生物技术通报 ›› 2024, Vol. 40 ›› Issue (6): 319-329.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1228
王梦帆1(), 赵子玉1, 王春光1, 刘廷玉2, 陈曦1, 张铁1()
收稿日期:
2024-01-02
出版日期:
2024-06-26
发布日期:
2024-06-24
通讯作者:
张铁,男,硕士,教授,研究方向:中兽药防治畜禽疾病;E-mail: zhangtie1998@163.com作者简介:
王梦帆,女,硕士研究生,研究方向:细菌耐药性;E-mail: mengfan202312@163.com赵子玉为本文共同第一作者
基金资助:
WANG Meng-fan1(), ZHAO Zi-yu1, WANG Chun-guang1, LIU Ting-yu2, CHEN Xi1, ZHANG Tie1()
Received:
2024-01-02
Published:
2024-06-26
Online:
2024-06-24
摘要:
【目的】 开发针对头孢噻肟-水解酶-14(CTX-M-14)型超广谱β-内酰胺酶(extended-spectrum β-lactamase,ESBLs)的抑制剂,用以缓解细菌耐药带来的严重危害。【方法】 使用DiscoveryStudio Visualizer(DS Visualizer)构建基于受体结构的药效团模型(structure-based pharmacophore, SBP)和基于配体共同特征的定性药效团模型(common feature pharmacophore generation, HIPHOP),并将验证后的模型作为查询条件对ZINC数据库进行以CTX-M-14蛋白为靶标的虚拟筛选,得到拟合分数良好的中药单体成分甘草酸(glycyrrhizic acid,GL),对其进行相关作用力分析、分子动力学模拟和结合自由能计算,分析甘草酸与CTX-M-14蛋白的结合模式、结合能力及稳定性;最后通过联合抑菌试验及酶动力学试验考察甘草酸的抗菌增敏活性、抑酶作用及抑酶方式。【结果】 中药单体成分甘草酸主要与CTX-M-14蛋白活性中心多个氨基酸残基形成氢键和范德华作用力,两者的对接分数与结合自由能分别为-10 kcal/mol及-22.06 kcal/mol;甘草酸与头孢噻肟钠联用呈协同作用(FICI≤0.5);甘草酸可竞争性抑制β-内酰胺酶对底物抗生素的水解作用,对头孢噻肟钠的抑酶保护率可达58.53%,与克拉维酸接近(60.98%)。【结论】 中药单体甘草酸可与CTX-M-14蛋白稳定结合,通过竞争性抑制β-内酰胺酶对底物抗生素的水解作用,提高多重耐药大肠杆菌E320和重组蛋白阳性菌BL-21对头孢噻肟钠的敏感性,实现抗生素的减量增效。
王梦帆, 赵子玉, 王春光, 刘廷玉, 陈曦, 张铁. 基于药效团模型筛选CTX-M-14型超广谱β-内酰胺酶抑制剂[J]. 生物技术通报, 2024, 40(6): 319-329.
WANG Meng-fan, ZHAO Zi-yu, WANG Chun-guang, LIU Ting-yu, CHEN Xi, ZHANG Tie. Screening of CTX-M-14-type Ultra-broad-spectrum β-lactamase Inhibitors Based on Pharmacophore Modelling[J]. Biotechnology Bulletin, 2024, 40(6): 319-329.
