生物技术通报 ›› 2024, Vol. 40 ›› Issue (7): 247-258.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1183
收稿日期:
2023-12-15
出版日期:
2024-07-26
发布日期:
2024-07-30
通讯作者:
何秀古,男,研究员,研究方向:菠萝优质高效种植技术研究与应用推广;E-mail: hexiugu@gdaas.cn作者简介:
刘传和,男,博士,研究员,研究方向:菠萝优质高效种植技术与新品种选育;E-mail: founderlch@126.com
基金资助:
LIU Chuan-he1(), HE Han1, SHAO Xue-hua1, HE Xiu-gu2()
Received:
2023-12-15
Published:
2024-07-26
Online:
2024-07-30
摘要:
【目的】 探测不同覆盖处理对菠萝园土壤微生态环境的影响。【方法】 以未覆盖为对照(CK),比较研究了聚乙烯地膜(PM)、无纺布(NW)和可降解地膜(BF)覆盖下菠萝营养生长期土壤理化性状、酶活性以及细菌群落结构、代谢物的差异。【结果】 与CK相比,NW土壤中有效磷以及BF土壤中全氮含量显著提高;3种覆盖下土壤的过氧化氢酶和蔗糖酶活性显著降低,但PM土壤的蛋白酶、BF的酸性磷酸酶活性显著提高。与CK相比,PM土壤的放线菌数量减少;NW的细菌数量增多,放线菌减少;BF土壤的真菌和细菌数量增多,放线菌减少。16S测序表明3种覆盖的细菌菌群多样性均低于CK,其中BF的菌群丰度相对最高。与CK相比,PM、NW、BF土壤共筛选到17种显著差异代谢物,主要包括糖类、有机酸、含氮化合物和醇类代谢物,3种覆盖处理中BF土壤的糖类代谢物积累最高。CCA分析表明,pH影响土壤菌群结构发生分异,土壤养分、酶活性与细菌群落结构存在正相关。【结论】 3种覆盖处理中NW有利于维持营养生长期菠萝园土壤相对稳定的微生态环境。
刘传和, 贺涵, 邵雪花, 何秀古. 不同覆盖处理对菠萝园土壤代谢物和细菌群落结构的影响[J]. 生物技术通报, 2024, 40(7): 247-258.
LIU Chuan-he, HE Han, SHAO Xue-hua, HE Xiu-gu. Analysis of Differential Metabolites and Bacterial Community Structure in the Soils of a Pineapple Orchard under Different Mulching Treatments[J]. Biotechnology Bulletin, 2024, 40(7): 247-258.
处理 Treatment | pH | 有机质 Organic matter/(g·kg-1) | 全氮 Total N/(g·kg-1) | 有效磷 Available P/(mg·kg-1) | 速效钾 Available K/(mg·kg-1) |
---|---|---|---|---|---|
CK | 3.99±0.06 a | 36.83±1.62 a | 1.53±0.03 b | 57.00±5.49 b | 24.33±2.40 b |
PM | 3.87±0.10 ab | 35.87±1.01 a | 1.50±0.06 b | 68.50±7.05 ab | 14.33±1.67 b |
NW | 4.09±0.12 a | 37.57±1.15 a | 1.57±0.03 b | 105.27±19.06 a | 16.67±0.67 b |
BF | 3.62±0.07 b | 38.23±1.37 a | 1.97±0.07 a | 95.67±15.08 ab | 69.33±22.41 a |
表1 不同覆盖处理土壤理化性状
Table 1 Physiochemical properties of soil under different mulching treatments
处理 Treatment | pH | 有机质 Organic matter/(g·kg-1) | 全氮 Total N/(g·kg-1) | 有效磷 Available P/(mg·kg-1) | 速效钾 Available K/(mg·kg-1) |
---|---|---|---|---|---|
CK | 3.99±0.06 a | 36.83±1.62 a | 1.53±0.03 b | 57.00±5.49 b | 24.33±2.40 b |
PM | 3.87±0.10 ab | 35.87±1.01 a | 1.50±0.06 b | 68.50±7.05 ab | 14.33±1.67 b |
NW | 4.09±0.12 a | 37.57±1.15 a | 1.57±0.03 b | 105.27±19.06 a | 16.67±0.67 b |
BF | 3.62±0.07 b | 38.23±1.37 a | 1.97±0.07 a | 95.67±15.08 ab | 69.33±22.41 a |
处理 Treatment | 脲酶 Urease/ (mg·(kg·h)-1) | 过氧化氢酶Catalase/(mL·(g·h)-1) | 酸性磷酸酶 Acid phosphatase/(µg·(g·h)-1) | 蔗糖酶 Sucrase/ (mL·(kg·h)-1) | 纤维素酶 Cellulase/ (mL·(kg·h)-1) | 蛋白酶 Protease/ (µg·(g·h)-1) |
---|---|---|---|---|---|---|
CK | 213.33±3.48 a | 3.20±0.39 a | 172.33±17.85 b | 26.02±3.85 a | 1.44±0.30 a | 1.21±0.12 b |
