生物技术通报 ›› 2022, Vol. 38 ›› Issue (6): 198-210.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1151
收稿日期:
2021-09-07
出版日期:
2022-06-26
发布日期:
2022-07-11
作者简介:
辛建攀,男,博士,助理研究员,研究方向:园林植物生态修复;E-mail: 基金资助:
XIN Jian-pan(), LI Yan, ZHAO Chu, TIAN Ru-nan()
Received:
2021-09-07
Published:
2022-06-26
Online:
2022-07-11
摘要:
为揭示苯丙烷代谢途径参与梭鱼草防御重金属胁迫的作用机制,分析镉(Cd)胁迫下梭鱼草叶片转录组序列,将其与NR、NT、PFAM、KOG、Swiss Prot、KEGG和GO公共数据库进行比对注释,并对差异表达基因进行趋势化分析,同时从中挖掘与苯丙烷代谢途径相关的差异表达基因。结果表明:(1)共获得221 392个unigenes,其中170 175个unigenes被注释到数据库,6 506个unigenes被注释到31条次生代谢通路;(2)将梭鱼草叶片unigenes与Swiss-Prot和Nr数据库进行比对,共得到168 355条CDS序列,Estscan软件预测得到84 673条序列;(3)对检测到的20 025个差异表达基因进行趋势分析,发现有3个显著的基因表达模式,包括2个下调表达模式(Cluster 0:2 631个基因,Cluster 1:3 153个基因)和1个上调表达模式(Cluster 5:3 733个基因);(4)进一步挖掘转录组数据发现,在6_0 h和48_0 h组中,梭鱼草叶片中共有26个差异表达的基因被鉴定出来,分别编码3个苯丙烷代谢公共途径关键酶,5个木质素生物合成关键酶和7个黄酮类化合物生物合成关键酶。梭鱼草通过调控愈创木基木质素的生物合成和上调肉桂酸-4-羟化酶(C4H)、花青素合成酶(ANS)、花青素-3-O-葡糖基转移酶(3GT)、咖啡酰辅酶A-O甲基转移酶(CCoAOMT)、黄酮醇3-甲基转移酶(F3OMT)基因表达参与叶片Cd积累与解毒。通过转录组测序初步揭示了苯丙烷代谢途径参与梭鱼草叶片防御Cd胁迫的相关基因,为今后深入研究苯丙烷代谢途径在梭鱼草抵抗重金属胁迫中的功能及相关机制提供了理论基础。
辛建攀, 李燕, 赵楚, 田如男. 镉胁迫下梭鱼草叶片转录组测序及苯丙烷代谢途径相关基因挖掘[J]. 生物技术通报, 2022, 38(6): 198-210.
XIN Jian-pan, LI Yan, ZHAO Chu, TIAN Ru-nan. Transcriptome Sequencing in the Leaves of Pontederia cordata with Cadmium Exposure and Gene Mining in Phenypropanoid Pathways[J]. Biotechnology Bulletin, 2022, 38(6): 198-210.
Min length/bp | Max length/bp | Mean length/bp | N50 | N90 | |
---|---|---|---|---|---|
Transcripts | 201 | 25 638 | 1 542 | 2 554 | 746 |
Unigenes | 201 | 25 638 | 1 753 | 2 609 | 883 |
表1 拼接转录本和unigenes的长度分布
Table 1 Length distribution of assembled transcripts and unigenes
Min length/bp | Max length/bp | Mean length/bp | N50 | N90 | |
---|---|---|---|---|---|
Transcripts | 201 | 25 638 | 1 542 | 2 554 | 746 |
Unigenes | 201 | 25 638 | 1 753 | 2 609 | 883 |
数据库 Annotated database | Unigenes数量 Number of unigenes | 占比 Percentage/% |
---|---|---|
Annotated in NR | 158 229 | 71.47 |
Annotated in NT | 107 290 | 48.46 |
Annotated in KO | 67 629 | 30.54 |
Annotated in SwissProt | 121 487 | 54.87 |
Annotated in PFAM | 98 391 | 44.44 |
Annotated in GO | 98 391 | 44.44 |
Annotated in KOG | 49 597 | 22.40 |
Annotated in all databases | 22 729 | 10.26 |
Annotated in at least one database | 170 175 | 76.86 |
Total unigenes | 221 392 | 100 |
表2 梭鱼草叶片unigene功能注释
Table 2 Unigene annotation of P. cordatas leaves
数据库 Annotated database | Unigenes数量 Number of unigenes | 占比 Percentage/% |
---|---|---|
Annotated in NR | 158 229 | 71.47 |
Annotated in NT | 107 290 | 48.46 |
Annotated in KO | 67 629 | 30.54 |
Annotated in SwissProt | 121 487 | 54.87 |
Annotated in PFAM | 98 391 | 44.44 |
Annotated in GO | 98 391 | 44.44 |
Annotated in KOG | 49 597 | 22.40 |
Annotated in all databases | 22 729 | 10.26 |
Annotated in at least one database | 170 175 | 76.86 |
Total unigenes | 221 392 | 100 |
