族有7个成员,不均匀分布在6条染色体上;系统进化分析发现黄瓜AHP基因家族成员与冬瓜和甜瓜亲缘关系较近;其启动子序列主要含有光响应、低温响应、干旱响应、激素响应和防御应激等顺式作用元件;基因表达谱分析发现CsAHP1、CsAHP3和CsAHP4在非生物胁迫下显著上调或下调,且CsAHP1在开花当天表达量最高;实时荧光定量PCR(qRT-PCR)结果显示,CsAHP1和CsAHP3均在干旱、高温胁迫下显著上调表达,CsAHP1、CsAHP2和CsAHP5在低温弱光胁迫下显著上调表达。黄瓜AHP基因家族可能与植物发育和非生物胁迫响应有着密切的关系。
周国彦, 银珊珊, 高佳鑫, 武春成, 闫立英, 谢洋. 黄瓜AHP基因家族的鉴定及其非生物胁迫表达分析[J]. 生物技术通报, 2022, 38(6): 112-119.
ZHOU Guo-yan, YIN Shan-shan, GAO Jia-xin, WU Chun-cheng, YAN Li-ying, XIE Yang. Identification of AHP Gene Family in Cucumis sativus and Its Expression Analysis Under Abiotic Stress[J]. Biotechnology Bulletin, 2022, 38(6): 112-119.
引物名称Primer name | 引物序列Primer sequence(5'-3') |
---|---|
CsAHP1-F | TTGTTGAAGTGGTGTCTC |
CsAHP1-R | CCTATGCTTGAACTGCTT |
CsAHP2-F | TACTACAGAGACTCATCCA |
CsAHP2-R | GGCATCCAACTTATTGAAG |
CsAHP3-F | CCAATTCCTTCGCTACAA |
CsAHP3-R | ATCAATACACTTCTGCTCAA |
CsAHP4-F | AAGACAGTGGATTCAGTAT |
CsAHP4-R | TAGCGATTCTCAGTTTATTG |
CsAHP5-F | TTTGAGCAGGGTTATCTTG |
CsAHP5-R | GTATGAGTCTGGCTGAATC |
CsAHP6-F | GAACCGATTACTTGCCTTA |
CsAHP6-R | TCATCTTGGAGTTGTTGTAG |
CsAHP7-F | ATTGTTGAGGCAGATGAA |
CsAHP7-R | CTATATGAATCACGGTAGCA |
Cs-actin-F | ATTGTTCTCAGTGGTGGTTCTAC |
Cs-actin-R | CCTTTGAGATCCACATCTGCT |
表1 qRT-PCR引物设计
Table 1 qRT-PCR primer design
引物名称Primer name | 引物序列Primer sequence(5'-3') |
---|---|
CsAHP1-F | TTGTTGAAGTGGTGTCTC |
CsAHP1-R | CCTATGCTTGAACTGCTT |
CsAHP2-F | TACTACAGAGACTCATCCA |
CsAHP2-R | GGCATCCAACTTATTGAAG |
CsAHP3-F | CCAATTCCTTCGCTACAA |
CsAHP3-R | ATCAATACACTTCTGCTCAA |
CsAHP4-F | AAGACAGTGGATTCAGTAT |
CsAHP4-R | TAGCGATTCTCAGTTTATTG |
CsAHP5-F | TTTGAGCAGGGTTATCTTG |
CsAHP5-R | GTATGAGTCTGGCTGAATC |
CsAHP6-F | GAACCGATTACTTGCCTTA |
CsAHP6-R | TCATCTTGGAGTTGTTGTAG |
CsAHP7-F | ATTGTTGAGGCAGATGAA |
CsAHP7-R | CTATATGAATCACGGTAGCA |
Cs-actin-F | ATTGTTCTCAGTGGTGGTTCTAC |
Cs-actin-R | CCTTTGAGATCCACATCTGCT |
图2 黄瓜、拟南芥和葫芦科AHP家族成员进化树分析
Fig. 2 Phylogenetic tree analysis of AHP family members in C. sativus,Arabidopsis thaliana and Cucurbitaceae Cs:黄瓜Cucumis sativus L.;At:拟南芥Arabidopsis thaliana L.;Cmo:南瓜Cucurbita moschata Duch L.;Cla:西瓜Citrullus vulgaris Schrad L.;MEL:甜瓜Cucumis melo L.;Bhi:冬瓜Benincasa hispida L.;Cp:西葫芦Cucurbita pepo L.;Lsi:葫芦 Lagenaria siceraria L.