PM | 185.33±2.40 a | 0.77±0.14 c | 166.00±7.51 b | 3.34±0.23 b | 1.82±0.30 a | 4.56±0.43 a |
NW | 198.67±4.48 a | 1.85±0.26 b | 169.33±8.84 b | 9.58±1.97 b | 0.58±0.08 b | 2.17±0.23 b |
BF | 227.67±34.27 a | 1.83±0.30 b | 240.33±5.33 a | 5.10±1.17 b | 1.33±0.19 ab | 1.86±0.44 b |
表2 不同覆盖处理土壤酶活性
Table 2 Soil enzyme activities of soil under different mulching treatments
处理 Treatment | 脲酶 Urease/ (mg·(kg·h)-1) | 过氧化氢酶Catalase/(mL·(g·h)-1) | 酸性磷酸酶 Acid phosphatase/(µg·(g·h)-1) | 蔗糖酶 Sucrase/ (mL·(kg·h)-1) | 纤维素酶 Cellulase/ (mL·(kg·h)-1) | 蛋白酶 Protease/ (µg·(g·h)-1) |
---|---|---|---|---|---|---|
CK | 213.33±3.48 a | 3.20±0.39 a | 172.33±17.85 b | 26.02±3.85 a | 1.44±0.30 a | 1.21±0.12 b |
PM | 185.33±2.40 a | 0.77±0.14 c | 166.00±7.51 b | 3.34±0.23 b | 1.82±0.30 a | 4.56±0.43 a |
NW | 198.67±4.48 a | 1.85±0.26 b | 169.33±8.84 b | 9.58±1.97 b | 0.58±0.08 b | 2.17±0.23 b |
BF | 227.67±34.27 a | 1.83±0.30 b | 240.33±5.33 a | 5.10±1.17 b | 1.33±0.19 ab | 1.86±0.44 b |
处理Treatment | 细菌Bacteria(×106 CFU·g-1) | 真菌Fungi(× 103 CFU·g-1) | 放线菌Actinomycetes(×104 CFU·g-1) |
---|---|---|---|
CK | 2.45±0.52 b | 8.07±1.62 b | 8.2±1.02 a |
PM | 1.7±0.25 b | 2.98±2.52 b | 1.81±1.08 b |
NW | 4.23±0.79 a | 5.66±0.65 b | 2.51±1.92 b |
BF | 4.26±0.27 a | 17.93±3.76 a | 1.42±0.57 b |
表3 不同覆盖处理土壤微生物群落丰度
Table 3 Microbial community abundances of soil under different mulching treatments
处理Treatment | 细菌Bacteria(×106 CFU·g-1) | 真菌Fungi(× 103 CFU·g-1) | 放线菌Actinomycetes(×104 CFU·g-1) |
---|---|---|---|
CK | 2.45±0.52 b | 8.07±1.62 b | 8.2±1.02 a |
PM | 1.7±0.25 b | 2.98±2.52 b | 1.81±1.08 b |
NW | 4.23±0.79 a | 5.66±0.65 b | 2.51±1.92 b |
BF | 4.26±0.27 a | 17.93±3.76 a | 1.42±0.57 b |
图1 不同覆盖下土壤细菌菌群结构差异 A:不同覆盖处理间Shannon指数;B:不同覆盖处理间Simpson指数;C:不同覆盖处理间PCoA分析。TR1:PM;TR2:NW;TR3:BF;TR4:CK
Fig. 1 Differences of bacterial structures of soil under different mulching A: Shannon index between different mulching. B: Simpson index between different mulching. C: PCoA analysis between different mulching; TR1:PM;TR2:NW;TR3:BF;TR4:CK
图2 不同覆盖处理土壤细菌群落在门(A)和属(B)水平上的相对丰度
Fig. 2 Relative abundance of different soil bacterial community at phylum (A) and genus (B) levels under different mulching treatments
图4 不同覆盖处理土壤差异判别分析 A:不同覆盖CV分析,QC:质控组;B:不同覆盖主成分分析;C-E:不同分组间OPLS-DA 分析。TR1:PM;TR2:NW;TR3:BF;TR4:CK
Fig. 4 Different discriminant analysis of soil under different mulching treatments A:CV analysis in different mulching. QC: Quality control. B: Principal component analysis of different mulching. C-E: OPLS-DA analysis between different groups. TR1:PM;TR2:NW;TR3:BF;TR4:CK