图2 基于CTX-M-14蛋白受体(A)及配体共同特征(B)药效团模型 绿色箭头和绿色网状球形,氢键受体;紫色箭头和紫色网状球形,氢键供体;浅蓝色圆球和蓝色网状球形,疏水作用力;深蓝色圆球和深蓝色网状球形,负电荷中心;灰色网状球形,排除体积
Fig. 2 Pharmacophore modelling based on CTX-M-14 protein receptor(A)and ligand co-features(B) Green arrow and green reticulated sphere, hydrogen bond acceptor; purple arrow and purple reticulated sphere, hydrogen bond donor; light blue orb and blue reticulated sphere, hydrophobic forces; dark blue orb and dark blue reticulated sphere, negative charge centre; grey reticulated sphere, excluded volume
图4 SBP模型(A)和HIPHOP模型(B)与测试集化合物拟合示意图,甘草酸与SBP模型(C)和HIPHOP模型(D)拟合示意图
Fig. 4 Schematic of SBP model (A) and HIPHOP model (B) fitted to the test set of compounds and glycyrrhizic acid fitted to the SBP model (C) and HIPHOP model (D)
ZINC ID | 名称Name | 拟合值FitValue | |
---|---|---|---|
SBP | HIPHOP | ||
ZINC901518 | 茶渍酸Lecanoric acid | 2.6156 | 2.32539 |
ZINC96015174 | 甘草酸Glycyrrhizin | 2.03995 | 2.44671 |
ZINC4164596 | 富马前冰岛酸Fumarprotocetraric acid | 1.25871 | 2.61666 |
表1 SBP和HIPHOP模型同时命中的小分子化合物及其FitValue
Table 1 Small molecule compounds hit simultaneously by SBP and HIPHOP models and their FitValues
ZINC ID | 名称Name | 拟合值FitValue | |
---|---|---|---|
SBP | HIPHOP | ||
ZINC901518 | 茶渍酸Lecanoric acid | 2.6156 | 2.32539 |
ZINC96015174 | 甘草酸Glycyrrhizin | 2.03995 | 2.44671 |
ZINC4164596 | 富马前冰岛酸Fumarprotocetraric acid | 1.25871 | 2.61666 |
ZINC ID | 名称 Name | 结合自由能Affinity*/ (kcal·mol-1) | 均方根偏差/RMSD | |
---|---|---|---|---|
最小值l.b. | 最大值u.b. | |||
ZINC901518 | 茶渍酸Lecanoric acid | -8.3 | 0 | 0 |
ZINC96015174 | 甘草酸Glycyrrhizin | -10.0 | 0 | 0 |
ZINC4164596 | 富马前冰岛酸Fumarprotocetraric acid | -9.4 | 0 | 0 |
表2 SBP模型和HIPHOP模型同时命中的候选化合物与CTX-M-14蛋白对接分数
Table 2 Docking scores of candidate compounds and CTX-M-14 proteins hit simultaneously by the SBP model and HIPHOP model
ZINC ID | 名称 Name | 结合自由能Affinity*/ (kcal·mol-1) | 均方根偏差/RMSD | |
---|---|---|---|---|
最小值l.b. | 最大值u.b. | |||
ZINC901518 | 茶渍酸Lecanoric acid | -8.3 | 0 | 0 |
ZINC96015174 | 甘草酸Glycyrrhizin | -10.0 | 0 | 0 |
ZINC4164596 | 富马前冰岛酸Fumarprotocetraric acid | -9.4 | 0 | 0 |
图5 甘草酸与CTX-M-14蛋白分子对接示意图 绿色、粉色和黄色圆形,氨基酸残基;绿色、粉色和黄色虚线,相互作用力;灰色线形,甘草酸配体;灰色粗棒,甘草酸配体;灰色细棒,氨基酸残基;黑色字体,氨基酸残基名称
Fig. 5 Schematic diagram of molecular docking of glycyrrhizic acid with CTX-M-14 protein+ Green, pink and yellow circles, amino acid residues; green, pink and yellow dashed lines, interacting forces; grey lines, glycyrrhizic acid ligands; grey thick rods, glycyrrhizic acid ligands; grey thin rods, amino acid residues; black lettering, amino acid residue names
图6 甘草酸与CTX-M-14蛋白复合物分子动力学模拟的RMSD(A)和RMSF(B)
Fig. 6 RMSD(A)and RMSF(B)of molecular dynamics simulations of glycyrrhizic acid complexed with CTX-M-14 protein
图7 甘草酸与CTX-M-14蛋白复合物动力学模拟的平衡轨迹采样(A)和结合自由能分解(B)
Fig. 7 Equilibrium trajectory sampling(A)and binding free energy decomposition(B)for kinetic simulations of glycyrrhetinic acid complexes with CTX-M-14 protein