序号 No. | 通路 Pathway | 通路_ID Pathway_ID | Unigenes数量 Numbers of unigenes |
---|---|---|---|
1 | 苯丙素生物合成Phenylpropanoid biosynthesis | ko00940 | 696 |
2 | 缬氨酸、亮氨酸和异亮氨酸降解Valine,leucine and isoleucine degradation | ko00280 | 621 |
3 | 萜类化合物骨架生物合成Terpenoid backbone biosynthesis | ko00900 | 597 |
4 | 类胡萝卜素生物合成Carotenoid biosynthesis | ko00906 | 488 |
5 | 酪氨酸代谢Tyrosine metabolism | ko00350 | 426 |
6 | 泛醌及其他萜类醌生物合成Ubiquinone and other terpenoid-quinone biosynthesis | ko00130 | 370 |
7 | 苯丙氨酸、酪氨酸和色氨酸生物合成Phenylalanine,tyrosine and tryptophan biosynthesis | ko00400 | 346 |
8 | 烟酸和烟酰胺代谢Nicotinate and nicotinamide metabolism | ko00760 | 326 |
9 | 苯丙烷代谢Phenylalanine metabolism | ko00360 | 291 |
10 | 色氨酸代谢Tryptophan metabolism | ko00380 | 269 |
11 | 类固醇生物合成Steroid biosynthesis | ko00100 | 235 |
12 | 类黄酮生物合成Flavonoid biosynthesis | ko00941 | 222 |
13 | 异喹啉生物碱生物合成Isoquinoline alkaloid biosynthesis | ko00950 | 216 |
14 | 莨菪烷、哌啶和吡啶生物碱生物合成Tropane,piperidine and pyridine alkaloid biosynthesis | ko00960 | 197 |
15 | 玉米素生物合成Zeatin biosynthesis | ko00908 | 197 |
16 | 二苯乙烯、二芳基庚烷和姜酚生物合成Stilbenoid,diarylheptanoid and gingerol biosynthesis | ko00945 | 155 |
17 | 亮氨酸代谢Linoleic acid metabolism | ko00591 | 143 |
18 | 缬氨酸、亮氨酸和异亮氨酸生物合成Valine,leucine and isoleucine biosynthesis | ko00290 | 139 |
19 | 柠檬烯和蒎烯降解Limonene and pinene degradation | ko00903 | 128 |
20 | 油菜素内酯生物合成Brassinosteroid biosynthesis | ko00905 | 97 |
21 | 二萜生物合成Diterpenoid biosynthesis | ko00904 | 83 |
22 | 黄酮和黄酮醇生物合成Flavone and flavonol biosynthesis | ko00944 | 55 |
23 | 芥子油苷生物合成Glucosinolate biosynthesis | ko00966 | 58 |
24 | 单萜的生物合成Monoterpenoid biosynthesis | ko00902 | 48 |
25 | 倍半萜和三萜生物合成Sesquiterpenoid and triterpenoid biosynthesis | ko00909 | 44 |
26 | 咖啡因代谢Caffeine metabolism | ko00232 | 28 |
27 | 花青素生物合成Anthocyanin biosynthesis | ko00942 | 14 |
29 | 甜菜红碱生物合成Betalain biosynthesis | ko00965 | 10 |
30 | 异黄酮生物合成Isoflavonoid biosynthesis | ko00943 | 6 |
31 | 吲哚生物碱生物合成Indole alkaloid biosynthesis | ko00901 | 1 |
表3 Cd胁迫下梭鱼草叶片转录组unigenes次生代谢KEGG通路注释
Table 3 Unigenes for KEGG pathway annotation involved in the secondary metabolites in the leaves of P. cordata with cad-mium exposure
序号 No. | 通路 Pathway | 通路_ID Pathway_ID | Unigenes数量 Numbers of unigenes |
---|---|---|---|
1 | 苯丙素生物合成Phenylpropanoid biosynthesis | ko00940 | 696 |
2 | 缬氨酸、亮氨酸和异亮氨酸降解Valine,leucine and isoleucine degradation | ko00280 | 621 |
3 | 萜类化合物骨架生物合成Terpenoid backbone biosynthesis | ko00900 | 597 |
4 | 类胡萝卜素生物合成Carotenoid biosynthesis | ko00906 | 488 |
5 | 酪氨酸代谢Tyrosine metabolism | ko00350 | 426 |
6 | 泛醌及其他萜类醌生物合成Ubiquinone and other terpenoid-quinone biosynthesis | ko00130 | 370 |
7 | 苯丙氨酸、酪氨酸和色氨酸生物合成Phenylalanine,tyrosine and tryptophan biosynthesis | ko00400 | 346 |
8 | 烟酸和烟酰胺代谢Nicotinate and nicotinamide metabolism | ko00760 | 326 |
9 | 苯丙烷代谢Phenylalanine metabolism | ko00360 | 291 |
