生物技术通报 ›› 2023, Vol. 39 ›› Issue (11): 238-251.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0588
邢媛1,2(), 宋健3, 李俊怡1, 郑婷婷1,2, 刘思辰1,2(), 乔治军1,2()
收稿日期:
2023-06-20
出版日期:
2023-11-26
发布日期:
2023-12-20
通讯作者:
刘思辰,女,副研究员,研究方向:谷子种质资源评价利用;E-mail: lsch@163.com;作者简介:
邢媛,女,硕士,研究方向:作物遗传育种;E-mail: xy15315514037@163.com
基金资助:
XING Yuan1,2(), SONG Jian3, LI Jun-yi1, ZHENG Ting-ting1,2, LIU Si-chen1,2(), QIAO Zhi-jun1,2()
Received:
2023-06-20
Published:
2023-11-26
Online:
2023-12-20
摘要:
天冬氨酸蛋白酶(AP)是一类重要的水解酶,在植物生长发育及抵御生物和非生物胁迫方面发挥着重要作用。谷子(Setaria italica)作为禾本科C4植物抗逆研究的模式作物,目前关于天冬氨酸蛋白酶家族基因功能的研究较少。为深入探究AP基因家族在谷子中的功能作用,本研究基于AP保守Pfam序列全基因组筛选鉴定谷子AP基因家族的成员,并通过生物信息学方法对其理化性质、亚细胞定位、基因结构、保守结构域、系统进化发育、启动子顺式作用元件及共线性等分析,同时利用荧光定量PCR技术对其在非生物胁迫下的表达模式进行了研究。结果表明,谷子基因组中共有AP基因家族成员58个;系统进化树显示该基因家族可分为5个亚家族,其中Group B编码非典型天冬氨酸蛋白酶,其他亚家族编码类nucellin天冬氨酸蛋白酶;基因结构和保守基序分析表明,谷子AP家族同一亚家族成员具有较高的保守性;共线性分析结果显示,谷子AP基因家族与水稻(Oryza sativa)和玉米(Zea mays)AP基因家族成员之间存在大量的同源基因对;启动子顺式作用元件分析表明,SiAPs基因家族中大部分成员含有与非生物胁迫和生物激素响应相关的顺式元件,如响应干旱和低温胁迫的顺式作用元件、水杨酸有关的应答元件等。进一步RT-qPCR结果发现,SiAPs基因家族成员在谷子根、茎、叶、穗中差异表达;在低温胁迫下,SiAP3、SiAP9、SiAP48基因表达量显著升高;在干旱胁迫和水杨酸处理下,部分基因表达的变化趋势基本一致。SiAPs对谷子响应非生物胁迫起重要的调控作用,本研究结果可为SiAPs的抗逆功能分析提供参考。
邢媛, 宋健, 李俊怡, 郑婷婷, 刘思辰, 乔治军. 谷子AP基因家族鉴定及其对非生物胁迫的响应分析[J]. 生物技术通报, 2023, 39(11): 238-251.
XING Yuan, SONG Jian, LI Jun-yi, ZHENG Ting-ting, LIU Si-chen, QIAO Zhi-jun. Identification of AP Gene Family and Its Response Analysis to Abiotic Stress in Setaria italica[J]. Biotechnology Bulletin, 2023, 39(11): 238-251.