图5 黄瓜非生物胁迫与不同发育时期AHP家族基因表达模式分析 a:盐胁迫;b:硅胁迫;c:温光胁迫;d:不同组织中的表达模式;e:开花期基因的表达模式
Fig. 5 Expression pattern analysis of AHP family in abiotic stress and different developmental stages of C. sativus a:Salt stress. b:Silicon stress. c:Temperature and light stress. d:Expression patterns in different organizations. e:Expression patterns of genes during anthesis
图6 在干旱、高温和低温弱光胁迫下黄瓜AHP家族基因qRT-PCR分析
Fig. 6 qRT-PCR analysis of AHP family gene under drou-ght,high temperature,and low temperature and low light stress in C. sativus
[1] | 宋松泉, 刘军, 杨华, 等. 细胞分裂素调控种子发育、休眠与萌发的研究进展[J]. 植物学报, 2021, 56(2):218-231. |
Song SQ, Liu J, Yang H, et al. Research progress in seed development, dormancy and germination regulated by cytokinin[J]. Chin Bull Bot, 2021, 56(2):218-231. | |
[2] | 杨雪, 彭静, 张明明, 等. 叶面喷施6-BA对玉米生殖期碳水化合物转运和分配的影响[J]. 西北农林科技大学学报:自然科学版, 2019, 47(7):62-70. |
Yang X, Peng J, Zhang MM, et al. Effects of foliar spraying of 6-BA on carbohydrate transfer and allocation of maize at the reproductive stage[J]. J Northwest A F Univ:Nat Sci Ed, 2019, 47(7):62-70. | |
[3] |
洪林, 杨蕾, 杨海健, 等. AP2/ERF转录因子调控植物非生物胁迫响应研究进展[J]. 植物学报, 2020, 55(4):481-496.
doi: 10.11983/CBB19243 |
Hong L, Yang L, Yang HJ, et al. Research advances in AP2/ERF transcription factors in regulating plant responses to abiotic stress[J]. Chin Bull Bot, 2020, 55(4):481-496. | |
[4] | 李志康, 严冬, 薛张逸, 等. 细胞分裂素对植物生长发育的调控机理研究进展及其在水稻生产中的应用探讨[J]. 中国水稻科学, 2018, 32(4):311-324. |
Li ZK, Yan D, Xue ZY, et al. Regulations of plant growth and development by cytokinins and their applications in rice production[J]. Chin J Rice Sci, 2018, 32(4):311-324. | |
[5] | 孙丽静, 李倩影, 王培楠, 等. 水稻组氨酸磷酸转运蛋白OsAHP2的表达及纯化[J]. 华北农学报, 2020, 35(4):46-51. |
Sun LJ, Li QY, Wang PN, et al. Protein expression and purification of OsAHP2 in rice[J]. Acta Agric Boreali Sin, 2020, 35(4):46-51. | |
[6] | 余义和, 张会灵, 郭大龙, 等. 葡萄细胞分裂素响应调节因子VvRR2启动子的克隆与活性分析[J]. 分子植物育种, 2017, 15(6):2088-2093. |
Yu YH, Zhang HL, Guo DL, et al. Cloning and activity analysis of the promoter of grapevine cytokinin response regulator VvRR2[J]. Mol Plant Breed, 2017, 15(6):2088-2093. | |
[7] |
Nishiyama R, Watanabe Y, Leyva-Gonzalez MA, et al. Arabidopsis AHP2, AHP3, and AHP 5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response[J]. PNAS, 2013, 110(12):4840-4845.
doi: 10.1073/pnas.1302265110 pmid: 23487796 |
[8] |
Sun LJ, Zhang Q, Wu JX, et al. Two rice authentic histidine phosphotransfer proteins, OsAHP1 and OsAHP2, mediate cytokinin signaling and stress responses in rice[J]. Plant Physiol, 2014, 165(1):335-345.
doi: 10.1104/pp.113.232629 URL |
[9] |
Ma QH, Tian B. Characterization of a wheat histidine-containing phosphotransfer protein(HP)that is regulated by cytokinin-mediated inhibition of leaf senescence[J]. Plant Sci, 2005, 168(6):1507-1514.