分类 Type | 数量 Number | 所占比例 Percentage/% |
---|---|---|
脂质 Lipid | 33 | 29.2 |
糖类Carbohydrate | 17 | 15.04 |
酸Acid | 12 | 10.62 |
醇Alcohol | 12 | 10.62 |
杂环化合物 Heterocyclic compound | 8 | 7.08 |
胺Amin | 7 | 6.19 |
酯Ester | 5 | 4.42 |
酚 Phenol | 2 | 1.77 |
烃类 Hydrocarbons | 2 | 1.77 |
含氮化合物 Nitrogen compounds | 2 | 1.77 |
醚Ether | 1 | 0.88 |
醛Aldehyde | 1 | 0.88 |
其他类 Others | 11 | 9.73 |
表4 代谢物的分类和数量
Table 4 Type and the number of metabolites
分类 Type | 数量 Number | 所占比例 Percentage/% |
---|---|---|
脂质 Lipid | 33 | 29.2 |
糖类Carbohydrate | 17 | 15.04 |
酸Acid | 12 | 10.62 |
醇Alcohol | 12 | 10.62 |
杂环化合物 Heterocyclic compound | 8 | 7.08 |
胺Amin | 7 | 6.19 |
酯Ester | 5 | 4.42 |
酚 Phenol | 2 | 1.77 |
烃类 Hydrocarbons | 2 | 1.77 |
含氮化合物 Nitrogen compounds | 2 | 1.77 |
醚Ether | 1 | 0.88 |
醛Aldehyde | 1 | 0.88 |
其他类 Others | 11 | 9.73 |
物质 Compound | 物质一级分类 Class I | 含量 Content | 类型 Type | |||||
---|---|---|---|---|---|---|---|---|
CK | PM | NW | BF | CK- PM | CK- NW | CK- BF | ||
D-甘露醇 2 | 糖类 | 1.87E+05 | 1.24E+04 | 5.44E+04 | 4.42E+04 | Down | Down | Down |
乙基α-d-吡喃葡萄糖苷 | 糖类 | 6.18E+03 | 2.87E+02 | 2.28E+02 | 4.07E+02 | Down | Down | Down |
蔗糖 | 糖类 | 1.29E+06 | 4.96E+04 | 3.31E+04 | 2.76E+05 | Down | Down | Down |
果糖 1 | 糖类 | 4.20E+04 | 1.83E+04 | 8.77E+03 | 2.58E+04 | Down | Down | Insig |
果糖 2 | 糖类 | 6.69E+04 | 3.28E+04 | 1.47E+04 | 5.20E+04 | Down | Down | Insig |
(Z)-9-十八烯腈 | 含氮化合物 | 4.86E+04 | 1.11E+05 | 7.44E+04 | 9.74E+04 | Up | Insig | Up |
表5 不同比较组间共有差异代谢物
Table 5 Common DAMs between different comparison groups
物质 Compound | 物质一级分类 Class I | 含量 Content | 类型 Type | |||||
---|---|---|---|---|---|---|---|---|
CK | PM | NW | BF | CK- PM | CK- NW | CK- BF | ||
D-甘露醇 2 | 糖类 | 1.87E+05 | 1.24E+04 | 5.44E+04 | 4.42E+04 | Down | Down | Down |
乙基α-d-吡喃葡萄糖苷 | 糖类 | 6.18E+03 | 2.87E+02 | 2.28E+02 | 4.07E+02 | Down | Down | Down |
蔗糖 | 糖类 | 1.29E+06 | 4.96E+04 | 3.31E+04 | 2.76E+05 | Down | Down | Down |
果糖 1 | 糖类 | 4.20E+04 | 1.83E+04 | 8.77E+03 | 2.58E+04 | Down | Down | Insig |
果糖 2 | 糖类 | 6.69E+04 | 3.28E+04 | 1.47E+04 | 5.20E+04 | Down | Down | Insig |
(Z)-9-十八烯腈 | 含氮化合物 | 4.86E+04 | 1.11E+05 | 7.44E+04 | 9.74E+04 | Up | Insig | Up |
比较组Comparison group | 物质 Compound | 物质一级分类 Class I | VIP | 差异倍数Fold change | 类型Type |
---|---|---|---|---|---|
CK-PM | 乳酸 | 酸 | 1.06 | 2.48 | Up |
4-(2-甲基丁酰基)蔗糖 | 糖类 | 1.55 | 0.25 | Down | |
CK-NW | 2-苯基-1,3-恶唑-2-碱 | 其他 | 1.77 | 2.03 | Down |
D-半乳糖 3 | 糖类 | 1.7 | 0.36 | Down | |
粘肌醇 | 醇 | 1.83 | 0.37 | Down | |
CK-BF | 氨基甲酸 1 | 酸 A | 1.49 | 0.43 | Down |