基因名称Gene name | 序列Sequence(5'-3') |
---|---|
25S-F | AGGCAACAGAAACTCCATACG |
25S-R | ATGGCATAGCATTCATCACG |
SiAP2-F | AACATACCCACCTCGGTCTTC |
SiAP2-R | CGCCTTGTACTTCTTCATCCC |
SiAP3-F | GATACCTGCTACGACTTCACCG |
SiAP3-R | GCCGACATCATAGAGCACCTC |
SiAP4-F | ATGTCAGAGGGCGGCTACG |
SiAP4-R | TGGTGAGGCAGTACGAGAAGG |
SiAP9-F | TCCAGTCCACGCCGCTTATC |
SiAP9-R | CGAAGATGATGCCGCCACTC |
SiAP32-F | GGTGGTGGGCGGCAACTC |
SiAP32-R | CCAGCAGGCGGTTCTCCATC |
SiAP36-F | GCTGTCGTCGGCGTTCAAG |
SiAP36-R | GTCGGTATCGTGATGCTTCTCTG |
SiAP48-F | CATCAGCCAGAGGTGCCAGAG |
SiAP48-R | CGTGTTGGTGTAGTCGTCGTATTG |
表1 引物序列表
Table 1 Sequences of primers
基因名称Gene name | 序列Sequence(5'-3') |
---|---|
25S-F | AGGCAACAGAAACTCCATACG |
25S-R | ATGGCATAGCATTCATCACG |
SiAP2-F | AACATACCCACCTCGGTCTTC |
SiAP2-R | CGCCTTGTACTTCTTCATCCC |
SiAP3-F | GATACCTGCTACGACTTCACCG |
SiAP3-R | GCCGACATCATAGAGCACCTC |
SiAP4-F | ATGTCAGAGGGCGGCTACG |
SiAP4-R | TGGTGAGGCAGTACGAGAAGG |
SiAP9-F | TCCAGTCCACGCCGCTTATC |
SiAP9-R | CGAAGATGATGCCGCCACTC |
SiAP32-F | GGTGGTGGGCGGCAACTC |
SiAP32-R | CCAGCAGGCGGTTCTCCATC |
SiAP36-F | GCTGTCGTCGGCGTTCAAG |
SiAP36-R | GTCGGTATCGTGATGCTTCTCTG |
SiAP48-F | CATCAGCCAGAGGTGCCAGAG |
SiAP48-R | CGTGTTGGTGTAGTCGTCGTATTG |
图1 SiAPs基因家族成员基因结构和其编码蛋白的保守基序分析 A:谷子AP基因家族成员聚类分析;B:谷子AP基因家族成员的保守结构域;C:谷子AP基因家族成员基因结构;D:谷子AP基因家族保守基序的序列Logo
Fig. 1 Gene structure and conservative motif analysis of members of SiAPs in Setaria italic A: Cluster analysis of AP gene family members in foxtail millet(Seitaria italic). B: Conservative domain of AP gene family members in foxtail millet. C: Gene structure map of SiAPs members in foxtail millet. D: Logo of conserved motif of SiAPs in foxtail millet
图2 谷子(Si)、水稻(Os)、拟南芥(At)AP基因家族系统进化树
Fig. 2 Unrooted phylogenetic tree of AP gene family in Seitaria italic(Si), Oryza sativa(Os)and Arabi-dopsis thaliana(At)
图3 AP基因家族成员在谷子染色体上的分布 1-9 代表谷子第1-9染色体;染色体内部以基因密度填充,颜色由蓝到红代表基因密度由小到大
Fig. 3 Distribution of AP gene family members on chromosomes in S. italic 1-9 represents chromosome 1-9 in S. italic, respectively. The interior of the chromosome is filled with gene density, with colors ranging from blue to red indicating a gradual increase in gene density
图4 谷子种内AP基因家族共线性分析 1-9代表谷子1-9号染色体;热图代表基因密度,由蓝到红基因密度越来越大
Fig. 4 Collinearity analysis of AP gene family in S. italic 1-9 represents chromosome 1-9 of S. itlica. The heat map represents gene density, with increasing gene density from blue to red
图5 谷子与拟南芥、水稻和玉米AP基因家族成员的共线性分析 A:谷子与玉米 AP 基因共线性分析;B:谷子与水稻 AP 基因共线性分析;C:谷子与拟南芥 AP 基因共线性分析
Fig. 5 Collinearity analysis of SiAPs gene family members and AP genes in A. thaliana, O. sativa and Z. mays A: The synteny analysis of AP genes in S. italica and Z. mays; B: the synteny analysis of AP genes in S. italica and O. sativa; C: the synteny analysis of AP genes in S. italica and A. thaliana
图9 谷子AP家族基因在0.25 mmol/L水杨酸诱导下的表达分析 误差线为标准误,图中不同字母表示差异显著(P < 0.05),下同
Fig. 9 Expression analysis of AP gene family members in S. italica induced by 0.25 mmol/L salicylic acid Error bars are standard errors. The different letters in the figure indicate significant differences(P < 0.05). The same below
[1] |
Mutlu A, Gal S. Plant aspartic proteinases: enzymes on the way to a function[J]. Physiol Plant, 1999, 105(3): 569-576.