doi: 10.1016/j.plantsci.2005.02.022 URL |
[10] | 林德佩. 黄瓜植物的起源和分类研究进展[J]. 中国瓜菜, 2017, 30(7):1-3. |
Lin DP. A study of origin and taxonomy on cucumber[J]. China Cucurbits Veg, 2017, 30(7):1-3. | |
[11] | 张圣平, 顾兴芳. 黄瓜重要农艺性状的分子生物学[J]. 中国农业科学, 2020, 53(1):117-121. |
Zhang SP, Gu XF. Molecular biology of important agronomic traits in cucumber[J]. Sci Agric Sin, 2020, 53(1):117-121. | |
[12] | 张珍. 融合光质和光强的设施黄瓜光环境调控方法研究[D]. 杨凌: 西北农林科技大学, 2018. |
Zhang Z. A light regulation model based on the fusion of light quality and intensity for greenhouse cucumber[D]. Yangling: Northwest A&F University, 2018. | |
[13] | 高丽红, 眭晓蕾, 齐艳花, 等. 日光温室黄瓜越冬长季节栽培高产关键理论与技术[J]. 中国蔬菜, 2018(10):1-6. |
Gao LH, Sui XL, Qi YH, et al. Key theories and techniques for high yield of cucumber in overwintering and long season cultivation in solar greenhouse[J]. China Veg, 2018(10):1-6. | |
[14] | 余炳伟, 董日月, 雷建军, 等. 黄瓜耐热材料的筛选与鉴定[J]. 分子植物育种, 2017, 15(11):4695-4705. |
Yu BW, Dong RY, Lei JJ, et al. Screening and identification of heat resistance cucumber[J]. Mol Plant Breed, 2017, 15(11):4695-4705. | |
[15] | 蒋静静, 屈锋, 苏春杰, 等. 不同肥水耦合对黄瓜产量品质及肥料偏生产力的影响[J]. 中国农业科学, 2019, 52(1):86-97. |
Jiang JJ, Qu F, Su CJ, et al. Effects of different water and fertilizer coupling on yield and quality of cucumber and partial factor productivity of fertilizer[J]. Sci Agric Sin, 2019, 52(1):86-97. | |
[16] | Kieber JJ, Schaller GE. Cytokinin signaling in plant development[J]. Development, 2018, 145(4):dev149344. |
[17] | Xie Y, Ying J, Tang M, et al. Genome-wide identification of AUX/IAA in radish and functional characterization of RsIAA33 gene during taproot thickening[J]. Gene, 2021, 795:145782. |
[18] |
Wang YP, Tang HB, Debarry JD, et al. MCScanX:a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Res, 2012, 40(7):e49.
doi: 10.1093/nar/gkr1293 URL |
[19] |
Tamura K, Dudley J, Nei M, et al. MEGA4:molecular evolutionary genetics analysis(MEGA)software version 4. 0[J]. Mol Biol Evol, 2007, 24(8):1596-1599.
doi: 10.1093/molbev/msm092 URL |
[20] | 葛廷, 黄雪, 谢让金. 柑橘CitPG34的克隆、定位与表达分析[J]. 中国农业科学, 2019, 52(19):3404-3416. |
Ge T, Huang X, Xie RJ. Cloning, Subcellular localization and expression analysis of CitPG34 in citrus[J]. Sci Agric Sin, 2019, 52(19):3404-3416. | |
[21] |
Chen C, Chen H, Zhang Y, et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8):1194-1202.
doi: 10.1016/j.molp.2020.06.009 URL |
[22] |
Xie Y, Zhang W, Wang Y, et al. Comprehensive transcriptome-based characterization of differentially expressed genes involved in microsporogenesis of radish CMS line and its maintainer[J]. Funct Integr Genomics, 2016, 16(5):529-543.
doi: 10.1007/s10142-016-0504-1 URL |
[23] |
Liu DR, Dong SY, Bo KL, et al. Identification of QTLs controlling salt tolerance in cucumber(Cucumis sativus L.)seedlings[J]. Plants, 2021, 10(1):85.
doi: 10.3390/plants10010085 URL |
[24] |
Holz S, Kube M, Bartoszewski G, et al. Initial studies on cucumber transcriptome analysis under silicon treatment[J]. Silicon, 2019, 11(5):2365-2369.
doi: 10.1007/s12633-015-9335-2 URL |
[25] |
Zhang X, Lai Y, Zhang W, et al. MicroRNAs and their targets in cucumber shoot apices in response to temperature and photoperiod[J]. BMC Genomics, 2018, 19(1):819.