2-乙基己醛乙二醇缩醛 | 醛 | 1.5 | 0.34 | Down | |
羟基脲 | 含氮化合物 | 1.51 | 0.23 | Down | |
阿拉伯呋喃糖 | 糖类 | 1.49 | 0.20 | Down | |
1,5-戊二胺 2 | 胺 | 1.48 | 2.26 | Up | |
(R)-(-)-2-苯基甘氨醇 | 醇 | 1.5 | 0.49 | Down |
表6 不同比较组间特有差异代谢物
Table 6 Specific DAMs between different comparison groups
比较组Comparison group | 物质 Compound | 物质一级分类 Class I | VIP | 差异倍数Fold change | 类型Type |
---|---|---|---|---|---|
CK-PM | 乳酸 | 酸 | 1.06 | 2.48 | Up |
4-(2-甲基丁酰基)蔗糖 | 糖类 | 1.55 | 0.25 | Down | |
CK-NW | 2-苯基-1,3-恶唑-2-碱 | 其他 | 1.77 | 2.03 | Down |
D-半乳糖 3 | 糖类 | 1.7 | 0.36 | Down | |
粘肌醇 | 醇 | 1.83 | 0.37 | Down | |
CK-BF | 氨基甲酸 1 | 酸 A | 1.49 | 0.43 | Down |
2-乙基己醛乙二醇缩醛 | 醛 | 1.5 | 0.34 | Down | |
羟基脲 | 含氮化合物 | 1.51 | 0.23 | Down | |
阿拉伯呋喃糖 | 糖类 | 1.49 | 0.20 | Down | |
1,5-戊二胺 2 | 胺 | 1.48 | 2.26 | Up | |
(R)-(-)-2-苯基甘氨醇 | 醇 | 1.5 | 0.49 | Down |
图6 不同覆盖处理菠萝园环境因子和菌群群落相关性CCA分析 OM:有机质;AP:有效磷;URE:脲酶;SSC:蔗糖酶;CAT:过氧化氢酶; PRO:蛋白酶;CMC:纤维素酶;ACP:酸性磷酸酶
Fig. 6 CCA analysis on correlating bacterial community to physio-chemical properties of pineapple orchard soil under different mulching treatments OM:Organic matter. AP:Available P. URE:Urease. SSC:Sucrase. CAT:Catalase. PRO:Protease. CMC:Cellulase. ACP:Acid phosphatase
[1] | 广东农村统计年鉴编辑委员会. 广东农村统计年鉴[M]. 北京: 中国统计出版社, 2022. |
The editorial board of guangdong rural statistical yearbook. Guangdong rural statistical yearbook[M]. Beijing: China Statistics Press, 2022. | |
[2] | 刘传和, 凡超. 地膜/网纱覆盖对冬季菠萝园小环境及菠萝生长和果实品质特性的影响[J]. 西北植物学报, 2016, 36(1): 139-146. |
Liu CH, Fan C. Regulation of film/gauze covering on micro-environmental factors in pineapple plantation and its effects on growth and quality properties of pineapple[J]. Acta Bot Boreali Occidentalia Sin, 2016, 36(1): 139-146. | |
[3] | 刘传和, 刘岩, 廖美敬, 等. 地膜覆盖对菠萝植株生物量的影响及其成本分析[J]. 广东农业科学, 2011, 38(9): 29-31. |
Liu CH, Liu Y, Liao MJ, et al. Effects of film mulching on biomass of pineapple plants and analysis of production cost[J]. Guangdong Agric Sci, 2011, 38(9): 29-31. | |
[4] | 刘传和, 刘岩, 易干军, 等. 地膜覆盖对菠萝植株生长及土壤理化特性的影响[J]. 土壤通报, 2010, 41(5): 1105-1109. |
Liu CH, Liu Y, Yi GJ, et al. Effects of film mulching on vegetative growth of pineapple and soil physicochemical properties[J]. Chin J Soil Sci, 2010, 41(5): 1105-1109. | |
[5] | 胥子航, 王睿, 等. 地膜和秸秆覆盖提高春玉米产量与氮肥利用效率[J]. 植物营养与肥料学报, 2023, 29(11): 1991-2003. |
Xu ZH, Wang R, et al. Plastic film and straw mulching improve yield and nitrogen use efficiency of spring maize[J]. Journal of Plant Nutrition and Fertilizers, 2023, 29(11): 1991-2003. | |
[6] |
曹晓庆, 李璐, 张锋伟, 等. 五种常见可降解地膜的研究应用现状和展望[J]. 核农学报, 2023, 37(5): 1076-1087.