doi: 10.1034/j.1399-3054.1999.105324.x URL |
[2] | Chen HJ, Huang YH, Huang GJ, et al. Sweet potato SPAP1 is a typical aspartic protease and participates in ethephon-mediated leaf senescence[J]. J Plant Physiol, 2015, 180: 1-17. |
[3] |
Simões I, Faro C. Structure and function of plant aspartic proteinases[J]. Eur J Biochem, 2004, 271(11): 2067-2075.
doi: 10.1111/j.1432-1033.2004.04136.x pmid: 15153096 |
[4] |
Chen F, Foolad MR. Molecular organization of a gene in barley which encodes a protein similar to aspartic protease and its specific expression in nucellar cells during degeneration[J]. Plant Mol Biol, 1997, 35(6): 821-831.
pmid: 9426602 |
[5] |
Soares A, Ribeiro Carlton SM, Simões I. Atypical and nucellin-like aspartic proteases: emerging players in plant developmental processes and stress responses[J]. J Exp Bot, 2019, 70(7): 2059-2076.
doi: 10.1093/jxb/erz034 pmid: 30715463 |
[6] | 高杉, 蓝兴国. 植物天冬氨酸蛋白酶的结构与功能[J]. 生物技术通讯, 2018, 29(6): 866-870. |
Gao S, Lan XG. Structure and function of aspartic proteinases in plants[J]. Lett Biotechnol, 2018, 29(6): 866-870. | |
[7] |
Tamura T, Terauchi K, Kiyosaki T, et al. Differential expression of wheat aspartic proteinases, WAP1 and WAP2, in germinating and maturing seeds[J]. J Plant Physiol, 2007, 164(4): 470-477.
doi: 10.1016/j.jplph.2006.02.009 URL |
[8] |
Yao X, Xiong W, Ye TT, et al. Overexpression of the aspartic protease ASPG1 gene confers drought avoidance in Arabidopsis[J]. J Exp Bot, 2012, 63(7): 2579-2593.
doi: 10.1093/jxb/err433 URL |
[9] | Shen WZ, Yao X, Ye TT, et al. Arabidopsis aspartic protease ASPG1 affects seed dormancy, seed longevity and seed germination[J]. Plant Cell Physiol, 2018, 59(7): 1415-1431. |
[10] |
Guo RR, Zhao J, Wang XH, et al. Constitutive expression of a grape aspartic protease gene in transgenic Arabidopsis confers osmotic stress tolerance[J]. Plant Cell Tiss Organ Cult, 2015, 121(2): 275-287.
doi: 10.1007/s11240-014-0699-6 URL |
[11] |
Xia YJ, Suzuki H, Borevitz J, et al. An extracellular aspartic protease functions in Arabidopsis disease resistance signaling[J]. EMBO J, 2004, 23(4): 980-988.
doi: 10.1038/sj.emboj.7600086 URL |
[12] |
Prasad BD, Creissen G, Lamb C, et al. Overexpression of rice(Oryza sativa L.) OsCDR1 leads to constitutive activation of defense responses in rice and Arabidopsis[J]. Mol Plant Microbe Interact, 2009, 22(12): 1635-1644.
doi: 10.1094/MPMI-22-12-1635 URL |
[13] |
Breitenbach HH, Wenig M, Wittek F, et al. Contrasting roles of the apoplastic aspartyl protease apoplastic, enhanced disease susceptibility1-dependent1 and legume lectin-like protein1 in Arabidopsis systemic acquired resistance[J]. Plant Physiol, 2014, 165(2): 791-809.