10 | 色氨酸代谢Tryptophan metabolism | ko00380 | 269 |
11 | 类固醇生物合成Steroid biosynthesis | ko00100 | 235 |
12 | 类黄酮生物合成Flavonoid biosynthesis | ko00941 | 222 |
13 | 异喹啉生物碱生物合成Isoquinoline alkaloid biosynthesis | ko00950 | 216 |
14 | 莨菪烷、哌啶和吡啶生物碱生物合成Tropane,piperidine and pyridine alkaloid biosynthesis | ko00960 | 197 |
15 | 玉米素生物合成Zeatin biosynthesis | ko00908 | 197 |
16 | 二苯乙烯、二芳基庚烷和姜酚生物合成Stilbenoid,diarylheptanoid and gingerol biosynthesis | ko00945 | 155 |
17 | 亮氨酸代谢Linoleic acid metabolism | ko00591 | 143 |
18 | 缬氨酸、亮氨酸和异亮氨酸生物合成Valine,leucine and isoleucine biosynthesis | ko00290 | 139 |
19 | 柠檬烯和蒎烯降解Limonene and pinene degradation | ko00903 | 128 |
20 | 油菜素内酯生物合成Brassinosteroid biosynthesis | ko00905 | 97 |
21 | 二萜生物合成Diterpenoid biosynthesis | ko00904 | 83 |
22 | 黄酮和黄酮醇生物合成Flavone and flavonol biosynthesis | ko00944 | 55 |
23 | 芥子油苷生物合成Glucosinolate biosynthesis | ko00966 | 58 |
24 | 单萜的生物合成Monoterpenoid biosynthesis | ko00902 | 48 |
25 | 倍半萜和三萜生物合成Sesquiterpenoid and triterpenoid biosynthesis | ko00909 | 44 |
26 | 咖啡因代谢Caffeine metabolism | ko00232 | 28 |
27 | 花青素生物合成Anthocyanin biosynthesis | ko00942 | 14 |
29 | 甜菜红碱生物合成Betalain biosynthesis | ko00965 | 10 |
30 | 异黄酮生物合成Isoflavonoid biosynthesis | ko00943 | 6 |
31 | 吲哚生物碱生物合成Indole alkaloid biosynthesis | ko00901 | 1 |
图6 Cd胁迫下梭鱼草叶片木质素与黄酮类化合物生物合成途径 数字为表达差异倍数。负值:基因下调表达;正值:基因上调表达
Fig.6 Lignins and flavonoids biosynthesis pathways in the leaves of P. cordata with cadmium exposure The numbers in the figure indicate multiple of differences in gene expression. Negative value-down regulated genes;positive value-up regulated genes
次生代谢物合成 Secondary metabolite biosynthesis | 处理组 Treatments | 酶 Enzyme | Unigene数量 Number of unigenes | Unigenes ID |
---|---|---|---|---|
木质素生物合成 Lignin biosynthesis | 6_0 h | 4CL | 1 | Cluster-26045.4660 |
POD | 2 | Cluster-26045.77742、Cluster-26045.12955 | ||
CAD | 1 | Cluster-26045.148350 | ||
48_0 h | C4H | 3 | Cluster-26045.151320、Cluster-26045.75438、Cluster-26045.80533 | |
CSE | 1 | Cluster-26045.85997 | ||
48_6 h | PAL | 2 | Cluster-26045.2673、Cluster-26045.24951 | |
C4H | 6 | Cluster-26045.95506、Cluster-26045.151320、Cluster-26045.75438、 Cluster-26045.75436、Cluster-26045.80533、Cluster-26045.80534 | ||
4CL | 4 | Cluster-26045.55726、Cluster-26045.4660、Cluster-26045.165138、 Cluster-26045.184072 | ||
CSE | 1 | Cluster-26045.85997 | ||
CCoAOMT | 1 | Cluster-26045.92307 | ||
黄酮类生物合成 Flavonoids biosynthesis | 6_0 h | F3H | 1 | Cluster-26045.99470 |
48_0 h | C4H | 3 | Cluster-26045.151320、Cluster-26045.75438、Cluster-26045.80533 | |
F3' 5'H | 1 | Cluster-26045.129615 | ||
F3OMT | 1 | Cluster-26045.149659 | ||
48_6 h | C4H | 6 | Cluster-26045.95506、Cluster-26045.151320、Cluster-26045.75438、Cluster-26045.75436、Cluster-26045.80533、Cluster-26045.80534 | |
CCoAOMT | 1 | Cluster-26045.92307 | ||
