生物技术通报 ›› 2024, Vol. 40 ›› Issue (1): 145-159.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0351
收稿日期:
2023-04-15
出版日期:
2024-01-26
发布日期:
2024-02-06
通讯作者:
李博岩,男,博士,副教授,研究方向:代谢组学及其应用;E-mail: boyan.li@gmc.edu.cn作者简介:
何诗瑜,女,硕士研究生,研究方向:代谢组学及其应用;E-mail: heshiyu0123@yeah.net
基金资助:
HE Shi-yu1(), ZENG Zhong-da2, LI Bo-yan1()
Received:
2023-04-15
Published:
2024-01-26
Online:
2024-02-06
摘要:
基于质谱成像技术发展而来的空间分辨代谢组学,能够直接对动植物组织或细胞中的代谢产物进行原位定性、定量,以及借力图像整体或局部特征对代谢物进行结构、含量、时空动态变化及其空间分布定位分析,识别潜在可靠的生物标志物。该技术具有高灵敏度、高分辨率、高可视化性以及无需标记等优点,已被越来越广泛地运用在临床疾病诊断与研究中。本文主要总结了近年来空间分辨代谢组学的技术发展,阐述其在肿瘤、神经精神疾病、糖尿病等疾病中的应用进展,旨在为空间分辨代谢组学在疾病诊断中的应用提供借鉴和参考。
何诗瑜, 曾仲大, 李博岩. 空间分辨代谢组学在疾病诊断研究中的应用进展[J]. 生物技术通报, 2024, 40(1): 145-159.
HE Shi-yu, ZENG Zhong-da, LI Bo-yan. Application Progress of Spatially Resolved Metabolomics in Disease Diagnosis Research[J]. Biotechnology Bulletin, 2024, 40(1): 145-159.
检测方法 Detection method | NMR | GC-MS | LC-MS | MSI |
---|---|---|---|---|
灵敏度 | 一般 | 较高 | 高 | 高 |
分辨率 | 较高 | 较高 | 高 | 高,可达μm级 |
重现性 | 好 | 较好 | 较好 | 好 |
样品前处理方式 | 较简单,无需衍生化 | 繁琐,样品需做衍生化处理 | 简单 | 简单,样品无需衍生化且无需标记 |
适用范围 | 分子物质,可检测糖类、氨基酸类等含氢水溶性小分子 | 分子物质,可检测极性小的易挥发、可衍生化且不易降解的含活性氢基团物质 | 分子物质,可检测极性大的化合物,或不稳定、难挥发、难衍生化的物质 | 组织、单细胞均可 |
表1 常用代谢组学检测方法
Table 1 Typical metabonomic detection methods
检测方法 Detection method | NMR | GC-MS | LC-MS | MSI |
---|---|---|---|---|
灵敏度 | 一般 | 较高 | 高 | 高 |
分辨率 | 较高 | 较高 | 高 | 高,可达μm级 |
重现性 | 好 | 较好 | 较好 | 好 |
样品前处理方式 | 较简单,无需衍生化 | 繁琐,样品需做衍生化处理 | 简单 | 简单,样品无需衍生化且无需标记 |
适用范围 | 分子物质,可检测糖类、氨基酸类等含氢水溶性小分子 | 分子物质,可检测极性小的易挥发、可衍生化且不易降解的含活性氢基团物质 | 分子物质,可检测极性大的化合物,或不稳定、难挥发、难衍生化的物质 | 组织、单细胞均可 |
类别 Item | MALDI-MSI | SIMS imaging | LAESI-MSI | DESI-MSI |
---|---|---|---|---|
离子源 | MALDI | SIMS | LAESI | DESI |
电离类型 | 软 | 静态:软 动态:硬 | 软 | 软 |
空间分辨率 | 最低可至1.4,多数 5-100 | 静态:0.1-10 动态:0.01-1 | 2.4-200 | 最低可至10-20,多数50-200 |
样品制备 | 需要 | 需要 | 无需 | 几乎无需 |
质量范围/Da | 300-100 000 | 静态:1-3 000 动态:1-250 | 1-5 000 | 100-10 000 |
扫描深度/μm | 0.1-20 | 0.5-10 | 0.1-50 | 1-500 |
检测限 | amol-fmol | fmol-pmol | fmol-pmol | fmol-pmol |
适用范围 | 代谢物、脂类、多聚糖、多肽、蛋白质、核酸 | 元素、代谢物、脂类 | 代谢物、脂类、多肽、含水量大的样本 | 代谢物、脂类、多肽 |
定量能力 | 可行 | 静态:困难 动态:可行 | 可行 | 可行 |
工作环境 | 常压/真空 | 真空 | 常压 | 常压 |
表2 常用质谱成像技术
Table 2 Typical mass spectrometry imaging techniques
类别 Item | MALDI-MSI | SIMS imaging | LAESI-MSI | DESI-MSI |
---|---|---|---|---|
离子源 | MALDI | SIMS | LAESI | DESI |
电离类型 | 软 | 静态:软 动态:硬 | 软 | 软 |
空间分辨率 | 最低可至1.4,多数 5-100 | 静态:0.1-10 动态:0.01-1 | 2.4-200 | 最低可至10-20,多数50-200 |
样品制备 | 需要 | 需要 | 无需 | 几乎无需 |
质量范围/Da | 300-100 000 | 静态:1-3 000 动态:1-250 | 1-5 000 | 100-10 000 |
扫描深度/μm | 0.1-20 | 0.5-10 | 0.1-50 | 1-500 |
检测限 | amol-fmol | fmol-pmol | fmol-pmol | fmol-pmol |
适用范围 | 代谢物、脂类、多聚糖、多肽、蛋白质、核酸 | 元素、代谢物、脂类 | 代谢物、脂类、多肽、含水量大的样本 | 代谢物、脂类、多肽 |