pmid: 24755512 |
[14] | 黄相玲, 张仁志. 植物抗逆生理机制研究进展[J]. 南方农业, 2021, 15(34): 96-99, 103. |
Huang XL, Zhang RZ. Study progress in resistance to adverse physiological mechanism of plants[J]. South China Agric, 2021, 15(34): 96-99, 103. | |
[15] | 冯军. 水杨酸介导的草莓抗白粉病的分子调控机制[D]. 北京: 北京林业大学, 2020. |
Feng J. The molecular regulatory mechanism of salicylic acid-primed strawberry resistance against Podosphaera aphanis[D]. Beijing: Beijing Forestry University, 2020. | |
[16] |
Zeng XQ, Wang LB, Fu YL, et al. Effects of methyl salicylate pre-treatment on the volatile profiles and key gene expressions in tomatoes stored at low temperature[J]. Front Nutr, 2022, 9: 1018534.
doi: 10.3389/fnut.2022.1018534 URL |
[17] |
杨小环, 赵维峰, 孙娜娜, 等. 外源水杨酸缓解低温胁迫对玉米种子萌发和早期幼苗生长伤害的生理机制[J]. 核农学报, 2017, 31(9): 1811-1817.
doi: 10.11869/j.issn.100-8551.2017.09.1811 |
Yang XH, Zhao WF, Sun NN, et al. Physiological mechanisms of exogenous salicylic acid-mediated low temperature tolerance in seed germination and early seedling growth of maize[J]. J Nucl Agric Sci, 2017, 31(9): 1811-1817.
doi: 10.11869/j.issn.100-8551.2017.09.1811 |
|
[18] |
周杰, 黄婷婷, 赵光武, 等. 水杨酸调控种子低温萌发能力的机制研究[J]. 核农学报, 2018, 32(8): 1649-1655.
doi: 10.11869/j.issn.100-8551.2018.08.1649 |
Zhou J, Huang TT, Zhao GW, et al. Research on mechanisms of salicylic acid-induced chilling tolerance in seeds[J]. J Nucl Agric Sci, 2018, 32(8): 1649-1655. | |
[19] |
Jahani F, Tohidi-Moghadam HR, Larijani HR, et al. Influence of zinc and salicylic acid foliar application on total chlorophyll, phenolic components, yield and essential oil composition of peppermint(Mentha piperita L.) under drought stress condition[J]. Arab J Geosci, 2021, 14(8): 1-12.
doi: 10.1007/s12517-020-06304-8 |
[20] | 马碧花. 水杨酸、航天诱变和内生真菌对多年生黑麦草抗逆性的影响[D]. 兰州: 兰州大学, 2020. |
Ma BH. Effects of salicylic acid, space mutation and Epichloë endophyte on stress resistance of Lolium perenne[D]. Lanzhou: Lanzhou University, 2020. | |
[21] | 徐雪雯, 王兴鹏, 王洪博, 等. 水杨酸对盐胁迫下棉苗生长及生理的调控作用[J]. 作物杂志, 2023(3): 188-194. |
Xu XW, Wang XP, Wang HB, et al. Effects of salicylic acid application on the growth and physiological characteristics of cotton seedlings under salt stress[J]. Crops, 2023(3): 188-194. | |
[22] |
李润枝, 靳晴, 李召虎, 等. 水杨酸提高甘草种子萌发和幼苗生长对盐胁迫耐性的效应[J]. 作物学报, 2020, 46(11): 1810-1816.
doi: 10.3724/SP.J.1006.2020.04080 |
Li RZ, Jin Q, Li ZH, et al. Salicylic acid improved salinity tolerance of Glycyrrhiza uralensis Fisch during seed germination and seedling growth stages[J]. Acta Agron Sin, 2020, 46(11): 1810-1816. | |
[23] | 刘敬科, 刁现民. 我国谷子产业现状与加工发展方向[J]. 农业工程技术: 农产品加工业, 2013(12): 15-17. |
Liu JK, Diao XM. Present situation and processing development direction of millet industry in China[J]. Agric Eng Technol, 2013(12): 15-17. | |
[24] |
贾冠清, 刁现民. 中国谷子种业创新现状与未来展望[J]. 中国农业科学, 2022, 55(4): 653-665.