doi: 10.11869/j.issn.1000-8551.2023.05.1076 |
Cao XQ, Li L, Zhang FW, et al. Research and application status of five common types of degradable mulching films[J]. J Nucl Agric Sci, 2023, 37(5): 1076-1087.
doi: 10.11869/j.issn.1000-8551.2023.05.1076 |
|
[7] | 马兆嵘, 刘有胜, 张芊芊, 等. 农用塑料薄膜使用现状与环境污染分析[J]. 生态毒理学报, 2020, 15(4): 21-32. |
Ma ZR, Liu YS, Zhang QQ, et al. The usage and environmental pollution of agricultural plastic film[J]. Asian J Ecotoxicol, 2020, 15(4): 21-32. | |
[8] | 杜彩娴, 麦景郁, 曾莉莎, 等. 冬瓜地不同覆盖栽培对土壤微生物和理化性状的影响[J]. 长江蔬菜, 2017(22): 64-67. |
Du CX, Mai JY, Zeng LS, et al. Effect of different covering cultivation on soil microorganisms and physical chemical properties of wax gourd field[J]. J Changjiang Veg, 2017(22): 64-67. | |
[9] | 吕汉强, 赵文花, 等. 聚乳酸可降解地膜对绿洲灌区玉米产量和农田水热特性的影响[J]. 甘肃农业大学学报, 2022, 57(5): 72-79, 88. |
Lyu HQ, Zhao WH, et al. Effects of polylactic acid degradable film on maize yield and soil hydrothermal characteristics in oasis irrigation area[J]. J Gansu Agric Univ, 2022, 57(5): 72-79, 88. | |
[10] |
周天美, 周新伟, 陆静, 等. PBAT/PPC可降解地膜在豇豆生产中的应用研究[J]. 中国农学通报, 2022, 38(36): 62-66.
doi: 10.11924/j.issn.1000-6850.casb2021-1174 |
Zhou TM, Zhou XW, Lu J, et al. Application of PBAT/PPC degradable mulch film in cowpea(Vigna sinensis)production[J]. Chin Agric Sci Bull, 2022, 38(36): 62-66. | |
[11] | 史长青. 重金属污染对水稻土酶活性的影响[J]. 土壤通报, 1995, 26(1): 34-35. |
Shi CQ. Effect of heavy metal pollution on enzyme activity in paddy soil[J]. Chin J Soil Sci, 1995, 26(1): 34-35. | |
[12] | 中国科学院南京土壤研究所微生物室. 土壤微生物研究法[M]. 北京: 科学出版社, 1985. |
Institute of soil science, Chinese academy of sciences. Soil microorganism research method[M]. Beijing: Science Press, 1985. | |
[13] | 赵兰坡, 姜岩. 土壤磷酸酶活性测定方法的探讨[J]. 土壤通报, 1986, 17(3): 138-141. |
Zhao LP, Jiang Y. Discussion on determination method of soil phosphatase activity[J]. Chin J Soil Sci, 1986, 17(3): 138-141. | |
[14] | 蔡红, 沈仁芳. 改良茚三酮比色法测定土壤蛋白酶活性的研究[J]. 土壤学报, 2005, 42(2): 306-313. |
Cai H, Shen RF. Determination of soil protease activity with modifiedninhydrin colorimetry[J]. Acta Pedol Sin, 2005, 42(2): 306-313. | |
[15] | Berg J, Brandt KK, Al-Soud WA, et al. Selection for Cu-tolerant bacterial communities with altered composition, but unaltered richness, via long-term Cu exposure[J]. Appl Environ Microbiol, 2012, 78(20): 7438-7446. |
[16] | 王雪花, 任晔, 冯均科, 等. 不同覆盖方式对土壤肥力和马铃薯产量的影响[J]. 蔬菜, 2021(11): 25-29. |
Wang XH, Ren Y, Feng JK, et al. Effects of different mulching methods on soil fertility and potato yield[J]. Vegetables, 2021(11): 25-29. | |
[17] | 曹慧, 孙辉, 杨浩, 等. 土壤酶活性及其对土壤质量的指示研究进展[J]. 应用与环境生物学报, 2003, 9(1): 105-109. |
Cao H, Sun H, Yang H, et al. A review soil enzyme activity and its indication for soil quality[J]. Chin J Appl Environ Biol, 2003, 9(1): 105-109. | |