定量能力 | 可行 | 静态:困难 动态:可行 | 可行 | 可行 |
工作环境 | 常压/真空 | 真空 | 常压 | 常压 |
疾病类型 Disease type | 研究对象 Research object | 研究技术与方法 Research techniques and methods | 关键代谢物 Key metabolite | 参与途径 Ways of participation | 文献 Reference |
---|---|---|---|---|---|
肿瘤 | 前列腺癌 | MALDI-MSI、DESI-MSI | 丝裂原活化蛋白激酶/细胞外信号调节激酶、硫酸胆固醇、磷脂酰肌醇和胆绿素还原酶B,多种磷脂类丰度增加,柠檬酸盐水平显著下降 | Mitogen-activated protein kinase(MAPK), Phosphatidylinositol 3-kinase(PI3K)代谢通路 | [ |
乳腺癌 | MALDI-MSI、DESI-MSI | L-肉碱和短链酰基肉碱,肉碱棕榈酰转移酶1A、肉碱/酰基肉碱转移酶和肉碱棕榈酰转移酶2,脂肪酸和磷脂组成明显变化 | 脂肪酸β-氧化途径 | [ | |
膀胱癌 | 红外基质辅助激光解吸电喷雾电离质谱成像IR-MALDESI MSI | 游离脂肪酸显著增加,肌醇磷脂、磷脂酸聚集 | 脂质代谢 | [ | |
结直肠癌 | AFADESI-MSI、MALDI-MSI、DESI-MSI | N,O-双-(三甲基甲硅烷基)苯丙氨酸丰度上调,长链脂肪酸、极长链脂肪酸和多种氧化磷脂增加 | 脂质代谢 | [ | |
胃癌 | 液体提取-电声喷雾电离-傅里叶变换离子回旋共振质谱成像LE-ESSI MSI FTICR-MSI、MALDI-MSI、DESI-MSI | 血清磷脂酰胆碱(32:0)、磷脂酰胆碱(34:3) | 胆碱代谢 | [ | |
肝细胞癌 | AFADESI-MSI | 有机酸及其衍生物丰度上调,不同微区存在差异代谢物 | 氨基酸代谢(β-丙氨酸代谢、精氨酸和脯氨酸代谢),胆碱代谢,甘油磷脂代谢 | [ | |
非小细胞肺癌 | 2D-imaging MSI | 鞘磷脂和多种磷脂酰丝氨酸减少,以及磷脂酰乙醇胺和磷脂酰胆碱种类增加 | 磷脂谱代谢差异 | [ | |
甲状腺癌 | 2D DESI-MSI | 神经酰胺和甘油磷酸肌醇相对丰度上调 | 脂质代谢 | [ | |
口腔鳞状细胞癌 | DESI-MSI | 14种特征脂质代谢物 | 脂质代谢 | [ | |
神经精神疾病 | 阿尔茨海默病 | TOF-SIMS imaging、MALDI-MSI | 硫苷脂丰度下调,腺嘌呤和腺嘌呤核糖核酸浓度显著下降,溶血磷脂酰肌醇以及花生四烯酸缀合的磷脂酰肌醇显示出在Aβ斑块特异性定位 | 嘌呤代谢途径,脂质与β淀粉样蛋白(Aβ)肽异常沉积驱动阿尔茨海默病发生 发展的机制 | [ |
癫痫 | DESI-MSI | 磷脂酰胆碱和磷脂酰乙醇胺表达减少 | Kennedy代谢途径 | [ | |
中风 | MALDI-MSI | 谷氨酸、N-乙酰天冬氨酸呈差异性变化 | 氨基酸代谢 | [ | |
精神分裂症 | DESI-MSI | 磷脂酰胆碱水平降低 | 胆碱代谢 | [ | |
创伤性脑损伤 | MALDI-MSI | 酰基肉碱代谢差异 | 脂肪酸代谢 | [ | |
糖尿病及其并发症 | 糖尿病 | MALDI-MSI、 Nano-DESI-MSI | 肾小球三磷酸腺苷与单磷酸腺苷(ATP/AMP)的比例增加,且鞘磷脂(d18:1/16:0)在糖尿病大鼠中累积、酰基肉碱在肾组织中明显增加 | 鞘脂代谢 | [ |
糖尿病肾病 | 液体萃取表面分析质谱成像LESA-MSI、AFADESI-MSI、MALDI-MSI | 多种脂肪酸、磷脂类代谢物有明显差异性改变且改变具有区域特异性,肉碱类和胆碱类代谢物也发生表达差异 | 亚油酸代谢、花生四烯酸代谢、α-亚麻酸代谢、甘油磷脂代谢和三羧酸循环(TCA) | [ | |
糖尿病脑病 | AFADESI-MSI | 脂肪醛(Fals)在DE大鼠脑中区域性特异性分布并且在大脑皮层、海马体和杏仁核中富集,脑区域特异性发生脂代谢紊乱,线粒体代谢功能障碍 | 糖酵解和戊糖磷酸途径(PPP) | [ | |
其他 | 乙肝 | MALDI-MSI | 磷脂酰胆碱显著减少 | 胆碱代谢 | [ |
传染病 | MALDI-MSI | 脂质A、肉毒素(SAP1)、前列腺素E2(PGE2)代谢异常 | 脂肪酸代谢 | [ | |
动脉粥样硬化 | DESI-MSI、MALDI-MSI | 鞘磷脂和氧化胆固醇酯丰度上调 | 坏死性凋亡、鞘脂信号通路和甘油磷脂代谢 | [ | |
视网膜病变 | MALDI-MSI | 磷脂酰乙醇胺在病变部位丰度下调,鞘氨醇髓鞘则更丰富 | 氨基酸代谢 | [ | |
心力衰竭 | TOF-SIMS imaging | 存在差异代谢谱,细胞中代谢差异体现在溶血磷脂酸、PI、PE | 脂质代谢 | [ |
表3 空间分辨代谢组学在疾病诊断中的应用
Table 3 Applications of spatially resolved metabolomics in disease diagnosis
疾病类型 Disease type | 研究对象 Research object | 研究技术与方法 Research techniques and methods | 关键代谢物 Key metabolite | 参与途径 Ways of participation | 文献 Reference |
---|---|---|---|---|---|
肿瘤 | 前列腺癌 | MALDI-MSI、DESI-MSI | 丝裂原活化蛋白激酶/细胞外信号调节激酶、硫酸胆固醇、磷脂酰肌醇和胆绿素还原酶B,多种磷脂类丰度增加,柠檬酸盐水平显著下降 | Mitogen-activated protein kinase(MAPK), Phosphatidylinositol 3-kinase(PI3K)代谢通路 | [ |
乳腺癌 | MALDI-MSI、DESI-MSI | L-肉碱和短链酰基肉碱,肉碱棕榈酰转移酶1A、肉碱/酰基肉碱转移酶和肉碱棕榈酰转移酶2,脂肪酸和磷脂组成明显变化 | 脂肪酸β-氧化途径 | [ | |