doi: 10.3864/j.issn.0578-1752.2022.04.003 |
Jia GQ, Diao XM. Current status and perspectives of innovation studies related to foxtail millet seed industry in China[J]. Sci Agric Sin, 2022, 55(4): 653-665.
doi: 10.3864/j.issn.0578-1752.2022.04.003 |
|
[25] | 刁现民. 育种创新造就谷子种业新发展[J]. 中国种业, 2022(4): 4-7. |
Diao XM. Breeding innovation creates new development of millet seed industry[J]. China Seed Ind, 2022(4): 4-7. | |
[26] |
Ji XR, Yu YH, Ni PY, et al. Genome-wide identification of small heat-shock protein(HSP20)gene family in grape and expression profile during berry development[J]. BMC Plant Biol, 2019, 19(1): 433.
doi: 10.1186/s12870-019-2031-4 |
[27] |
Rogozin IB, Wolf YI, Sorokin AV, et al. Remarkable interKingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution[J]. Curr Biol, 2003, 13(17): 1512-1517.
pmid: 12956953 |
[28] |
Xu JY, Xue CC, Xue D, et al. Overexpression of GmHsp90s, a heat shock protein 90(Hsp90)gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana[J]. PLoS One, 2013, 8(7): e69810.
doi: 10.1371/journal.pone.0069810 URL |
[29] |
Alam MM, Nakamura H, Ichikawa H, et al. Response of an aspartic protease gene OsAP77 to fungal, bacterial and viral infections in rice[J]. Rice, 2014, 7(1): 9.
doi: 10.1186/s12284-014-0009-2 URL |
[30] | 彭友良, 王琦. 中国植物病理学会2018年学术年会论文集[M]. 北京: 中国农业科学技术出版社, 2018: 251. |
Peng YL, Wang Q. Proceedings of the annual meeting of Chinese society for plant pathology(2018)[M]. Beijing: China Agricultural Science and Technology Press, 2018: 251. | |
[31] |
黄成, 梁晓梅, 戴成, 等. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
doi: 10.3724/SP.J.1006.2022.14023 |
Huang C, Liang XM, Dai C, et al. Genome wide analysis of BnAPs gene family in Brassica napus[J]. Acta Agron Sin, 2022, 48(3): 597-607.
doi: 10.3724/SP.J.1006.2022.14023 URL |
|
[32] |
Cannon SB, Mitra A, Baumgarten A, et al. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana[J]. BMC Plant Biol, 2004, 4: 10.
doi: 10.1186/1471-2229-4-10 URL |
[33] | 张相琴, 陈振艳, 陈兰, 等. 茶树CsAP基因家族的全基因组鉴定及表达分析[J/OL]. 分子植物育种, 2023. http://kns.cnki.net/kcms/detail/46.1068.s.20230323.1345.009.html. |
Zhang XQ, Chen ZY, Chen L, et al. Genome wide identification and expression analysis of CsAP gene family in tea[J]. Mol Plant Breed, 2023. http://kns.cnki.net/kcms/detail/46.1068.s.20230323.1345.009.html. | |
[34] | 程相杰, 徐莉萍, 母小焕, 等. 玉米天冬氨酸蛋白酶基因家族的鉴定与表达分析[J]. 玉米科学, 2022, 30(1): 53-62. |
Cheng XJ, Xu LP, Mu XH, et al. Genome-wide identification and expression analysis of aspartic protease family in maize[J]. J Maize Sci, 2022, 30(1): 53-62. | |
[35] |
Innan H, Kondrashov F. The evolution of gene duplications: classifying and distinguishing between models[J]. Nat Rev Genet, 2010, 11(2): 97-108.
