生物技术通报 ›› 2024, Vol. 40 ›› Issue (10): 149-159.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0284
王凤婷1(), 赵福顺2, 乔凯彬1, 徐珣1, 刘金亮1()
收稿日期:
2024-03-21
出版日期:
2024-10-26
发布日期:
2024-11-20
通讯作者:
刘金亮,男,博士,教授,研究方向:植物病理学;E-mail: jlliu@jlu.edu.cn作者简介:
王凤婷,女,博士,高级实验师,研究方向:蔬菜学;E-mail: wft1001@jlu.edu.cn
基金资助:
WANG Feng-ting1(), ZHAO Fu-shun2, QIAO Kai-bin1, XU Xun1, LIU Jin-liang1()
Received:
2024-03-21
Published:
2024-10-26
Online:
2024-11-20
摘要:
嫁接技术是园艺作物增产、改良品质和增强抗逆性最经济有效的手段之一,其应用范围仍在不断扩大。除了要求嫁接技术不断提高外,还需进一步探索嫁接亲和性与砧穗互作的机制。嫁接成活包括一系列的生理、生化过程,嫁接激活、激素通路或参与维管束形成相关基因都有可能参与嫁接组织的再生重建,明确其调控机制具有重要意义。嫁接是砧木/接穗相互识别与作用的过程,砧穗间长距离信号传导是理解嫁接生理的基础。不同基因型的砧木/接穗嫁接组合,嫁接植株在生长发育、表型、产量及胁迫抗性方面表现不同。本文就蔬菜嫁接砧穗互作分子机制的研究进展进行综述,如嫁接成活、砧穗间遗传信号传递、嫁接与表观遗传变化及嫁接与基因表达,以期为深入研究蔬菜嫁接分子机制提供理论参考,为砧木选择和蔬菜种质材料创新提供指导。
王凤婷, 赵福顺, 乔凯彬, 徐珣, 刘金亮. 蔬菜嫁接砧穗互作分子机制研究进展[J]. 生物技术通报, 2024, 40(10): 149-159.
WANG Feng-ting, ZHAO Fu-shun, QIAO Kai-bin, XU Xun, LIU Jin-liang. Progress on the Molecular Mechanism of Scion-rootstock Interactions in Vegetable Grafting[J]. Biotechnology Bulletin, 2024, 40(10): 149-159.
RNA种类RNA type | 名称 Name | 作用 Function | 蔬菜名称 Species | 运动方向 Moving direction | 参考文献 Reference |
---|---|---|---|---|---|
mRNA | NACP | 影响顶端组织分化Affect the apical meristem | 南瓜Pumpkin | 砧木到接穗Rootstock to scion | [ |
Homeobox1 | 调控块茎生长Regulate tuber growth | 马铃薯Potato | 砧木到接穗Rootstock to scion | [ | |
IAA18/28 | 影响根生长Affect root growth | 甜瓜Melon | 接穗到砧木Scion to rootstock | [ | |
GAI | 影响顶端组织分化Affect the apical meristem | 南瓜Pumpkin | 接穗韧皮部到茎尖Scion phloem to shoot | [ | |
BEL11 | 抑制块茎的生长Inhibit tuber growth | 马铃薯Potato | 接穗到砧木Scion to rootstock | [ | |
BEL29 | 抑制块茎的生长Inhibit tuber growth | 马铃薯Potato | 接穗到砧木Scion to rootstock | [ | |
PS | 抗灰霉病菌Resist to gray mold | 番茄Tomato | 双向运输Bidirectional movement | [ | |
miRNA | miR399 | 稳定磷元素Stabilize phosphorus | 油菜,南瓜 Rape, pumpkin | 接穗到砧木Scion to rootstock | [ |
miR395 | 稳定硫元素Stabilize sulfur | 油菜Rape | 接穗到砧木Scion to rootstock | [ | |
miR172 | 调控花和块茎的生长 Regulate the growth of flower and tuber | 马铃薯Potato | 接穗到砧木Scion to rootstock | [ | |
miR156 | 影响叶片形态和块茎生长 Affect leaf morphology and tuber growth | 马铃薯Potato | 接穗到砧木Scion to rootstock | [ | |
miR408 | 稳定铜元素Stabilize copper | 西瓜Watermelon | 砧木到接穗Rootstock to scion | [ | |
siRNA | siRNA | DNA甲基化DNA methylation | 番茄Tomato | 双向运输Bidirectional movement | [ |