图8 甘草酸与CTX-M-14蛋白相互作用中关键氨基酸残基及其结合自由能分解
Fig. 8 Key amino acid residues and their binding free energy decomposition in the interaction between glycyrrhetinic acid and CTX-M-14 protein
药物Drug/(mg·mL-1) | E320 | 蛋白重组阳性菌BL-21 Protein recombinant positive bacterial strain BL-21 |
---|---|---|
甘草酸Glycyrrhizic acid | >25 | >25 |
苯唑西林钠Benzoxacillin sodium | >256(R) | 64(R) |
氨苄西林钠Ampicillin sodium | >256(R) | 64(R) |
头孢唑林钠Cefazolin sodium | >256(R) | 16(R) |
头孢他啶Ceftazidime | >256(R) | 8(I) |
头孢呋辛Cefuroxime | 4(S) | 16(I) |
头孢曲松钠Ceftriaxone sodium | >256(R) | 32(R) |
头孢噻肟钠Cefotaxime sodium | 1024(R) | >1024(R) |
表3 甘草酸和抗菌药物对大肠杆菌的 MIC
Table 3 MIC of glycyrrhetinic acid and antibiotics against Escherichia coli
药物Drug/(mg·mL-1) | E320 | 蛋白重组阳性菌BL-21 Protein recombinant positive bacterial strain BL-21 |
---|---|---|
甘草酸Glycyrrhizic acid | >25 | >25 |
苯唑西林钠Benzoxacillin sodium | >256(R) | 64(R) |
氨苄西林钠Ampicillin sodium | >256(R) | 64(R) |
头孢唑林钠Cefazolin sodium | >256(R) | 16(R) |
头孢他啶Ceftazidime | >256(R) | 8(I) |
头孢呋辛Cefuroxime | 4(S) | 16(I) |
头孢曲松钠Ceftriaxone sodium | >256(R) | 32(R) |
头孢噻肟钠Cefotaxime sodium | 1024(R) | >1024(R) |
菌株Strain | 药物Drug | 单药MIC MIC of single drug | 联合用药MIC MIC of combined drugs | FICI | 结果判定Result determination |
---|---|---|---|---|---|
E320 | 甘草酸Glycyrrhizic acid(mg·mL-1) | >25 | 3.125 | <0.25 | 协同作用 Synergy |
头孢噻肟钠Cefotaxime(μg·mL-1) | 1 024 | 128 | |||
CTX-M-14蛋白重组阳性菌CTX-M-14 Protein recombinant positive bacteria | 甘草酸Glycyrrhizic acid(mg·mL-1) | >25 | 3.125 | <0.375 | 协同作用 Synergy |
头孢噻肟钠Cefotaxime(μg·mL-1) | 1 024 | 256 | |||
蛋白重组阴性对照菌Protein recombinant negative control bacteria | 甘草酸Glycyrrhizic acid(mg·mL-1) | >25 | 1.5625 | <1.0625 | 无关作用 Unrelated effects |
头孢噻肟钠Cefotaxime(μg·mL-1) | 8 | 8 |
表4 甘草酸与头孢噻肟钠联合抑菌试验
Table 4 Combination antibacterial test of glycyrrhetinic acid and cefotaxime sodium
菌株Strain | 药物Drug | 单药MIC MIC of single drug | 联合用药MIC MIC of combined drugs | FICI | 结果判定Result determination |
---|---|---|---|---|---|
E320 | 甘草酸Glycyrrhizic acid(mg·mL-1) | >25 | 3.125 | <0.25 | 协同作用 Synergy |
头孢噻肟钠Cefotaxime(μg·mL-1) | 1 024 | 128 | |||
CTX-M-14蛋白重组阳性菌CTX-M-14 Protein recombinant positive bacteria | 甘草酸Glycyrrhizic acid(mg·mL-1) | >25 | 3.125 | <0.375 | 协同作用 Synergy |
头孢噻肟钠Cefotaxime(μg·mL-1) | 1 024 | 256 | |||
蛋白重组阴性对照菌Protein recombinant negative control bacteria | 甘草酸Glycyrrhizic acid(mg·mL-1) | >25 | 1.5625 | <1.0625 | 无关作用 Unrelated effects |
头孢噻肟钠Cefotaxime(μg·mL-1) | 8 | 8 |
组别Group | Km | Vmax | Ki | Km/Vmax |
---|---|---|---|---|
空白对照组Blank control group | 7.13 | 21.33 | - | 0.33 |
溶液对照组Solution control group | 7.11 | 20.97 | - | 0.34 |
克拉维酸组Clavulanic acid group | 8.76 | 17.79 | 3.78 | 0.50 |
甘草酸Glycyrrhetinic acid group | 8.39 | 18.03 | 9.69 | 0.47 |
表5 CTX-M-14蛋白酶动力学参数