doi: 10.1038/nrg2689 pmid: 20051986 |
[36] | 宋伟彬, 赵海铭, 赖锦盛. 2020年度中国玉米生物学研究进展[J]. 玉米科学, 2021, 29(5): 1-14. |
Song WB, Zhao HM, Lai JS. Progress on the maize biology research of China in 2020[J]. J Maize Sci, 2021, 29(5): 1-14. | |
[37] |
Yang YL, Feng DS. Genome-wide identification of the aspartic protease gene family and their response under powdery mildew stress in wheat[J]. Mol Biol Rep, 2020, 47(11): 8949-8961.
doi: 10.1007/s11033-020-05948-9 pmid: 33136247 |
[38] |
Raimbault AK, Zuily-Fodil Y, Soler A, et al. A novel aspartic acid protease gene from pineapple fruit(Ananas comosus): cloning, characterization and relation to postharvest chilling stress resistance[J]. J Plant Physiol, 2013, 170(17): 1536-1540.
doi: 10.1016/j.jplph.2013.06.007 URL |
[39] |
Niu NN, Liang WQ, Yang XJ, et al. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice[J]. Nat Commun, 2013, 4: 1445.
doi: 10.1038/ncomms2396 pmid: 23385589 |
[40] |
Phan HA, Iacuone S, Li SF, et al. The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana[J]. Plant Cell, 2011, 23(6): 2209-2224.
doi: 10.1105/tpc.110.082651 URL |
[41] | 汤龙军, 李鹏程, 朱璐, 等. 天冬氨酸蛋白酶在拟南芥和水稻中的分子进化、表达模式以及在花药发育中的功能分析[J]. 植物生理学报, 2015, 51(3): 323-336. |
Tang LJ, Li PC, Zhu L, et al. Identification, evolutionary and expression profile analysis of the aspartic protease gene superfamily in Arabidopsis thaliana and rice[J]. Plant Physiol J, 2015, 51(3): 323-336. | |
[42] |
Huang JY, Zhao XB, Cheng K, et al. OsAP65, a rice aspartic protease, is essential for male fertility and plays a role in pollen germination and pollen tube growth[J]. J Exp Bot, 2013, 64(11): 3351-3360.
doi: 10.1093/jxb/ert173 pmid: 23918968 |
[43] |
Li N, Zhang DS, Liu HS, et al. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development[J]. Plant Cell, 2006, 18(11): 2999-3014.
doi: 10.1105/tpc.106.044107 pmid: 17138695 |
[44] |
Dawood MFA, Zaid A, Abdel Hamed Abdel Latef A. Salicylic acid spraying-induced resilience strategies against the damaging impacts of drought and/or salinity stress in two varieties of Vicia faba L. seedlings[J]. J Plant Growth Regul, 2022, 41(5): 1919-1942.
doi: 10.1007/s00344-021-10381-8 |
[45] |
Timotijević GS, Milisavljević MDj, Radović SR, et al. Ubiquitous aspartic proteinase as an actor in the stress response in buckwheat[J]. J Plant Physiol, 2010, 167(1): 61-68.
doi: 10.1016/j.jplph.2009.06.017 URL |
[46] |
Sebastián D, Fernando FD, Raúl DG, et al. Overexpression of Arabidopsis aspartic protease APA1 gene confers drought tolerance[J]. Plant Sci, 2020, 292: 110406.
doi: 10.1016/j.plantsci.2020.110406 URL |
[47] | 郭荣荣. 葡萄胚状体再生体系的建立及葡萄天冬氨酸蛋白酶家族基因功能研究[D]. 杨凌: 西北农林科技大学, 2015. |
Guo RR. The establishment of grape somatic embryo regeneration system and the functional study of aspartic proteases family gene in grape[D]. Yangling: Northwest A & F University, 2015. | |
[48] | 李倩. 水杨酸及其调控相关基因(SABP2、SAMT)在植物抗逆中的功能研究[D]. 天津: 天津大学, 2019. |
Li Q. Functional analysis of salicylic acid and its regulation-related genes(SABP2,SAMT)in plant stress tolerance[D]. Tianjin: Tianjin University, 2019. | |
[49] |
Shemi R, Wang R, Gheith ES MS, et al. Role of exogenous-applied salicylic acid, zinc and glycine betaine to improve drought-tolerance in wheat during reproductive growth stages[J]. BMC Plant Biol, 2021, 21(1): 574.