膀胱癌 | 红外基质辅助激光解吸电喷雾电离质谱成像IR-MALDESI MSI | 游离脂肪酸显著增加,肌醇磷脂、磷脂酸聚集 | 脂质代谢 | [ | |
结直肠癌 | AFADESI-MSI、MALDI-MSI、DESI-MSI | N,O-双-(三甲基甲硅烷基)苯丙氨酸丰度上调,长链脂肪酸、极长链脂肪酸和多种氧化磷脂增加 | 脂质代谢 | [ | |
胃癌 | 液体提取-电声喷雾电离-傅里叶变换离子回旋共振质谱成像LE-ESSI MSI FTICR-MSI、MALDI-MSI、DESI-MSI | 血清磷脂酰胆碱(32:0)、磷脂酰胆碱(34:3) | 胆碱代谢 | [ | |
肝细胞癌 | AFADESI-MSI | 有机酸及其衍生物丰度上调,不同微区存在差异代谢物 | 氨基酸代谢(β-丙氨酸代谢、精氨酸和脯氨酸代谢),胆碱代谢,甘油磷脂代谢 | [ | |
非小细胞肺癌 | 2D-imaging MSI | 鞘磷脂和多种磷脂酰丝氨酸减少,以及磷脂酰乙醇胺和磷脂酰胆碱种类增加 | 磷脂谱代谢差异 | [ | |
甲状腺癌 | 2D DESI-MSI | 神经酰胺和甘油磷酸肌醇相对丰度上调 | 脂质代谢 | [ | |
口腔鳞状细胞癌 | DESI-MSI | 14种特征脂质代谢物 | 脂质代谢 | [ | |
神经精神疾病 | 阿尔茨海默病 | TOF-SIMS imaging、MALDI-MSI | 硫苷脂丰度下调,腺嘌呤和腺嘌呤核糖核酸浓度显著下降,溶血磷脂酰肌醇以及花生四烯酸缀合的磷脂酰肌醇显示出在Aβ斑块特异性定位 | 嘌呤代谢途径,脂质与β淀粉样蛋白(Aβ)肽异常沉积驱动阿尔茨海默病发生 发展的机制 | [ |
癫痫 | DESI-MSI | 磷脂酰胆碱和磷脂酰乙醇胺表达减少 | Kennedy代谢途径 | [ | |
中风 | MALDI-MSI | 谷氨酸、N-乙酰天冬氨酸呈差异性变化 | 氨基酸代谢 | [ | |
精神分裂症 | DESI-MSI | 磷脂酰胆碱水平降低 | 胆碱代谢 | [ | |
创伤性脑损伤 | MALDI-MSI | 酰基肉碱代谢差异 | 脂肪酸代谢 | [ | |
糖尿病及其并发症 | 糖尿病 | MALDI-MSI、 Nano-DESI-MSI | 肾小球三磷酸腺苷与单磷酸腺苷(ATP/AMP)的比例增加,且鞘磷脂(d18:1/16:0)在糖尿病大鼠中累积、酰基肉碱在肾组织中明显增加 | 鞘脂代谢 | [ |
糖尿病肾病 | 液体萃取表面分析质谱成像LESA-MSI、AFADESI-MSI、MALDI-MSI | 多种脂肪酸、磷脂类代谢物有明显差异性改变且改变具有区域特异性,肉碱类和胆碱类代谢物也发生表达差异 | 亚油酸代谢、花生四烯酸代谢、α-亚麻酸代谢、甘油磷脂代谢和三羧酸循环(TCA) | [ | |
糖尿病脑病 | AFADESI-MSI | 脂肪醛(Fals)在DE大鼠脑中区域性特异性分布并且在大脑皮层、海马体和杏仁核中富集,脑区域特异性发生脂代谢紊乱,线粒体代谢功能障碍 | 糖酵解和戊糖磷酸途径(PPP) | [ | |
其他 | 乙肝 | MALDI-MSI | 磷脂酰胆碱显著减少 | 胆碱代谢 | [ |
传染病 | MALDI-MSI | 脂质A、肉毒素(SAP1)、前列腺素E2(PGE2)代谢异常 | 脂肪酸代谢 | [ | |
动脉粥样硬化 | DESI-MSI、MALDI-MSI | 鞘磷脂和氧化胆固醇酯丰度上调 | 坏死性凋亡、鞘脂信号通路和甘油磷脂代谢 | [ | |
视网膜病变 | MALDI-MSI | 磷脂酰乙醇胺在病变部位丰度下调,鞘氨醇髓鞘则更丰富 | 氨基酸代谢 | [ | |
心力衰竭 | TOF-SIMS imaging | 存在差异代谢谱,细胞中代谢差异体现在溶血磷脂酸、PI、PE | 脂质代谢 | [ |
[1] |
Peng B, Li H, Peng XX. Functional metabolomics: from biomarker discovery to metabolome reprogramming[J]. Protein Cell, 2015, 6(9): 628-637.
doi: 10.1007/s13238-015-0185-x pmid: 26135925 |
[2] | Sumner LW, Yang DS, Bench BJ, et al. Spatially resolved plant metabolomics[M]//Annual Plant Reviews Volume 43. Oxford, UK: Wiley-Blackwell, 2011: 343-366. |
[3] |
Gao SQ, Zhao JH, Guan Y, et al. Mass spectrometry imaging technology in metabolomics: a systematic review[J]. Biomed Chromatogr, 2023, 37(7): e5494.
doi: 10.1002/bmc.v37.7 URL |
[4] |
Laíns I, Gantner M, Murinello S, et al. Metabolomics in the study of retinal health and disease[J]. Prog Retin Eye Res, 2019, 69: 57-79.
doi: S1350-9462(18)30021-1 pmid: 30423446 |
[5] |
Ma SY, Leng YX, Li XP, et al. High spatial resolution mass spectrometry imaging for spatial metabolomics: advances, challenges, and future perspectives[J]. Trend Anal Chem, 2023, 159: 116902.
doi: 10.1016/j.trac.2022.116902 URL |
[6] |
Beccaria M, Cabooter D. Current developments in LC-MS for pharmaceutical analysis[J]. Analyst, 2020, 145(4): 1129-1157.