ANS | 1 | Cluster-26045.156185 | ||
3GT | 3 | Cluster-26045.95421、Cluster-26045.98852、Cluster-26045.98851 | ||
I2’H | 1 | Cluster-26045.87175 |
表4 Cd胁迫下梭鱼草叶片中编码木质素与黄酮类生物合成相关酶的unigenes
Table 4 Unigenes enconding enzyme involved in lignin and flavonoid biosynthesis in the leaves of P. cordata with cadmium exposure
次生代谢物合成 Secondary metabolite biosynthesis | 处理组 Treatments | 酶 Enzyme | Unigene数量 Number of unigenes | Unigenes ID |
---|---|---|---|---|
木质素生物合成 Lignin biosynthesis | 6_0 h | 4CL | 1 | Cluster-26045.4660 |
POD | 2 | Cluster-26045.77742、Cluster-26045.12955 | ||
CAD | 1 | Cluster-26045.148350 | ||
48_0 h | C4H | 3 | Cluster-26045.151320、Cluster-26045.75438、Cluster-26045.80533 | |
CSE | 1 | Cluster-26045.85997 | ||
48_6 h | PAL | 2 | Cluster-26045.2673、Cluster-26045.24951 | |
C4H | 6 | Cluster-26045.95506、Cluster-26045.151320、Cluster-26045.75438、 Cluster-26045.75436、Cluster-26045.80533、Cluster-26045.80534 | ||
4CL | 4 | Cluster-26045.55726、Cluster-26045.4660、Cluster-26045.165138、 Cluster-26045.184072 | ||
CSE | 1 | Cluster-26045.85997 | ||
CCoAOMT | 1 | Cluster-26045.92307 | ||
黄酮类生物合成 Flavonoids biosynthesis | 6_0 h | F3H | 1 | Cluster-26045.99470 |
48_0 h | C4H | 3 | Cluster-26045.151320、Cluster-26045.75438、Cluster-26045.80533 | |
F3' 5'H | 1 | Cluster-26045.129615 | ||
F3OMT | 1 | Cluster-26045.149659 | ||
48_6 h | C4H | 6 | Cluster-26045.95506、Cluster-26045.151320、Cluster-26045.75438、Cluster-26045.75436、Cluster-26045.80533、Cluster-26045.80534 | |
CCoAOMT | 1 | Cluster-26045.92307 | ||
ANS | 1 | Cluster-26045.156185 | ||
3GT | 3 | Cluster-26045.95421、Cluster-26045.98852、Cluster-26045.98851 | ||
I2’H | 1 | Cluster-26045.87175 |
[1] | 张阿芳, 张庆, 代惠萍, 等. 镉胁迫对银灰杨根和叶片渗透调节物质的影响[J]. 西北林学院学报, 2018, 33(2):83-87. |
Zhang AF, Zhang Q, Dai HP, et al. Effects of cadmium stress on the osmotic adjustment substance of Populus canescens in leaves and roots[J]. J Northwest For Univ, 2018, 33(2):83-87. | |
[2] | 余红兵, 杨知建, 肖润林, 等. 梭鱼草(Pontederia cordata)拦截沟渠中氮、磷的效果研究[J]. 农业现代化研究, 2012, 33(4):508-512. |
Yu HB, Yang ZJ, Xiao RL, et al. Research of ditch interception effect of nitrogen and phosphorus of Pontederia cordata[J]. Res Agric Mod, 2012, 33(4):508-512. | |
[3] | 张景雯, 田如男. 四种植物对模拟的城市景观污水的净化效果[J]. 湿地科学, 2018, 16(1):85-92. |
Zhang JW, Tian RN. Purification effect of four kinds of aquatic plants on simulated urban landscape polluted water[J]. Wetl Sci, 2018, 16(1):85-92. | |
[4] | 夏梦华, 刘铭羽, 郭宁宁, 等. 美人蕉、梭鱼草和黄菖蒲人工湿地系统对养猪废水的脱氮特征研究[J]. 生态与农村环境学报, 2020, 36(8):1080-1088. |
Xia MH, Liu MY, Guo NN, et al. Study on nitrogen removal characteristics of swine wastewater in the constructed wetland systems of Canna indica, Pontederia cordata and Iris pseudacorus[J]. J Ecol Rural Environ, 2020, 36(8):1080-1088. | |
[5] | 许蓝心, 田如男. 梭鱼草化感物质丁二酸对微囊藻和栅藻生长及竞争的影响[J]. 生态学杂志, 2019, 38(3):770-777. |