doi: 10.1186/s12870-021-03367-x pmid: 34872519 |
[50] | Siddique M, Qadir G, Gill S, et al. Bio-invigoration of rhizobacteria supplemented with exogenous salicylic acid and Glycine betaine enhanced drought tolerance in sunflower[J]. Int J Agric Biol, 2020, 23(5): 869-881. |
[1] | 陈晓, 于茗兰, 吴隆坤, 郑晓明, 逄洪波. 植物lncRNA及其对低温胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(7): 1-12. |
[2] | 韩华蕊, 杨宇琭, 门艺涵, 韩尚玲, 韩渊怀, 霍轶琼, 侯思宇. 基于代谢组学研究谷子SiYABBYs参与花发育过程中鼠李糖苷的生物合成[J]. 生物技术通报, 2023, 39(6): 189-198. |
[3] | 张路阳, 韩文龙, 徐晓雯, 姚健, 李芳芳, 田效园, 张智强. 烟草TCP基因家族的鉴定及表达分析[J]. 生物技术通报, 2023, 39(6): 248-258. |
[4] | 李敬蕊, 王育博, 解紫薇, 李畅, 吴晓蕾, 宫彬彬, 高洪波. 甜瓜PIN基因家族的鉴定及高温胁迫表达分析[J]. 生物技术通报, 2023, 39(5): 192-204. |
[5] | 郭三保, 宋美玲, 李灵心, 尧子钊, 桂明明, 黄胜和. 斑地锦查尔酮合酶基因及启动子的克隆与分析[J]. 生物技术通报, 2023, 39(4): 148-156. |
[6] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[7] | 杨岚, 张晨曦, 樊学伟, 王阳光, 王春秀, 李文婷. 鸡 BMP15 基因克隆、表达模式及启动子活性分析[J]. 生物技术通报, 2023, 39(4): 304-312. |
[8] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[9] | 陈强, 邹明康, 宋家敏, 张冲, 吴隆坤. 甜瓜LBD基因家族的鉴定和果实发育进程中的表达分析[J]. 生物技术通报, 2023, 39(3): 176-183. |
[10] | 平怀磊, 郭雪, 余潇, 宋静, 杜春, 王娟, 张怀璧. 滇牡丹PdANS的克隆、表达及与花青素含量的相关性[J]. 生物技术通报, 2023, 39(3): 206-217. |
[11] | 蒋路园, 丰美静, 杜雨晴, 邸葆, 陈段芬, 邱德有, 杨艳芳. 红豆杉低温半致死温度和低温胁迫下紫杉烷含量[J]. 生物技术通报, 2023, 39(3): 232-242. |
[12] | 张晓燕, 杨淑华, 丁杨林. 植物感知和传递低温信号的分子机制[J]. 生物技术通报, 2023, 39(11): 28-35. |
[13] | 陈楚怡, 杨小梅, 陈胜艳, 陈斌, 岳莉然. ABA和干旱胁迫下菊花脑ZF-HD基因家族的表达分析[J]. 生物技术通报, 2023, 39(11): 270-282. |
[14] | 毛可欣, 王海荣, 安淼, 刘腾飞, 王世金, 李健, 李国田. 中华猕猴桃GRAS基因家族鉴定及低温胁迫表达分析[J]. 生物技术通报, 2023, 39(11): 297-307. |
[15] | 尤垂淮, 谢津津, 张婷, 崔天真, 孙欣路, 臧守建, 武奕凝, 孙梦瑶, 阙友雄, 苏亚春. 钩吻脂氧合酶基因 GeLOX1 的鉴定及低温胁迫表达分析[J]. 生物技术通报, 2023, 39(11): 318-327. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||