doi: 10.1039/c9an02145k pmid: 31971527 |
[7] |
Cui L, Lu HT, Lee YH. Challenges and emergent solutions for LC-MS/MS based untargeted metabolomics in diseases[J]. Mass Spectrom Rev, 2018, 37(6): 772-792.
doi: 10.1002/mas.21562 pmid: 29486047 |
[8] | Watson BS, Urbanczyk-Wochniak E, Lei Z, et al. Spatially resolved metabolomics and proteomics of Medicago truncatula border cells and root tips[C]. Joint Annual Meeting of the American-Fern-Society/American-Society-of-Plant-Biologists/American-Society-of-Plant-Taxonomists/Botanical-Society-of-America, 2007: 78. |
[9] |
Lee YJ, Perdian DC, Song ZH, et al. Use of mass spectrometry for imaging metabolites in plants[J]. Plant J, 2012, 70(1): 81-95.
doi: 10.1111/tpj.2012.70.issue-1 URL |
[10] |
Taylor MJ, Lukowski JK, Anderton CR. Spatially resolved mass spectrometry at the single cell: recent innovations in proteomics and metabolomics[J]. J Am Soc Mass Spectrom, 2021, 32(4): 872-894.
doi: 10.1021/jasms.0c00439 URL |
[11] |
Sun CL, Li TG, Song XW, et al. Spatially resolved metabolomics to discover tumor-associated metabolic alterations[J]. Proc Natl Acad Sci USA, 2019, 116(1): 52-57.
doi: 10.1073/pnas.1808950116 pmid: 30559182 |
[12] |
Fox BW, Schroeder FC. Toward spatially resolved metabolomics[J]. Nat Chem Biol, 2020, 16(10): 1039-1040.
doi: 10.1038/s41589-020-00650-0 pmid: 32943790 |
[13] |
Zang QC, Sun CL, Chu XP, et al. Spatially resolved metabolomics combined with multicellular tumor spheroids to discover cancer tissue relevant metabolic signatures[J]. Anal Chim Acta, 2021, 1155: 338342.
doi: 10.1016/j.aca.2021.338342 URL |
[14] |
Chen F, Dai XD, Zhou CC, et al. Integrated analysis of the faecal metagenome and serum metabolome reveals the role of gut microbiome-associated metabolites in the detection of colorectal cancer and adenoma[J]. Gut, 2022, 71(7): 1315-1325.
doi: 10.1136/gutjnl-2020-323476 URL |
[15] |
Santoro AL, Drummond RD, Silva IT, et al. In situ DESI-MSI lipidomic profiles of breast cancer molecular subtypes and precursor lesions[J]. Cancer Res, 2020, 80(6): 1246-1257.
doi: 10.1158/0008-5472.CAN-18-3574 URL |
[16] |
Andersen MK, Høiem TS, Claes BSR, et al. Spatial differentiation of metabolism in prostate cancer tissue by MALDI-TOF MSI[J]. Cancer Metab, 2021, 9(1): 9.
doi: 10.1186/s40170-021-00242-z pmid: 33514438 |
[17] |
Shen J, Sun N, Zens P, et al. Spatial metabolomics for evaluating response to neoadjuvant therapy in non-small cell lung cancer patients[J]. Cancer Commun, 2022, 42(6): 517-535.
doi: 10.1002/cac2.v42.6 URL |
[18] |
Wang ZH, Fu WQ, Huo ML, et al. Spatial-resolved metabolomics reveals tissue-specific metabolic reprogramming in diabetic nephropathy by using mass spectrometry imaging[J]. Acta Pharm Sin B, 2021, 11(11): 3665-3677.
doi: 10.1016/j.apsb.2021.05.013 pmid: 34900545 |
[19] |
Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica, 1999, 29(11): 1181-1189.
doi: 10.1080/004982599238047 pmid: 10598751 |
[20] |
Bujak R, Struck-Lewicka W, Markuszewski MJ, et al. Metabolomics for laboratory diagnostics[J]. J Pharm Biomed Anal, 2015, 113: 108-120.
doi: 10.1016/j.jpba.2014.12.017 pmid: 25577715 |
[21] |
Giera M, Dos Santos FB, Siuzdak G. Metabolite-induced protein expression guided by metabolomics and systems biology[J]. Cell Metab, 2018, 27(2): 270-272.
doi: S1550-4131(18)30051-2 pmid: 29414681 |
[22] |
Azad RK, Shulaev V. Metabolomics technology and bioinformatics for precision medicine[J]. Brief Bioinform, 2019, 20(6): 1957-1971.
doi: 10.1093/bib/bbx170 pmid: 29304189 |
[23] |
Brindle JT, Antti H, Holmes E, et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics[J]. Nat Med, 2002, 8(12): 1439-1444.
doi: 10.1038/nm1202-802 pmid: 12447357 |
[24] |
Denkert C, Budczies J, Weichert W, et al. Metabolite profiling of human colon carcinoma—deregulation of TCA cycle and amino acid turnover[J]. Mol Cancer, 2008, 7: 72.
doi: 10.1186/1476-4598-7-72 URL |
[25] |
Sreekumar A, Poisson LM, Rajendiran TM, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression[J]. Nature, 2009, 457(7231): 910-914.
doi: 10.1038/nature07762 |
[26] |
Porta Siegel T, Ellis SR. Mass spectrometry imaging 2.0[J]. Anal Bioanal Chem, 2021, 413(10): 2597-2598.
doi: 10.1007/s00216-021-03293-9 pmid: 33758987 |
[27] |
He MJ, Pu WJ, Wang X, et al. Comparing DESI-MSI and MALDI-MSI mediated spatial metabolomics and their applications in cancer studies[J]. Front Oncol, 2022, 12: 891018.
doi: 10.3389/fonc.2022.891018 URL |
[28] | 郭帅. 质谱成像原位探究肿瘤相关代谢物谱[D]. 北京: 北京协和医学院, 2015. |
Guo S. In-situ exploration of tumor-related metabolites by mass spectrometry imaging[D]. Beijing: Peking Union Medical College, 2015. | |
[29] | 金涛, 潘本松, 聂洪港. 基质辅助激光解吸电离-质谱成像技术(MALDI-MSI)及其在脑神经性疾病研究中的应用[J]. 计量科学与技术, 2022, 66(3): 3-22. |
Jin T, Pan BS, Nie HG. Matrix-assisted laser desorption/ionization mass spectrometry imaging and its application in the study of brain neurological disease[J]. Metrol Sci Technol, 2022, 66(3): 3-22. | |
[30] |
Kompauer M, Heiles S, Spengler B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution[J]. Nat Methods, 2017, 14(1): 90-96.