Table 5 CTX-M-14 protease kinetic parameters
组别Group | Km | Vmax | Ki | Km/Vmax |
---|---|---|---|---|
空白对照组Blank control group | 7.13 | 21.33 | - | 0.33 |
溶液对照组Solution control group | 7.11 | 20.97 | - | 0.34 |
克拉维酸组Clavulanic acid group | 8.76 | 17.79 | 3.78 | 0.50 |
甘草酸Glycyrrhetinic acid group | 8.39 | 18.03 | 9.69 | 0.47 |
组别Group | 初始OD值 Initial OD value | OD值 OD value | OD值变化量 OD value variation | 抑酶保护率 Enzyme-inhibition protection rate/% |
---|---|---|---|---|
空白对照组Blank control group | 1.15±0.035 | 0.33±0.015 | 0.82±0.026 | - |
溶液对照组Solution control group | 1.14±0.020 | 0.32±0.025 | 0.81±0.015 | - |
克拉维酸组Clavulanic acid group | 1.19±0.025 | 0.87±0.020 | 0.32±0.020* | 60.98 |
甘草酸组Glycyrrhetinic acid group | 1.31±0.017 | 0.98±0.010 | 0.34±0.022* | 58.53 |
表6 甘草酸对头孢噻肟钠的抑酶保护率
Table 6 Enzyme-inhibition protection rate of glycyrrhetinic acid against cefotaxime sodium
组别Group | 初始OD值 Initial OD value | OD值 OD value | OD值变化量 OD value variation | 抑酶保护率 Enzyme-inhibition protection rate/% |
---|---|---|---|---|
空白对照组Blank control group | 1.15±0.035 | 0.33±0.015 | 0.82±0.026 | - |
溶液对照组Solution control group | 1.14±0.020 | 0.32±0.025 | 0.81±0.015 | - |
克拉维酸组Clavulanic acid group | 1.19±0.025 | 0.87±0.020 | 0.32±0.020* | 60.98 |
甘草酸组Glycyrrhetinic acid group | 1.31±0.017 | 0.98±0.010 | 0.34±0.022* | 58.53 |
[1] | Husna A, Rahman MM, Badruzzaman ATM, et al. Extended-spectrum β-lactamases(ESBL): challenges and opportunities[J]. Biomedicines, 2023, 11(11): 2937. |
[2] |
Collaborators AR. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis[J]. Lancet, 2022, 399(10325): 629-655.
doi: 10.1016/S0140-6736(21)02724-0 pmid: 35065702 |
[3] | Ramatla T, Mafokwane T, Lekota K, et al. “One Health” perspective on prevalence of co-existing extended-spectrum β-lactamase(ESBL)producing Escherichia coli and Klebsiella pneumoniae: a comprehensive systematic review and meta-analysis[J]. Ann Clin Microbiol Antimicrob, 2023, 22(1): 88. |
[4] |
Peirano G, Pitout JDD. Extended-spectrum β-lactamase-producing Enterobacteriaceae: update on molecular epidemiology and treatment options[J]. Drugs, 2019, 79(14): 1529-1541.
doi: 10.1007/s40265-019-01180-3 pmid: 31407238 |
[5] | Castanheira M, Simner PJ, Bradford PA. Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection[J]. JAC Antimicrob Resist, 2021, 3(3): dlab092. |
[6] |
Drawz SM, Bonomo RA. Three decades of beta-lactamase inhibitors[J]. Clin Microbiol Rev, 2010, 23(1): 160-201.
doi: 10.1128/CMR.00037-09 pmid: 20065329 |
[7] |
Bush K, Bradford PA. Interplay between β-lactamases and new β-lactamase inhibitors[J]. Nat Rev Microbiol, 2019, 17(5): 295-306.
doi: 10.1038/s41579-019-0159-8 pmid: 30837684 |
[8] |
Wang YH, Wang J, Wang R, et al. Resistance to ceftazidime-avibactam and underlying mechanisms[J]. J Glob Antimicrob Resist, 2020, 22: 18-27.