doi: 10.1186/s12864-018-5204-x URL |
[26] |
Zhang S, Miao H, Song ZC, et al. Molecular mapping and candidate gene analysis for fruit epidermal structure in cucumber[J]. Plant Breed, 2017, 136(5):767-774.
doi: 10.1111/pbr.12510 URL |
[27] |
Sun CZ, Li YQ, Zhao WS, et al. Integration of hormonal and nutritional cues orchestrates progressive Corolla opening[J]. Plant Physiol, 2016, 171(2):1209-1229.
doi: 10.1104/pp.16.00209 URL |
[28] |
Zhu Y, Wu N, Song W, et al. Soybean(Glycine max)expansin gene superfamily origins:segmental and tandem duplication events followed by divergent selection among subfamilies[J]. BMC Plant Biol, 2014, 14:93.
doi: 10.1186/1471-2229-14-93 URL |
[29] | Jung KW, Oh SI, Kim YY, et al. Arabidopsis histidine-containing phosphotransfer factor 4(AHP4)negatively regulates secondary wall thickening of the anther endothecium during flowering[J]. Mol Cells, 2008, 25(2):294-300. |
[30] | 侯凌燕. 细胞分裂素B型响应调节子调控拟南芥抗冻性的分子机制[D]. 北京: 中国农业大学, 2018. |
Hou LY. Molecular mechanism of freezing tolerance regulated by cytokinin type-B response regulators in Arabidopsis[D]. Beijing: China Agricultural University, 2018. | |
[31] | 银珊珊, 张宁, 武春成, 等. 萝卜AHP基因家族鉴定与表达模式分析[J]. 中国瓜菜, 2021, 34(8):7-14. |
Yin SS, Zhang N, Wu CC, et al. Identification and expression pattern analysis of AHP gene family in radish[J]. China Cucurbits Veg, 2021, 34(8):7-14. |
[1] | 杨志晓, 侯骞, 刘国权, 卢志刚, 曹毅, 芶剑渝, 王轶, 林英超. 不同抗性烟草品系Rubisco及其活化酶对赤星病胁迫的响应[J]. 生物技术通报, 2023, 39(9): 202-212. |
[2] | 褚睿, 李昭轩, 张学青, 杨东亚, 曹行行, 张雪艳. 黄瓜枯萎病拮抗芽孢杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271. |
[3] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[4] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[5] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[6] | 李帜奇, 袁月, 苗荣庆, 庞秋颖, 张爱琴. 盐胁迫盐芥和拟南芥褪黑素含量及合成相关基因表达模式分析[J]. 生物技术通报, 2023, 39(5): 142-151. |
[7] | 刘奎, 李兴芬, 杨沛欣, 仲昭晨, 曹一博, 张凌云. 青杄转录共激活因子PwMBF1c的功能研究与验证[J]. 生物技术通报, 2023, 39(5): 205-216. |
[8] | 翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232. |
[9] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[10] | 赖瑞联, 冯新, 高敏霞, 路喻丹, 刘晓驰, 吴如健, 陈义挺. 猕猴桃过氧化氢酶基因家族全基因组鉴定与表达分析[J]. 生物技术通报, 2023, 39(4): 136-147. |
[11] | 郭三保, 宋美玲, 李灵心, 尧子钊, 桂明明, 黄胜和. 斑地锦查尔酮合酶基因及启动子的克隆与分析[J]. 生物技术通报, 2023, 39(4): 148-156. |
[12] | 杨春洪, 董璐, 陈林, 宋丽. 大豆VAS1基因家族的鉴定及参与侧根发育的研究[J]. 生物技术通报, 2023, 39(3): 133-142. |
[13] | 谢洋, 邢雨蒙, 周国彦, 刘美妍, 银珊珊, 闫立英. 黄瓜二倍体及其同源四倍体果实转录组分析[J]. 生物技术通报, 2023, 39(3): 152-162. |
[14] | 王琪, 胡哲, 富薇, 李光哲, 郝林. 伯克霍尔德氏菌GD17对黄瓜幼苗耐干旱的调节[J]. 生物技术通报, 2023, 39(3): 163-175. |
[15] | 陈强, 邹明康, 宋家敏, 张冲, 吴隆坤. 甜瓜LBD基因家族的鉴定和果实发育进程中的表达分析[J]. 生物技术通报, 2023, 39(3): 176-183. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||