doi: 10.1038/nmeth.4071 pmid: 27842060 |
[31] |
He Q, Sun CR, Liu J, et al. MALDI-MSI analysis of cancer drugs: significance, advances, and applications[J]. Trend Anal Chem, 2021, 136: 116183.
doi: 10.1016/j.trac.2021.116183 URL |
[32] |
Kulkarni P, Wilschut RA, Verhoeven KJF, et al. LAESI mass spectrometry imaging as a tool to differentiate the root metabolome of native and range-expanding plant species[J]. Planta, 2018, 248(6): 1515-1523.
doi: 10.1007/s00425-018-2989-4 pmid: 30140978 |
[33] |
Sämfors S, Fletcher JS. Lipid diversity in cells and tissue using imaging SIMS[J]. Annu Rev Anal Chem, 2020, 13(1): 249-271.
doi: 10.1146/anchem.2020.13.issue-1 URL |
[34] |
Vickerman JC. Molecular imaging and depth profiling by mass spectrometry—SIMS, MALDI or DESI?[J]. Analyst, 2011, 136(11): 2199-2217.
doi: 10.1039/c1an00008j pmid: 21461433 |
[35] |
He JM, Tang F, Luo ZG, et al. Air flow assisted ionization for remote sampling of ambient mass spectrometry and its application[J]. Rapid Commun Mass Spectrom, 2011, 25(7): 843-850.
doi: 10.1002/rcm.v25.7 URL |
[36] |
He JM, Sun CL, Li TG, et al. A sensitive and wide coverage ambient mass spectrometry imaging method for functional metabolites based molecular histology[J]. Adv Sci, 2018, 5(11): 1800250.
doi: 10.1002/advs.v5.11 URL |
[37] |
Vandereyken K, Sifrim A, Thienpont B, et al. Methods and applications for single-cell and spatial multi-omics[J]. Nat Rev Genet, 2023, 24(8): 494-515.
doi: 10.1038/s41576-023-00580-2 pmid: 36864178 |
[38] |
Alexandrov T. Spatial metabolomics and imaging mass spectrometry in the age of artificial intelligence[J]. Annu Rev Biomed Data Sci, 2020, 3: 61-87.
doi: 10.1146/annurev-biodatasci-011420-031537 pmid: 34056560 |
[39] |
Shariatgorji R, Nilsson A, Fridjonsdottir E, et al. Spatial visualization of comprehensive brain neurotransmitter systems and neuroactive substances by selective in situ chemical derivatization mass spectrometry imaging[J]. Nat Protoc, 2021, 16(7): 3298-3321.
doi: 10.1038/s41596-021-00538-w pmid: 34075230 |
[40] |
Huang LJ, Mao XX, Sun CL, et al. A graphical data processing pipeline for mass spectrometry imaging-based spatially resolved metabolomics on tumor heterogeneity[J]. Anal Chim Acta, 2019, 1077: 183-190.
doi: S0003-2670(19)30683-X pmid: 31307708 |
[41] |
Sun CL, Wang FK, Zhang Y, et al. Mass spectrometry imaging-based metabolomics to visualize the spatially resolved reprogramming of carnitine metabolism in breast cancer[J]. Theranostics, 2020, 10(16): 7070-7082.
doi: 10.7150/thno.45543 pmid: 32641979 |
[42] |
Butler LM, Perone Y, Dehairs J, et al. Lipids and cancer: emerging roles in pathogenesis, diagnosis and therapeutic intervention[J]. Adv Drug Deliv Rev, 2020, 159: 245-293.
doi: 10.1016/j.addr.2020.07.013 URL |
[43] | Ma X, Fernández FM. Advances in mass spectrometry imaging for spatial cancer metabolomics[J]. Mass Spectrom Rev, 2022: e21804. |
[44] |
Eberlin LS, Margulis K, Planell-Mendez I, et al. Pancreatic cancer surgical resection margins: molecular assessment by mass spectrometry imaging[J]. PLoS Med, 2016, 13(8): e1002108.
doi: 10.1371/journal.pmed.1002108 URL |
[45] |
Qi KK, Lv YM, Ren Y, et al. Cholesterol was identified as a biomarker in human melanocytic nevi using DESI and DESI/PI mass spectrometry imaging[J]. Talanta, 2021, 231: 122380.
doi: 10.1016/j.talanta.2021.122380 URL |
[46] |
Drake RR, McDowell C, West C, et al. Defining the human kidney N-glycome in normal and cancer tissues using MALDI imaging mass spectrometry[J]. J Mass Spectrom, 2020, 55(4): e4490.
doi: 10.1002/jms.v55.4 URL |
[47] |
Bourgognon JM, Steinert JR. The metabolome identity: basis for discovery of biomarkers in neurodegeneration[J]. Neural Regen Res, 2019, 14(3): 387-390.
doi: 10.4103/1673-5374.245464 URL |
[48] |
Yon M, Decoville M, Sarou-Kanian V, et al. Spatially-resolved metabolic profiling of living Drosophila in neurodegenerative conditions using 1H magic angle spinning NMR[J]. Sci Rep, 2020, 10(1): 9516.
doi: 10.1038/s41598-020-66218-z |
[49] |
Pang XC, Gao SS, Ga M, et al. Mapping metabolic networks in the brain by ambient mass spectrometry imaging and metabolomics[J]. Anal Chem, 2021, 93(17): 6746-6754.
doi: 10.1021/acs.analchem.1c00467 URL |
[50] |
Wang XQ, Yang XL, Hou ZH, et al. Whole-brain mapping of metabolic alterations in a mouse model of Alzheimer's disease by desorption electrospray ionization mass spectrometry imaging[J]. Talanta, 2023, 253: 124046.
doi: 10.1016/j.talanta.2022.124046 URL |
[51] | Seneviratne HK, Wheeler A, Eberhard C, et al. Revealing sex and Alzheimer's disease-related changes in the spatial localization of brain lipids in mice using mass spectrometry imaging[J]. FASEBJ, 2022, 36(S1). DOI: 10.1096/fasebj.2022.36.S1.R4131. |
[52] |
Ajith A, Mondal S, Chattopadhyay S, et al. Mass spectrometry imaging deciphers dysregulated lipid metabolism in the human hippocampus affected by temporal lobe epilepsy[J]. ACS Chem Neurosci, 2021, 12(21): 4187-4194.