Xu LX, Tian RN. Effects of succinic acid, an allelopathic substance of Pontederi cordata, on the growth and competition of Microcystis aeruginosa and Scenedesmus obliquus[J]. Chin J Ecol, 2019, 38(3):770-777. | |
[6] | 赵楚, 钱燕萍, 田如男. 梭鱼草化感物质丁二酸、肉桂酸及香草酸对铜绿微囊藻生长的抑制效应[J]. 浙江农林大学学报, 2020, 37(6):1105-1111. |
Zhao C, Qian YP, Tian RN. Inhibitory effect of succinic acid, cinnamic acid and vanillic acid from Pontederia cordata on Microcystis aeruginosa[J]. J Zhejiang A F Univ, 2020, 37(6):1105-1111. | |
[7] | 高军侠, 陶贺, 党宏斌, 等. 睡莲、梭鱼草对铜污染水体的修复效果研究[J]. 地球与环境, 2016, 44(1):96-102. |
Gao JX, Tao H, Dang HB, et al. Phytoremediation of copper-contaminated water by Nymphaea tetragona and Pontederia cordata[J]. Earth Environ, 2016, 44(1):96-102. | |
[8] | 刘寿涛, 杨蕊嘉, 何钟响, 等. 灌溉水湿地净化系统中植物对镉的去除效果研究[J]. 灌溉排水学报, 2019, 38(10):47-54. |
Liu ST, Yang RJ, He ZX, et al. Effect of plant pond and constructed wetland system on irrigation water purification and rice cadmium control[J]. J Irrigation Drainage, 2019, 38(10):47-54. | |
[9] | 梅金星, 张平, 彭佩钦, 等. 人工湿地系统中梭鱼草和香蒲对镉积累的动态变化[J]. 水生态学杂志, 2020, 41(2):98-104. |
Mei JX, Zhang P, Peng PQ, et al. Cadmium accumulation in Pontederia cordata and Typha orientalis in a constructed wetland[J]. J Hydroecology, 2020, 41(2):98-104. | |
[10] | Xin JP, Ma SS, Li Y, et al. Pontederia cordata, an ornamental aquatic macrophyte with great potential in phytoremediation of heavy-metal-contaminated wetlands[J]. Ecotoxicol Environ Saf, 2020, 203:111024. |
[11] | 马思思, 辛建攀, 陈宜栋, 等. 铜对梭鱼草叶片保护酶活性、抗氧化物质及非蛋白巯基肽含量的影响[J]. 草业科学, 2020, 37(3):459-468. |
Ma SS, Xin JP, Chen YD, et al. Effects of copper on antixoidant enzyme activities, antioxidant and non-protein thiol content in Pontederia cordata’s leaves[J]. Pratacultural Sci, 2020, 37(3):459-468. | |
[12] |
Xin JP, Ma S, Zhao C, et al. Cadmium phytotoxicity, related physiological changes in Pontederia cordata:antioxidative, osmoregulatory substances, phytochelatins, photosynthesis, and chlorophyll fluorescence[J]. Environ Sci Pollut Res Int, 2020, 27(33):41596-41608.
doi: 10.1007/s11356-020-10002-z URL |
[13] | Shi X, Sun H, Chen Y, et al. Transcriptome sequencing and expression analysis of cadmium(Cd)transport and detoxification related genes in Cd-accumulating Salix integra[J]. Front Plant Sci, 2016, 7:1577. |
[14] |
曹继敏, 李双财, 何德. 镉胁迫后旱柳转录组变化分析[J]. 生物技术通报, 2020, 36(7):32-39.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-1018 |
Cao JM, Li SC, He D. Transcriptome analysis of Saliz matsudana under cadmium stress[J]. Biotechnol Bull, 2020, 36(7):32-39. | |
[15] |
Pawlak-Sprada S, Arasimowicz-Jelonek M, Podgórska M, et al. Activation of phenylpropanoid pathway in legume plants exposed to heavy metals. Part I. Effects of cadmium and lead on phenylalanine ammonia-lyase gene expression, enzyme activity and lignin content[J]. Acta Biochim Pol, 2011, 58(2):211-216.