doi: S2213-7165(19)30323-6 pmid: 31863899 |
[9] | 曹敏. 天然β-内酰胺酶抑制剂的筛选研究[D]. 贵阳: 贵州大学, 2016. |
Cao M. The research on inhibitors screened from natural medicine monomers[D]. Guiyang: Guizhou University, 2016. | |
[10] | 刘立新, 高月林, 王朝兴, 等. 黄酮化合物对金黄葡萄球菌β-内酰胺酶活性影响[J]. 东北农业大学学报, 2013, 44(3): 119-122. |
Liu LX, Gao YL, Wang CX, et al. Effect of the flavonoids on the activity of β-lactamase from Staphylococcus aureus[J]. J Northeast Agric Univ, 2013, 44(3): 119-122. | |
[11] | 李敏敏. 黄连与环丙沙星联用对鸡源性沙门菌生物被膜的影响[D]. 哈尔滨: 东北农业大学, 2016. |
Li MM. Effects of rhizoma coptidis in combination with ciprofloxacin on Salmonella biofilm that isolated from chickens[D]. Harbin: Northeast Agricultural University, 2016. | |
[12] | Mgbeahuruike EE, Stålnacke M, Vuorela H, et al. Antimicrobial and synergistic effects of commercial piperine and piperlongumine in combination with conventional antimicrobials[J]. Antibiotics, 2019, 8(2): 55. |
[13] |
朱浩, 张严伟, 刘润, 等. 抗生素佐剂与抗生素联用的抑菌作用研究进展[J]. 生物技术通报, 2022, 38(6): 66-73.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0027 |
Zhu H, Zhang YW, Liu R, et al. Research progress in antibiotic adjuvant and antibiotics in antibacterial aspects[J]. Biotechnol Bull, 2022, 38(6): 66-73.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0027 |
|
[14] |
Mysinger MM, Carchia M, Irwin JJ, et al. Directory of useful decoys, enhanced(DUD-E): better ligands and decoys for better benchmarking[J]. J Med Chem, 2012, 55(14): 6582-6594.
doi: 10.1021/jm300687e pmid: 22716043 |
[15] | 王亚铃, 姚明丽, 钱晨亮, 等. 基于药效团和分子对接筛选D-丙氨酰-D-丙氨酸连接酶抑制剂[J]. 江苏海洋大学学报: 自然科学版, 2023, 32(2): 53-59. |
Wang YL, Yao ML, Qian CL, et al. High-throughput virtual screening of D-alanyl-D-alanine ligase inhibitors based on pharmacophore and molecular docking[J]. J Jiangsu Ocean Univ Nat Sci Ed, 2023, 32(2): 53-59. | |
[16] | 姜星, 靳文珂, 李自祥, 等. CPS1小分子抑制剂的筛选及其抗结直肠癌的机制研究[J]. 药学学报, 2022, 57(9): 2671-2681. |
Jiang X, Jin WK, Li ZX, et al. Discovery of a small-molecule inhibitor of carbamoyl phosphate synthase 1 and its anti-colorectal cancer mechanism[J]. Acta Pharm Sin, 2022, 57(9): 2671-2681. | |
[17] |
赵子玉, 王春光, 吕建存, 等. 超广谱β-内酰胺酶CTX-M-14中药抑制剂的筛选及芸香苷抑酶作用研究[J]. 生物技术通报, 2022, 38(6): 235-244.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1105 |
Zhao ZY, Wang CG, Lv JC, et al. Screening of β-lactamase CTX-M-14 Chinese medicine inhibitor and enzyme inhibition of rutin[J]. Biotechnol Bull, 2022, 38(6): 235-244. | |
[18] | 张莹莹. 基于结构的NSD2小分子抑制剂筛选及初步活性验证[D]. 郑州: 河南工业大学, 2023. |
Zhang YY. Structure-based drug design and biological activity evaluation of methyltransferase NSD2[D]. Zhengzhou: Henan University of Technology, 2023. | |
[19] | Giordano D, Biancaniello C, Argenio MA, et al. Drug design by pharmacophore and virtual screening approach[J]. Pharmaceuticals, 2022, 15(5): 646. |
[20] | 郑晓杰. Src和Abl单双靶点抑制剂的虚拟筛选及分子动力学研究[D]. 广州: 广东药科大学, 2019. |
Zheng XJ. Virtual screening and molecular dynamics study of src and abl single and double target inhibitors[D]. Guangzhou: Guangdong Pharmaceutical University, 2019. | |
[21] | 刘璐. 甘草酸作为活性“药用辅料” 可行性实验研究[D]. 青岛: 青岛科技大学, 2023. |
Liu L. Feasibility study of glycyrrhizin acid as an active‘Pharmaceutical excipient’[D]. Qingdao: Qingdao University of Science & Technology, 2023. | |
[22] |
Paudel YN, Angelopoulou E, Semple B, et al. Potential neuroprotective effect of the HMGB1 inhibitor glycyrrhizin in neurological disorders[J]. ACS Chem Neurosci, 2020, 11(4): 485-500.