doi: 10.1021/acschemneuro.1c00587 URL |
[53] |
Bergholt MS, Serio A, McKenzie JS, et al. Correlated heterospectral lipidomics for biomolecular profiling of remyelination in multiple sclerosis[J]. ACS Cent Sci, 2018, 4(1): 39-51.
doi: 10.1021/acscentsci.7b00367 URL |
[54] |
Vendramini PH, Gattaz WF, Schmitt A, et al. Pioneering ambient mass spectrometry imaging in psychiatry: potential for new insights into schizophrenia[J]. Schizophr Res, 2016, 177(1/2/3): 67-69.
doi: 10.1016/j.schres.2015.10.019 URL |
[55] |
Mouchlianitis E, McCutcheon R, Howes OD. Brain-imaging studies of treatment-resistant schizophrenia: a systematic review[J]. Lancet Psychiatry, 2016, 3(5): 451-463.
doi: 10.1016/S2215-0366(15)00540-4 pmid: 26948188 |
[56] |
Zheng HL, Sang YQ, Houk KN, et al. Mechanism and origins of enantioselectivities in spirobiindane-based hypervalent iodine(III)-induced asymmetric dearomatizing spirolactonizations[J]. J Am Chem Soc, 2019, 141(40): 16046-16056.
doi: 10.1021/jacs.9b08243 pmid: 31514501 |
[57] |
Bergman HM, Lindfors L, Palm F, et al. Metabolite aberrations in early diabetes detected in rat kidney using mass spectrometry imaging[J]. Anal Bioanal Chem, 2019, 411(13): 2809-2816.
doi: 10.1007/s00216-019-01721-5 |
[58] |
Miyamoto S, Hsu CC, Hamm G, et al. Mass spectrometry imaging reveals elevated glomerular ATP/AMP in diabetes/obesity and identifies sphingomyelin as a possible mediator[J]. eBioMedicine, 2016, 7: 121-134.
doi: 10.1016/j.ebiom.2016.03.033 pmid: 27322466 |
[59] |
Zhang X, Liu YH, Yang S, et al. Comparison of local metabolic changes in diabetic rodent kidneys using mass spectrometry imaging[J]. Metabolites, 2023, 13(3): 324.
doi: 10.3390/metabo13030324 URL |
[60] |
Huo ML, Wang ZH, Fu WQ, et al. Spatially resolved metabolomics based on air-flow-assisted desorption electrospray ionization-mass spectrometry imaging reveals region-specific metabolic alterations in diabetic encephalopathy[J]. J Proteome Res, 2021, 20(7): 3567-3579.
doi: 10.1021/acs.jproteome.1c00179 URL |
[61] |
Meng XY, Liu YH, Huo ML, et al. Mapping of fatty aldehydes in the diabetic rat brain using on-tissue chemical derivatization and air-flow-assisted desorption electrospray ionization-mass spectrometry imaging[J]. J Proteome Res, 2023, 22(1): 36-46.
doi: 10.1021/acs.jproteome.2c00445 pmid: 36564034 |
[62] |
Tans R, Dey S, Dey NS, et al. Spatially resolved immunometabolism to understand infectious disease progression[J]. Front Microbiol, 2021, 12: 709728.
doi: 10.3389/fmicb.2021.709728 URL |
[63] |
Fincher JA, Jones DR, Korte AR, et al. Mass spectrometry imaging of lipids in human skin disease model hidradenitis suppurativa by laser desorption ionization from silicon nanopost arrays[J]. Sci Rep, 2019, 9(1): 17508.
doi: 10.1038/s41598-019-53938-0 pmid: 31767918 |
[64] |
Park ES, Lee JH, Hong JH, et al. Phosphatidylcholine alteration identified using MALDI imaging MS in HBV-infected mouse livers and virus-mediated regeneration defects[J]. PLoS One, 2014, 9(8): e103955.
doi: 10.1371/journal.pone.0103955 URL |
[65] |
Ciurli A, Liebl M, Derks RJE, et al. Spatially resolved sampling for untargeted metabolomics: a new tool for salivomics[J]. iScience, 2021, 24(7): 102768.
doi: 10.1016/j.isci.2021.102768 URL |
[66] |
Mutuku SM, Spotbeen X, Trim PJ, et al. Unravelling prostate cancer heterogeneity using spatial approaches to lipidomics and transcriptomics[J]. Cancers, 2022, 14(7): 1702.
doi: 10.3390/cancers14071702 URL |
[67] |
Young RSE, Claes BSR, Bowman AP, et al. Isomer-resolved imaging of prostate cancer tissues reveals specific lipid unsaturation profiles associated with lymphocytes and abnormal prostate epithelia[J]. Front Endocrinol, 2021, 12: 689600.
doi: 10.3389/fendo.2021.689600 URL |
[68] | Zhang MT, Zhang YL, Wang HJ, et al. Mass spectrometry imaging technology and its application in breast cancer research[J]. Se Pu, 2021, 39(6): 578-587. |
[69] |
Gonçalves JPL, Bollwein C, Noske A, et al. Characterization of hormone receptor and HER2 status in breast cancer using mass spectrometry imaging[J]. Int J Mol Sci, 2023, 24(3): 2860.
doi: 10.3390/ijms24032860 URL |
[70] |
Tu AQ, Said N, Muddiman DC. Spatially resolved metabolomic characterization of muscle invasive bladder cancer by mass spectrometry imaging[J]. Metabolomics, 2021, 17(8): 70.
doi: 10.1007/s11306-021-01819-x pmid: 34287708 |
[71] |
Kaufmann M, Iaboni N, Jamzad A, et al. Metabolically active zones involving fatty acid elongation delineated by DESI-MSI correlate with pathological and prognostic features of colorectal cancer[J]. Metabolites, 2023, 13(4): 508.
doi: 10.3390/metabo13040508 URL |
[72] |
Zou L, Wang LL, Guo L, et al. Small molecules as potential biomarkers of early gastric cancer: a mass spectrometry imaging approach[J]. Clin Chim Acta, 2022, 534: 35-42.