pmid: 21503278 |
[16] | 杨欣, 徐艳红, 魏建和, 等. 几种重要植物次生代谢防御反应物质的生物合成途径及分子调控机制研究进展[J]. 生物技术通讯, 2013, 24(2):285-289. |
Yang X, Xu YH, Wei JH, et al. Advances on the biosynthesis pathways and molecular regulation mechanism of several important defensive substances in plant sec ondary metabolism[J]. Lett Biotechnol, 2013, 24(2):285-289. | |
[17] | 耿安静, 王旭, 李秋剑, 等. 花青素介导植物抗重金属胁迫机理的研究进展[J]. 南方农业学报, 2020, 51(1):80-90. |
Geng AJ, Wang X, Li QJ, et al. Mechanism of anthocyanins-mediated resistance to heavy metals stresses in plants:a review[J]. J South Agric, 2020, 51(1):80-90. | |
[18] | Mhiri R, Koubaa I, Chawech R, et al. New isoflavones with antioxidant activity isolated from Cornulaca monacantha[J]. Chem Biodivers, 2020, 17(12):e2000758. |
[19] |
Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nat Biotechnol, 2011, 29(7):644-652.
doi: 10.1038/nbt.1883 pmid: 21572440 |
[20] |
Li B, Dewey CN. RSEM:accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12:323.
doi: 10.1186/1471-2105-12-323 URL |
[21] |
Ernst J, Bar-Joseph Z. STEM:a tool for the analysis of short time series gene expression data[J]. BMC Bioinformatics, 2006, 7:191.
doi: 10.1186/1471-2105-7-191 URL |
[22] | 魏利斌, 苗红梅, 张海洋. 芝麻发育转录组分析[J]. 中国农业科学, 2012, 45(7):1246-1256. |
Wei LB, Miao HM, Zhang HY. Transcriptomic analysis of sesame development[J]. Sci Agric Sin, 2012, 45(7):1246-1256. | |
[23] | 贾新平, 叶晓青, 梁丽建, 等. 基于高通量测序的海滨雀稗转录组学研究[J]. 草业学报, 2014, 23(6):242-252. |
Jia XP, Ye XQ, Liang LJ, et al. Transcriptome characteristics of Paspalum vaginatum analyzed with Illumina sequencing technology[J]. Acta Prataculturae Sin, 2014, 23(6):242-252. | |
[24] | 王兴春, 谭河林, 陈钊, 等. 基于RNA-Seq技术的连翘转录组组装与分析及SSR分子标记的开发[J]. 中国科学:生命科学, 2015, 45(3):301-310. |
Wang XC, Tan HL, Chen Z, et al. Assembly and characterization of the transcriptome and development of SSR markers in Forsythia suspensa based on RNA-seq technology[J]. Sci Sin Vitae, 2015, 45(3):301-310.
doi: 10.1360/N052014-00273 URL |
|
[25] | 袁灿, 彭芳, 钟文娟, 等. 赶黄草的转录组测序及分析[J]. 中草药, 2017, 48(21):4507-4514. |
Yuan C, Peng F, Zhong WJ, et al. De novo assembly and transcriptome characterization of Penthorum chinense[J]. Chin Tradit Herb Drugs, 2017, 48(21):4507-4514. | |
[26] | 王继华, 罗群胜, 梅瑜, 等. 张溪香芋转录组测序及生物信息学分析[J]. 基因组学与应用生物学, 2020, 39(12):5697-5704. |
Wang JH, Luo QS, Mei Y, et al. Transcriptome sequencing and bioinformatic analysis of zhangxi taro[J]. Genom Appl Biol, 2020, 39(12):5697-5704. | |
[27] |
韦晓霞, 王小安, 陈瑾, 等. 百香果低温胁迫转录组及茉莉酸代谢基因分析[J]. 核农学报, 2021, 35(4):815-825.
doi: 10.11869/j.issn.100-8551.2021.04.0815 |
Wei XX, Wang XA, Chen J, et al. Transcriptome and jasmin metabolism gene analysis of Passiflora edulia Sims under low temperature stress[J]. J Nucl Agric Sci, 2021, 35(4):815-825. | |
[28] | 肖韵铮, 韩世明, 秦昭, 等. 滇黄精转录组测序及类黄酮合成相关基因的分析[J]. 河南农业大学学报, 2020, 54(6):931-940. |
Xiao YZ, Han SM, Qin Z, et al. Analysis of transcriptome sequencing and related genes of flavonoids biosynthesis from Polygonatum kingianum[J]. J Henan Agric Univ, 2020, 54(6):931-940. | |
[29] |
张娜, 刘秀霞, 陈学森, 等. 基于转录组分析鉴定苹果茉莉素响应基因[J]. 植物学报, 2019, 54(6):733-743.