[18] | 林英杰, 高芳, 张佳蕾, 等. 不同种植方式对花生土壤微生物生物量及活性的影响[J]. 应用生态学报, 2010, 21(9): 2323-2328. |
Lin YJ, Gao F, Zhang JL, et al. Soil microbial biomass and respiration rate under effects of different planting patterns of peanut[J]. Chin J Appl Ecol, 2010, 21(9): 2323-2328. | |
[19] | 张晓英, 刘艳香, 姜春玲. 生物降解地膜对土壤理化性质及花生产量的影响[J]. 农业开发与装备, 2021(10): 171-172. |
Zhang XY, Liu YX, Jiang CL. Effects of biodegradable plastic film on soil physical and chemical properties and peanut yield[J]. Agric Dev Equip, 2021(10): 171-172. | |
[20] | Lu XK, Mao QG, Gilliam FS, et al. Nitrogen deposition contributes to soil acidification in tropical ecosystems[J]. Glob Chang Biol, 2014, 20(12): 3790-3801. |
[21] | Cai JP, Luo WT, Liu HY, et al. Precipitation-mediated responses of soil acid buffering capacity to long-term nitrogen addition in a semi-arid grassland[J]. Atmos Environ, 2017, 170: 312-318. |
[22] | 孙梦媛, 刘景辉, 赵宝平, 等. 全覆膜垄作种植对旱作马铃薯生长和土壤特性的影响[J]. 水土保持学报, 2018, 32(5): 262-269, 276. |
Sun MY, Liu JH, Zhao BP, et al. Effects of full-film mulching and ridging planting on the rainfed potato growth and soil characteristics[J]. J Soil Water Conserv, 2018, 32(5): 262-269, 276. | |
[23] | Lu XF, Gilliam FS, Guo JY, et al. Decrease in soil pH has greater effects than increase in above-ground carbon inputs on soil organic carbon in terrestrial ecosystems of China under nitrogen enrichment[J]. J Appl Ecol, 2022, 59(3): 768-778. |
[24] |
Ye CL, Chen DM, Hall SJ, et al. Reconciling multiple impacts of nitrogen enrichment on soil carbon: plant, microbial and geochemical controls[J]. Ecol Lett, 2018, 21(8): 1162-1173.
doi: 10.1111/ele.13083 pmid: 29781214 |
[25] |
Song BZ, Zhang J, Hu JH, et al. Temporal dynamics of the arthropod community in pear orchards intercropped with aromatic plants[J]. Pest Manag Sci, 2011, 67(9): 1107-1114.
doi: 10.1002/ps.2156 pmid: 21480464 |
[26] | Rodrigues MÂ, Correia CM, Claro AM, et al. Soil nitrogen availability in olive orchards after mulching legume cover crop residues[J]. Sci Hortic, 2013, 158: 45-51. |
[27] |
邹丽娜, 柳婷婷, 等. 麻地膜覆盖对番茄根际土壤微生物群落结构的影响[J]. 浙江农业科学, 2023, 64(2): 371-378.
doi: 10.16178/j.issn.0528-9017.20220312 |
Zou LN, Liu TT, Li WL, et al. Effect of bast-fiber film mulching on soil microbial community rhizosphere soil of tomato[J]. J Zhejiang Agric Sci, 2023, 64(2): 371-378. | |
[28] | 沈鹏飞, 王威雁, 李彤, 等. 陕西洛川苹果园不同覆盖措施对土壤性质、细菌群落及果实产量和品质的影响[J]. 园艺学报, 2019, 46(5): 817-831. |
Shen PF, Wang WY, Li T, et al. Effects of different mulching measures on soil properties, bacterial community, fruit yield and quality of Luochuan apple orchard in Shaanxi Province[J]. Acta Hortic Sin, 2019, 46(5): 817-831. | |