doi: 10.1016/j.cca.2022.06.032 pmid: 35810803 |
[73] |
Sun CL, Wang AQ, Zhou YH, et al. Spatially resolved multi-omics highlights cell-specific metabolic remodeling and interactions in gastric cancer[J]. Nat Commun, 2023, 14(1): 2692.
doi: 10.1038/s41467-023-38360-5 pmid: 37164975 |
[74] |
He MJ, Pu WJ, Wang X, et al. Spatial metabolomics on liver cirrhosis to hepatocellular carcinoma progression[J]. Cancer Cell Int, 2022, 22(1): 366.
doi: 10.1186/s12935-022-02775-9 pmid: 36419080 |
[75] |
Martini T, Naef F, Tchorz JS. Spatiotemporal metabolic liver zonation and consequences on pathophysiology[J]. Annu Rev Pathol, 2023, 18: 439-466.
doi: 10.1146/annurev-pathmechdis-031521-024831 pmid: 36693201 |
[76] |
Neumann JM, Freitag H, Hartmann JS, et al. Subtyping non-small cell lung cancer by histology-guided spatial metabolomics[J]. J Cancer Res Clin Oncol, 2022, 148(2): 351-360.
doi: 10.1007/s00432-021-03834-w |
[77] |
Wang HJ, Li B, Zhang MT, et al. Mass spectrometry and mass spectrometry imaging-based thyroid cancer analysis[J]. J Anal Test, 2022, 6(3): 235-246.
doi: 10.1007/s41664-022-00218-y |
[78] |
Yang XH, Song XW, Zhang XX, et al. In situ DESI-MSI lipidomic profiles of mucosal margin of oral squamous cell carcinoma[J]. eBioMedicine, 2021, 70: 103529.
doi: 10.1016/j.ebiom.2021.103529 URL |
[79] | Ikegawa M, Kakuda N, Miyasaka T, et al. Mass spectrometry imaging in Alzheimer's disease[J]. Brain Connect, 2023. DOI: 10.1089/brain.2022.0057. |
[80] |
Andrews WT, Donahue D, Holmes A, et al. In situ metabolite and lipid analysis of GluN2D-/- and wild-type mice after ischemic stroke using MALDI MSI[J]. Anal Bioanal Chem, 2020, 412(24): 6275-6285.
doi: 10.1007/s00216-020-02477-z |
[81] |
Mallah K, Zibara K, Kerbaj C, et al. Neurotrauma investigation through spatial omics guided by mass spectrometry imaging: target identification and clinical applications[J]. Mass Spectrom Rev, 2023, 42(1): 189-205.
doi: 10.1002/mas.v42.1 URL |
[82] |
Harkin C, Smith KW, MacKay CL, et al. Spatial localization of β-unsaturated aldehyde markers in murine diabetic kidney tissue by mass spectrometry imaging[J]. Anal Bioanal Chem, 2022, 414(22): 6657-6670.
doi: 10.1007/s00216-022-04229-7 pmid: 35881173 |
[83] |
Li W, Luo JC, Peng FD, et al. Spatial metabolomics identifies lipid profiles of human carotid atherosclerosis[J]. Atherosclerosis, 2023, 364: 20-28.
doi: 10.1016/j.atherosclerosis.2022.11.019 URL |
[84] |
Bonelli R, Woods SM, Lockwood S, et al. Spatial distribution of metabolites in the retina and its relevance to studies of metabolic retinal disorders[J]. Metabolomics, 2023, 19(2): 10.
doi: 10.1007/s11306-022-01969-6 pmid: 36745234 |
[85] |
Ren J, Li HW, Chen L, et al. Mass spectrometry imaging-based single-cell lipidomics profiles metabolic signatures of heart failure[J]. Research, 2023, 6: 0019.
doi: 10.34133/research.0019 pmid: 37040505 |
[86] |
Goodwin RJA. Sample preparation for mass spectrometry imaging: small mistakes can lead to big consequences[J]. J Proteomics, 2012, 75(16): 4893-4911.
doi: S1874-3919(12)00218-7 pmid: 22554910 |
[87] |
González-Riano C, Dudzik D, Garcia A, et al. Recent developments along the analytical process for metabolomics workflows[J]. Anal Chem, 2020, 92(1): 203-226.
doi: 10.1021/acs.analchem.9b04553 pmid: 31625723 |
[88] |
Amstalden van Hove ER, Smith DF, Heeren RMA. A concise review of mass spectrometry imaging[J]. J Chromatogr A, 2010, 1217(25): 3946-3954.
doi: 10.1016/j.chroma.2010.01.033 pmid: 20223463 |
[89] |
Buchberger AR, DeLaney K, Johnson J, et al. Mass spectrometry imaging: a review of emerging advancements and future insights[J]. Anal Chem, 2018, 90(1): 240-265.
doi: 10.1021/acs.analchem.7b04733 pmid: 29155564 |
[90] |
Zheng FJ, Zhao XJ, Zeng ZD, et al. Development of a plasma pseudotargeted metabolomics method based on ultra-high-performance liquid chromatography-mass spectrometry[J]. Nat Protoc, 2020, 15(8): 2519-2537.
doi: 10.1038/s41596-020-0341-5 pmid: 32581297 |
[91] |
Grillo F, Pigozzi S, Ceriolo P, et al. Factors affecting immunoreactivity in long-term storage of formalin-fixed paraffin-embedded tissue sections[J]. Histochem Cell Biol, 2015, 144(1): 93-99.
doi: 10.1007/s00418-015-1316-4 pmid: 25757745 |
[92] |
Bookmeyer C, Röhling U, Dreisewerd K, et al. Single-photon-induced post-ionization to boost ion yields in MALDI mass spectrometry imaging[J]. Angew Chem Int Ed Engl, 2022, 61(34): e202202165.
doi: 10.1002/anie.v61.34 URL |
[93] |
Michael JA, Mutuku SM, Ucur B, et al. Mass spectrometry imaging of lipids using MALDI coupled with plasma-based post-ionization on a trapped ion mobility mass spectrometer[J]. Anal Chem, 2022, 94(50): 17494-17503.
doi: 10.1021/acs.analchem.2c03745 pmid: 36473074 |
[94] |
Mou HZ, Pan JB, Zhao CL, et al. Nanometer resolution mass spectro-microtomography for In-depth anatomical profiling of single cells[J]. ACS Nano, 2023, 17(11): 10535-10545.