doi: 10.1021/acschemneuro.9b00640 pmid: 31972087 |
[23] | Huan CC, Xu Y, Zhang W, et al. Research progress on the antiviral activity of glycyrrhizin and its derivatives in liquorice[J]. Front Pharmacol, 2021, 12: 680674. |
[24] | Alagawany M, Elnesr SS, Farag MR, et al. Use of licorice(Glycyr-rhiza glabra)herb as a feed additive in poultry: current knowledge and prospects[J]. Animals, 2019, 9(8): 536. |
[25] | Perbandt M, Werner N, Prester A, et al. Structural basis to repurpose boron-based proteasome inhibitors Bortezomib and Ixazomib as β-lactamase inhibitors[J]. Sci Rep, 2022, 12(1): 5510. |
[26] | Pemberton OA, Tsivkovski R, Totrov M, et al. Structural basis and binding kinetics of vaborbactam in class A β-lactamase inhibition[J]. Antimicrob Agents Chemother, 2020, 64(10): e00398-20. |
[27] | Ahmadvand P, Avillan JJ, Lewis JA, et al. Characterization of interactions between CTX-M-15 and clavulanic acid, desfuroylceftiofur, ceftiofur, ampicillin, and nitrocefin[J]. Int J Mol Sci, 2022, 23(9): 5229. |
[28] | 梁蕾蕾. 细胞色素P450 4F2与α-生育酚结合机制的分子动力学模拟研究[D]. 长春: 吉林大学, 2023. |
Liang LL. Investigation of the binding mechanism between α-TOH and CYP4F2 using molecular dynamics simulations[D]. Changchun: Jilin University, 2023. | |
[29] | 王瑞歌. HIV-1蛋白酶与抑制剂相互作用的分子动力学模拟研究[D]. 长春: 吉林大学, 2021. |
Wang RG. Study on the interaction between HIV-1 proetase and inhibitors using molecular dynamics simulations[D]. Changchun: Jilin University, 2021. | |
[30] |
Bonnet R. Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes[J]. Antimicrob Agents Chemother, 2004, 48(1): 1-14.
doi: 10.1128/AAC.48.1.1-14.2004 pmid: 14693512 |
[31] | Readman JB, Acman M, Hamawandi A, et al. Cefotaxime/sulbactam plus gentamicin as a potential carbapenem- and amikacin-sparing first-line combination for neonatal sepsis in high ESBL prevalence settings[J]. J Antimicrob Chemother, 2023, 78(8): 1882-1890. |
[1] | 史京辉, 陈文慧, 陆坤, 郑婷婷, 任志远, 鲍国庆, 王敏, 骆健美. 定点饱和突变提高赭曲霉11α羟化酶的催化性能[J]. 生物技术通报, 2024, 40(1): 322-331. |
[2] | 周定定, 李辉虎, 汤兴涌, 余发新, 孔丹宇, 刘毅. 甘草酸和甘草苷生物合成与调控的研究进展[J]. 生物技术通报, 2023, 39(5): 44-53. |
[3] | 赵子玉, 王春光, 吕建存, 李继开, 张铁. 超广谱β-内酰胺酶CTX-M-14中药抑制剂的筛选及芸香苷抑酶作用研究[J]. 生物技术通报, 2022, 38(6): 235-244. |
[4] | 孙熙麟, 蒋振彦, 刘志屹, 戴璐, 孙非, 黄伟. 氨基酸定点突变提高灵芝蛋白LZ-8热稳定性的研究[J]. 生物技术通报, 2020, 36(1): 23-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||