[29] | 隋虹杰, 成慧娟, 等. 不同覆膜方式对高粱生长发育和土壤微生物的影响[J]. 江苏农业科学, 2019, 47(15): 133-138. |
Sui HJ, Cheng HJ, Wang LX, et al. Influences of different mulching methods on sorghum growth and soil microorganism[J]. Jiangsu Agric Sci, 2019, 47(15): 133-138. | |
[30] | 徐锴, 赵德英, 闫帅, 等. 覆盖对梨园土壤微生物、梨树生长及果实品质的影响[J]. 中国果树, 2020(6): 46-49. |
Xu K, Zhao DY, Yan S, et al. Effects of mulching on soil microorganism, pear tree growth and fruit quality in pear orchard[J]. China Fruits, 2020(6): 46-49. | |
[31] | 罗玲, 刘伟, 钟奇, 等. 不同覆盖材料对避雨葡萄园土壤生物活性的影响[J]. 中国土壤与肥料, 2020(2): 66-74. |
Luo L, Liu W, Zhong Q, et al. Effects of different mulching materials on soil biological activities in sheltered vineyard[J]. Soil Fertil Sci China, 2020(2): 66-74. | |
[32] | 张京社, 陈园园, 阎世江. 多年秸秆覆盖对设施蔬菜土壤养分及微生物多样性的影响[J]. 江苏农业科学, 2023, 51(8): 217-222. |
Zhang JS, Chen YY, Yan SJ. Effects of multi-year straw mulching on soil nutrients and microbial diversity of facility vegetables[J]. Jiangsu Agric Sci, 2023, 51(8): 217-222. | |
[33] | 倪丽佳, 李非里, 刘秋亚, 等. 地膜覆盖对土壤微生态环境的影响[J]. 浙江工业大学学报, 2011, 39(4): 407-410. |
Ni LJ, Li FL, Liu QY, et al. Influence of plastic film mulching on soil micro-ecological environment[J]. J Zhejiang Univ Technol, 2011, 39(4): 407-410. | |
[34] | 刘株秀, 刘俊杰, 徐艳霞, 等. 不同大豆连作年限对黑土细菌群落结构的影响[J]. 生态学报, 2019, 39(12): 4337-4346. |
Liu ZX, Liu JJ, Xu YX, et al. Effects of continuous cropping years of soybean on the bacterial community structure in black soil[J]. Acta Ecol Sin, 2019, 39(12): 4337-4346. | |
[35] |
Shen CC, Ni YY, Liang WJ, et al. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra[J]. Front Microbiol, 2015, 6: 582.
doi: 10.3389/fmicb.2015.00582 pmid: 26217308 |
[36] | Zhang B, Liang C, et al. Variations in soil microbial communities and residues along an altitude gradient on the northern slope of Changbai Mountain, China[J]. PLoS One, 2013, 8(6): e66184. |
[37] | Rani A, Sharma A, Rajagopal R, et al. Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector[J]. BMC Microbiol, 2009, 9: 96. |
[38] | 张彧娜, 周晓果, 温远光, 等. 喀斯特地区三种人工林土壤微生物群落结构特征[J]. 广西植物, 2022, 42(6): 938-950. |
Zhang YN, Zhou XG, Wen YG, et al. Characteristics of soil microbial community structure of three plantations in a Karst region[J]. Guihaia, 2022, 42(6): 938-950. | |
[39] |
刘传和, 贺涵, 等. 不同连作年限菠萝园土壤差异代谢物和细菌群落结构分析[J]. 生物技术通报, 2021, 37(8): 162-175.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0273 |
Liu CH, He H, et al. Analysis of differential metabolites and bacterial community structure in soils of a pineapple orchard in different continuous-cropping years[J]. Biotechnol Bull, 2021, 37(8): 162-175. | |
[40] |
Johnson DB, Quatrini R. Acidophile microbiology in space and time[J]. Curr Issues Mol Biol, 2020, 39: 63-76.