doi: 10.11983/CBB18235 |
Zhang N, Liu XX, Chen XS, et al. Identifying genes responsive to jasmonates in apple based on transcriptome analysis[J]. Chin Bull Bot, 2019, 54(6):733-743. | |
[30] | 夏铭泽, 张雨, 余静雅, 等. 多裂骆驼蓬叶片转录组分析[J]. 广西植物, 2021, 41(4):503-513. |
Xia MZ, Zhang Y, Yu JY, et al. Transcriptome analysis for leaves of Peganum multisectum[J]. Guihaia, 2021, 41(4):503-513. | |
[31] | 朱畇昊, 张梦佳, 李璐, 等. 夏枯草的转录组测序与次生代谢产物生物合成相关基因的挖掘[J]. 中草药, 2019, 50(5):1220-1226. |
Zhu YH, Zhang MJ, Li L, et al. Transcriptome analysis of Prunella vulgaris and identification of putative genes involved in secondary metabolism biosynthesis[J]. Chin Tradit Herb Drugs, 2019, 50(5):1220-1226. | |
[32] |
张晓娜, 朴春兰, 董友魁, 等. 大豆根系应答重金属Cd胁迫的转录组分析[J]. 应用生态学报, 2017, 28(5):1633-1641.
pmid: 29745202 |
Zhang XN, Piao CL, Dong YK, et al. Transcriptome analysis of response to heavy metal Cd stress in soybean root[J]. Chin J Appl Ecol, 2017, 28(5):1633-1641.
doi: 10.13287/j.1001-9332.201705.004 pmid: 29745202 |
|
[33] | 热依麦阿依·阿布都艾尼, 陈静, 陈芸, 等. 盐胁迫下棉花根系的转录组分析及耐盐基因筛选[J]. 华南师范大学学报:自然科学版, 2020, 52(5):85-92. |
Reyimaiayi A, Chen J, Chen Y, et al. Transcriptome analysis and salt tolerance gene screening of cotton root under salt stress[J]. J South China Norm Univ:Nat Sci Ed, 2020, 52(5):85-92. | |
[34] | 曹昆, 屈文言, 徐洪伟, 等. 冷驯化下的牛皮杜鹃转录组变化分析[J]. 吉林师范大学学报:自然科学版, 2021, 42(1):92-98. |
Cao K, Qu WY, Xu HW, et al. Analysis of the transcriptome changes of Rhododendron chrysanthum Pall under cold acclimation[J]. J Jilin Norm Univ:Nat Sci Ed, 2021, 42(1):92-98. | |
[35] |
Chang A, Lim MH, Lee SW, et al. Tomato phenylalanine ammonia-lyase gene family, highly redundant but strongly underutilized[J]. J Biol Chem, 2008, 283(48):33591-33601.
doi: 10.1074/jbc.M804428200 URL |
[36] | 刘畅, 俸婷婷, 刘雄伟, 等. 苗药八爪金龙转录组测序与次生代谢产物合成相关基因的挖掘[J]. 中草药, 2021, 52(5):1434-1447. |
Liu C, Feng TT, Liu XW, et al. Transcriptome analysis and identification of related genes involved in secondary metabolism biosynthesis in Ardisia crispa[J]. Chin Tradit Herb Drugs, 2021, 52(5):1434-1447. | |
[37] |
Yang YJ, Cheng LM, Liu ZH. Rapid effect of cadmium on lignin biosynthesis in soybean roots[J]. Plant Sci, 2007, 172(3):632-639.
doi: 10.1016/j.plantsci.2006.11.018 URL |
[38] |
Kováčik J, Klejdus B. Dynamics of phenolic acids and lignin accumulation in metal-treated Matricaria chamomilla roots[J]. Plant Cell Rep, 2008, 27(3):605-615.
doi: 10.1007/s00299-007-0490-9 URL |
[39] | 董娟娥, 张康健, 梁宗锁. 植物次生代谢与调控[M]. 杨凌: 西北农林科技大学出版社, 2009. |
Dong JE, Zhang KJ, Liang ZS. Plant secondary metabolism and its regulation[M]. Yangling: Northwest A & F University Press, 2009. | |
[40] | 邓灿辉, 唐蜻, 戴志刚, 等. 不同叶用黄麻种质对重金属吸附的差异及其机制分析[J]. 农业资源与环境学报, 2020, 37(3):438-444. |
Deng CH, Tang Q, Dai ZG, et al. Differential adsorption performance and mechanism of leaf-used jute germplasm for heavy metal removal[J]. J Agric Resour Environ, 2020, 37(3):438-444. | |
[41] | 李丹丹, 梁宗锁, 普布卓玛, 等. 干旱胁迫对紫花苜蓿黄酮类化合物含量及其合成途径关键酶活性的影响[J]. 西北植物学报, 2020, 40(8):1380-1388. |
Li DD, Liang ZS, Pu B, et al. Flavonoids contents and flavonoids synthetic key enzyme activities in alfalfa under drought stress[J]. Acta Bot Boreali Occidentalia Sin, 2020, 40(8):1380-1388. | |
[42] |
Albert NW, Lewis DH, Zhang H, et al. Light-induced vegetative anthocyanin pigmentation in Petunia[J]. J Exp Bot, 2009, 60(7):2191-2202.