siRNA | 影响病毒Affect virus | 番茄Tomato | 砧木到接穗Rootstock to scion | [ | |
lncRNA | lncRNA | 稳定磷元素Stabilize phosphorus | 黄瓜Cucumber | 接穗到砧木Scion to rootstock | [ |
表1 砧穗间RNAs的转运
Table 1 The movement of RNAs between rootstock and scion
RNA种类RNA type | 名称 Name | 作用 Function | 蔬菜名称 Species | 运动方向 Moving direction | 参考文献 Reference |
---|---|---|---|---|---|
mRNA | NACP | 影响顶端组织分化Affect the apical meristem | 南瓜Pumpkin | 砧木到接穗Rootstock to scion | [ |
Homeobox1 | 调控块茎生长Regulate tuber growth | 马铃薯Potato | 砧木到接穗Rootstock to scion | [ | |
IAA18/28 | 影响根生长Affect root growth | 甜瓜Melon | 接穗到砧木Scion to rootstock | [ | |
GAI | 影响顶端组织分化Affect the apical meristem | 南瓜Pumpkin | 接穗韧皮部到茎尖Scion phloem to shoot | [ | |
BEL11 | 抑制块茎的生长Inhibit tuber growth | 马铃薯Potato | 接穗到砧木Scion to rootstock | [ | |
BEL29 | 抑制块茎的生长Inhibit tuber growth | 马铃薯Potato | 接穗到砧木Scion to rootstock | [ | |
PS | 抗灰霉病菌Resist to gray mold | 番茄Tomato | 双向运输Bidirectional movement | [ | |
miRNA | miR399 | 稳定磷元素Stabilize phosphorus | 油菜,南瓜 Rape, pumpkin | 接穗到砧木Scion to rootstock | [ |
miR395 | 稳定硫元素Stabilize sulfur | 油菜Rape | 接穗到砧木Scion to rootstock | [ | |
miR172 | 调控花和块茎的生长 Regulate the growth of flower and tuber | 马铃薯Potato | 接穗到砧木Scion to rootstock | [ | |
miR156 | 影响叶片形态和块茎生长 Affect leaf morphology and tuber growth | 马铃薯Potato | 接穗到砧木Scion to rootstock | [ | |
miR408 | 稳定铜元素Stabilize copper | 西瓜Watermelon | 砧木到接穗Rootstock to scion | [ | |
siRNA | siRNA | DNA甲基化DNA methylation | 番茄Tomato | 双向运输Bidirectional movement | [ |
siRNA | 影响病毒Affect virus | 番茄Tomato | 砧木到接穗Rootstock to scion | [ | |
lncRNA | lncRNA | 稳定磷元素Stabilize phosphorus | 黄瓜Cucumber | 接穗到砧木Scion to rootstock | [ |
[1] | Bithell SL, Condè B, Traynor M, et al. Grafting for soilborne disease management in Australian vegetable production systems-a review[J]. Australas Plant Pathol, 2013, 42(3): 329-336. |
[2] | Keinath AP, Agudelo PA. Retention of resistance to Fusarium oxysporum f. sp. niveum in cucurbit rootstocks infected by Meloidogyne incognita[J]. Plant Dis, 2018, 102(9): 1820-1827. |
[3] | Penella C, Landi M, Guidi L, et al. Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength[J]. J Plant Physiol, 2016, 193:1-11. |
[4] |
Bőhm V, Fekete D, Balázs G, et al. Salinity tolerance of grafted watermelon seedlings[J]. Acta Biol Hung, 2017, 68(4): 412-427.