doi: 10.21775/cimb.039.063 pmid: 32083998 |
[41] |
刘传和, 贺涵, 何秀古, 等. 转录组与代谢组联合分析菠萝网纱覆盖防寒机制[J]. 生物技术通报, 2022, 38(11): 58-69.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0203 |
Liu CH, He H, He XG, et al. Unveiling the mechanisms of pineapple responding to anti-chilling by gauze covering in winter via transcriptome and metabolome profiling[J]. Biotechnol Bull, 2022, 38(11): 58-69. | |
[42] | 朱丽霞, 章家恩, 刘文高. 根系分泌物与根际微生物相互作用研究综述[J]. 生态环境, 2003, 12(1): 102-105. |
Zhu LX, Zhang JE, Liu WG. Review of studies on interactions between root exudates and rhizopheric microorganisms[J]. Ecol Environ Sci, 2003, 12(1): 102-105. | |
[43] | 于方玲, 孙冰玉, 元野, 等. 连作对烤烟叶片淀粉和还原糖含量的影响[J]. 安徽农业科学, 2010, 38(4): 1824-1825. |
Yu FL, Sun BY, Yuan Y, et al. Effects of continuous cropping on contents of starch and reducing sugar in the leaves of flue-cured tobacco[J]. J Anhui Agric Sci, 2010, 38(4): 1824-1825. | |
[44] | 刘晓芳, 黄晓东, 孔健. 不同的碳源、氮源及碳氮比对微生物溶磷的影响[J]. 山东大学学报: 理学版, 2005, 40(2): 121-124. |
Liu XF, Huang XD, Kong J. Effect of C, N sources and mC/mN ratio on the phosphate solubilization of Aspergillus niger ML2 and ML4[J]. J Shandong Univ Nat Sci, 2005, 40(2): 121-124. | |
[45] | 曹萌豪, 陈林, 庞丹波, 等. 宁夏压砂地种植年限对土壤代谢产物的影响[J]. 灌溉排水学报, 2023, 42(S1): 76-81. |
Cao MH, Chen L, Pang DB, et al. Effect of planting years on soil metabolites in sand-pressed land in Ningxia[J]. J Irrig Drain, 2023, 42(S1): 76-81. |
[1] | 何诗瑜, 曾仲大, 李博岩. 空间分辨代谢组学在疾病诊断研究中的应用进展[J]. 生物技术通报, 2024, 40(1): 145-159. |
[2] | 周嫒婷, 彭睿琦, 王芳, 伍建榕, 马焕成. 生防菌株DZY6715在不同生长期的代谢差异分析[J]. 生物技术通报, 2023, 39(9): 225-235. |
[3] | 沙珊珊, 董世荣, 杨玉菊. 肠道菌群及代谢物调控宿主肠道免疫的研究进展[J]. 生物技术通报, 2023, 39(8): 126-136. |
[4] | 谢田朋, 张佳宁, 董永骏, 张建, 景明. 早期抽薹对当归根际土壤微环境的影响[J]. 生物技术通报, 2023, 39(7): 206-218. |
[5] | 赵艳侠, 张晶莹, 孙骏飞, 王绛辉, 孙家波, 吕晓惠. ‘重瓣红’玫瑰不同花发育阶段转录和代谢差异分析[J]. 生物技术通报, 2023, 39(3): 184-195. |
[6] | 刘传和, 贺涵, 何秀古, 陈鑫, 刘开, 邵雪花, 赖多, 秦健, 庄庆礼, 匡石滋, 肖维强. 菠萝不同品种对低温胁迫响应差异的生理代谢机制[J]. 生物技术通报, 2023, 39(10): 219-230. |
[7] | 李颖, 龙长梅, 蒋标, 韩丽珍. 两株PGPR菌株的花生定殖及对根际细菌群落结构的影响[J]. 生物技术通报, 2022, 38(9): 237-247. |
[8] | 杨玉萍, 张霞, 王翀翀, 王晓艳. 不同年龄大鼠尿液代谢组学研究[J]. 生物技术通报, 2022, 38(2): 166-172. |
[9] | 刘传和, 贺涵, 何秀古, 赖秋勤, 刘开, 邵雪花, 赖多, 匡石滋, 肖维强. 转录组与代谢组联合分析菠萝网纱覆盖防寒机制[J]. 生物技术通报, 2022, 38(11): 58-69. |
[10] | 刘传和, 贺涵, 何秀古, 刘开, 邵雪花, 赖多, 匡石滋, 肖维强. 不同连作年限菠萝园土壤差异代谢物和细菌群落结构分析[J]. 生物技术通报, 2021, 37(8): 162-175. |
[11] | 薛清, 杜虹锐, 薛会英, 王译浩, 王暄, 李红梅. 苜蓿滑刃线虫线粒体基因组及其系统发育研究[J]. 生物技术通报, 2021, 37(7): 98-106. |
[12] | 张萌, 罗芳, 王敏, 武彦泽, 王俊奎, 和东迁, 陈丽尧, 陶金忠. 奶牛分娩后早期血浆代谢物变化研究[J]. 生物技术通报, 2020, 36(6): 191-199. |
[13] | 王永妍, 赵炳赫, 梁广钰, 李云, 徐仰仓. 不同季节使用微生态制剂后养殖海水细菌群落特征[J]. 生物技术通报, 2020, 36(2): 126-133. |
[14] | 兰青阔, 赵新, 沈晓玲, 魏静娜, 刘双, 陈锐, 檀建新, 王永. 基于代谢组学的转基因水稻生物安全评价方法研究[J]. 生物技术通报, 2020, 36(11): 222-229. |
[15] | 洪洁, 康建依, 刘一倩, 高秀芝, 易欣欣. 生菜连作及生菜-菠菜轮作对土壤细菌群落结构的影响[J]. 生物技术通报, 2019, 35(8): 17-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||