doi: 10.1093/jxb/erp097 pmid: 19380423 |
[43] | 郑雪良, 刘春荣, 王登亮, 等. 胡柚小青果的黄酮类化合物及抗氧化活性研究[J]. 浙江农业学报, 2015, 27(7):1185-1191. |
Zheng XL, Liu CR, Wang DL, et al. Flavonoids contents and antioxidant activities in Citrus paradisi cv. Changshan Huyou during development[J]. Acta Agric Zhejiangensis, 2015, 27(7):1185-1191. |
[1] | 余慧, 王静, 梁昕昕, 辛亚平, 周军, 赵会君. 宁夏枸杞铁镉响应基因的筛选及其功能验证[J]. 生物技术通报, 2023, 39(7): 195-205. |
[2] | 肖亮, 吴正丹, 陆柳英, 施平丽, 尚小红, 曹升, 曾文丹, 严华兵. 木薯重要性状基因的研究进展[J]. 生物技术通报, 2023, 39(6): 31-48. |
[3] | 刘辉, 卢扬, 叶夕苗, 周帅, 李俊, 唐健波, 陈恩发. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023, 39(5): 177-191. |
[4] | 姜南, 石杨, 赵志慧, 李斌, 赵熠辉, 杨俊彪, 闫家铭, 靳雨璠, 陈稷, 黄进. 镉胁迫下水稻OsPT1的表达及功能分析[J]. 生物技术通报, 2023, 39(1): 166-174. |
[5] | 黄婧, 朱亮, 薛蓬勃, 付强. 水稻叶和籽粒镉积累机制及QTL定位研究[J]. 生物技术通报, 2022, 38(8): 118-126. |
[6] | 呼艳姣, 陈美凤, 强瑀, 李海燕, 刘静, 秦樊鑫. 镉胁迫下锌硒交互作用对水稻镉毒害的缓解机制[J]. 生物技术通报, 2022, 38(4): 143-152. |
[7] | 祖国蔷, 胡哲, 王琪, 李光哲, 郝林. Burkholderia sp. GD17对水稻幼苗镉耐受的调节[J]. 生物技术通报, 2022, 38(4): 153-162. |
[8] | 杨馥榕, 王晓红, 肖琪, 方娟, 李立华. 木槿品种对镉胁迫的生理响应及耐镉能力评价[J]. 生物技术通报, 2022, 38(1): 98-107. |
[9] | 曹继敏, 李双财, 何德. 镉胁迫后旱柳转录组变化分析[J]. 生物技术通报, 2020, 36(7): 32-39. |
[10] | 王竹承, 刘辉, 李荣华. 外源硫对镉胁迫下马齿苋光合性状和矿质元素吸收的影响[J]. 生物技术通报, 2020, 36(3): 133-140. |
[11] | 郝小花, 戴佳利, 暨文劲, 黄丹, 李东屏, 田连福. 水稻籽粒低镉蛋白LCD互作蛋白的筛选与鉴定[J]. 生物技术通报, 2020, 36(11): 21-29. |
[12] | 刘军生, 解修超, 罗阳兰, 邓百万, 柏秋月, 燕孟琛, 白星. 抗镉内生细菌阿耶波多氏芽孢杆菌的分离鉴定及生物学特性[J]. 生物技术通报, 2019, 35(2): 64-72. |
[13] | 王竹承, 刘辉, 李荣华, 陈新, 李欣, 路致远. 外源硫与乙烯缓解马齿苋镉胁迫的生理机制研究[J]. 生物技术通报, 2019, 35(10): 71-79. |
[14] | 李建钢, 刘瑞媛, 彭丹妮, 李文建, 董喜存, 马建忠. 甜高粱在镉胁迫下的生理生化和应答机理研究进展[J]. 生物技术通报, 2018, 34(11): 27-35. |
[15] | 王瑞波. 水杨酸对镉胁迫小麦叶绿素荧光参数的影响[J]. 生物技术通报, 2017, 33(7): 96-99. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||