doi: 10.1021/acsnano.3c01449 URL |
[95] |
Suvannapruk W, Edney MK, Kim DH, et al. Single-cell metabolic profiling of macrophages using 3D OrbiSIMS: correlations with phenotype[J]. Anal Chem, 2022, 94(26): 9389-9398.
doi: 10.1021/acs.analchem.2c01375 pmid: 35713879 |
[96] |
Lewis HM, Gupta P, Saunders KDG, et al. Nanocapillary sampling coupled to liquid chromatography mass spectrometry delivers single cell drug measurement and lipid fingerprints[J]. Analyst, 2023, 148(5): 1041-1049.
doi: 10.1039/D2AN01732F URL |
[97] |
Unsihuay D, Mesa Sanchez D, Laskin J. Quantitative mass spectrometry imaging of biological systems[J]. Annu Rev Phys Chem, 2021, 72: 307-329.
doi: 10.1146/annurev-physchem-061020-053416 pmid: 33441032 |
[98] |
Ju R, Liu XY, Zheng FJ, et al. A graph density-based strategy for features fusion from different peak extract software to achieve more metabolites in metabolic profiling from high-resolution mass spectrometry[J]. Anal Chim Acta, 2020, 1139: 8-14.
doi: 10.1016/j.aca.2020.09.029 pmid: 33190713 |
[99] |
Zhang J, Ma L, Li BY, et al. Identification of biomarkers for risk assessment of arsenicosis based on untargeted metabolomics and machine learning algorithms[J]. Sci Total Environ, 2023, 870: 161861.
doi: 10.1016/j.scitotenv.2023.161861 URL |
[100] |
Wu WY, Hou JJ, Zhang ZJ, et al. Information entropy-based strategy for the quantitative evaluation of extensive hyperspectral images to better unveil spatial heterogeneity in mass spectrometry imaging[J]. Anal Chem, 2022, 94(29): 10355-10366.
doi: 10.1021/acs.analchem.2c00370 pmid: 35830352 |
[101] |
Zhao XJ, Zeng ZD, Chen AM, et al. Comprehensive strategy to construct In-house database for accurate and batch identification of small molecular metabolites[J]. Anal Chem, 2018, 90(12): 7635-7643.
doi: 10.1021/acs.analchem.8b01482 pmid: 29807420 |
[102] |
Rappez L, Stadler M, Triana S, et al. SpaceM reveals metabolic states of single cells[J]. Nat Methods, 2021, 18(7): 799-805.
doi: 10.1038/s41592-021-01198-0 pmid: 34226721 |
[103] |
Yuan ZY, Zhou QM, Cai LS, et al. SEAM is a spatial single nuclear metabolomics method for dissecting tissue microenvironment[J]. Nat Methods, 2021, 18(10): 1223-1232.
doi: 10.1038/s41592-021-01276-3 pmid: 34608315 |
[1] | 周嫒婷, 彭睿琦, 王芳, 伍建榕, 马焕成. 生防菌株DZY6715在不同生长期的代谢差异分析[J]. 生物技术通报, 2023, 39(9): 225-235. |
[2] | 沙珊珊, 董世荣, 杨玉菊. 肠道菌群及代谢物调控宿主肠道免疫的研究进展[J]. 生物技术通报, 2023, 39(8): 126-136. |
[3] | 谢田朋, 张佳宁, 董永骏, 张建, 景明. 早期抽薹对当归根际土壤微环境的影响[J]. 生物技术通报, 2023, 39(7): 206-218. |
[4] | 赵艳侠, 张晶莹, 孙骏飞, 王绛辉, 孙家波, 吕晓惠. ‘重瓣红’玫瑰不同花发育阶段转录和代谢差异分析[J]. 生物技术通报, 2023, 39(3): 184-195. |
[5] | 杨玉萍, 张霞, 王翀翀, 王晓艳. 不同年龄大鼠尿液代谢组学研究[J]. 生物技术通报, 2022, 38(2): 166-172. |
[6] | 苗玉娇, 朱龙佼, 许文涛. 质谱成像新基质及其在分析生物样本方面的研究进展[J]. 生物技术通报, 2022, 38(12): 156-167. |
[7] | 刘传和, 贺涵, 何秀古, 赖秋勤, 刘开, 邵雪花, 赖多, 匡石滋, 肖维强. 转录组与代谢组联合分析菠萝网纱覆盖防寒机制[J]. 生物技术通报, 2022, 38(11): 58-69. |
[8] | 刘传和, 贺涵, 何秀古, 刘开, 邵雪花, 赖多, 匡石滋, 肖维强. 不同连作年限菠萝园土壤差异代谢物和细菌群落结构分析[J]. 生物技术通报, 2021, 37(8): 162-175. |
[9] | 殷志斌, 黄文洁, 伍欣宙, 晏石娟. 空间分辨代谢组学进展和挑战[J]. 生物技术通报, 2021, 37(1): 32-51. |
[10] | 张萌, 罗芳, 王敏, 武彦泽, 王俊奎, 和东迁, 陈丽尧, 陶金忠. 奶牛分娩后早期血浆代谢物变化研究[J]. 生物技术通报, 2020, 36(6): 191-199. |
[11] | 魏之菡, 法博涛, 俞章盛. 多基因模型在肝细胞癌预后中的应用[J]. 生物技术通报, 2020, 36(5): 183-192. |
[12] | 兰青阔, 赵新, 沈晓玲, 魏静娜, 刘双, 陈锐, 檀建新, 王永. 基于代谢组学的转基因水稻生物安全评价方法研究[J]. 生物技术通报, 2020, 36(11): 222-229. |
[13] | 张萌, 刘国林, 李向龙, 陈永宏, 白玲荣, 罗芳, 李亚超, 陶金忠. 围产前期添加山楂和黄芪混合物对奶牛血浆代谢组的影响[J]. 生物技术通报, 2019, 35(8): 127-137. |
[14] | 周益康, 吴亦楠, 王天民, 郑翔, 邢新会, 张翀. 代谢物生物传感器:微生物细胞工厂构建中的合成生物学工具[J]. 生物技术通报, 2017, 33(1): 1-11. |
[15] | 郭刚, 唐丹, 田萍萍, 石秀峰, 曹鹏, 高强. 基于GC-MS的阿维链霉菌代谢物组学研究方法的建立[J]. 生物技术通报, 2015, 31(5): 61-67. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||