doi: 10.1556/018.68.2017.4.7 pmid: 29262705 |
[5] | Nilsen ET, Freeman J, Grene R, et al. A rootstock provides water conservation for a grafted commercial tomato(Solanum lycopersicum L.) line in response to mild-drought conditions: a focus on vegetative growth and photosynthetic parameters[J]. PLoS One, 2014, 9(12): e115380. |
[6] | Padilla YG, Gisbert-Mullor R, López-Serrano L, et al. Grafting enhances pepper water stress tolerance by improving photosynthesis and antioxidant defense systems[J]. Antioxidants, 2021, 10(4): 576. |
[7] | Guo ZX, Qin YP, Lv JL, et al. Luffa rootstock enhances salt tolerance and improves yield and quality of grafted cucumber plants by reducing sodium transport to the shoot[J]. Environ Pollut, 2023, 316(Pt1): 120521. |
[8] | Tietel Z, Srivastava S, Fait A, et al. Impact of scion/rootstock reciprocal effects on metabolomics of fruit juice and phloem sap in grafted Citrus reticulata[J]. PLoS One, 2020, 15(1): e0227192. |
[9] | Fredes A, Roselló S, Beltrán J, et al. Fruit quality assessment of watermelons grafted onto citron melon rootstock[J]. J Sci Food Agric, 2017, 97(5): 1646-1655. |
[10] | Fallik E, Ziv C. How rootstock/scion combinations affect watermelon fruit quality after harvest?[J]. J Sci Food Agric, 2020, 100(8): 3275-3282. |
[11] | Garcia-Lozano M, Dutta SK, Natarajan P, et al. Transcriptome changes in reciprocal grafts involving watermelon and bottle gourd reveal molecular mechanisms involved in increase of the fruit size, rind toughness and soluble solids[J]. Plant Mol Biol, 2020, 102(1/2): 213-223. |
[12] | Darré M, Valerga L, Zaro MJ, et al. Eggplant grafting on a cold-tolerant rootstock reduces fruit chilling susceptibility and improves antioxidant stability during storage[J]. J Sci Food Agric, 2022, 102(8): 3350-3358. |
[13] |
Goldschmidt EE. Plant grafting: new mechanisms, evolutionary implications[J]. Front Plant Sci, 2014, 5: 727.
doi: 10.3389/fpls.2014.00727 pmid: 25566298 |
[14] |
Nawaz MA, Imtiaz M, Kong QS, et al. Grafting: A technique to modify ion accumulation in horticultural crops[J]. Front Plant Sci, 2016, 7: 1457.
pmid: 27818663 |
[15] | Zhang KW, Novak O, Wei ZY, et al. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins[J]. Nat Commun, 2014, 5: 3274. |
[16] | Melnyk CW. Grafting with Arabidopsis thaliana[M]// Plant Hormones. New York: Humana Press, 2017: 9-18. |
[17] |
Melnyk CW. Plant grafting: insights into tissue regeneration[J]. Regeneration, 2017, 4(1): 3-14.
doi: 10.1002/reg2.71 pmid: 28316790 |
[18] | Melnyk CW, Gabel A, Hardcastle TJ, et al. Transcriptome dynamics at Arabidopsis graft junctions reveal an intertissue recognition mechanism that activates vascular regeneration[J]. Proc Natl Acad Sci USA, 2018, 115(10): E2447-e2456. |
[19] | Melnyk CW, Schuster C, Leyser O, et al. A developmental framework for graft formation and vascular reconnection in Arabidopsis thaliana[J]. Curr Biol, 2015, 25(10): 1306-1318. |
[20] | Jeffree CE, Yeoman MM. Development of intercellular connections between opposing cells in a graft union[J]. New Phytol, 1983, 93(4): 491-509. |
[21] | Thomas HR, Gevorgyan A, Frank MH. Anatomical and biophysical basis for graft incompatibility within the Solanaceae[J]. J Exp Bot, 2023, 74(15): 4461-4470. |
[22] |
Notaguchi M, Kurotani KI, Sato Y, et al. Cell-cell adhesion in plant grafting is facilitated by β-1,4-glucanases[J]. Science, 2020, 369(6504): 698-702.
doi: 10.1126/science.abc3710 pmid: 32764072 |
[23] |
Wulf KE, Reid JB, Foo E. What drives interspecies graft union success? Exploring the role of phylogenetic relatedness and stem anatomy[J]. Physiol Plant, 2020, 170(1): 132-147.
doi: 10.1111/ppl.13118 pmid: 32385889 |
[24] |
Yin H, Yan B, Sun J, et al. Graft-union development: a delicate process that involves cell-cell communication between scion and stock for local auxin accumulation[J]. J Exp Bot, 2012, 63(11): 4219-4232.
doi: 10.1093/jxb/ers109 pmid: 22511803 |
[25] | Bonke M, Thitamadee S, Mähönen AP, et al. APL regulates vascular tissue identity in Arabidopsis[J]. Nature, 2003, 426(6963): 181-186. |
[26] |
Whitford R, Fernandez A, De Groodt R, et al. Plant CLE peptides from two distinct functional classes synergistically induce division of vascular cells[J]. Proc Natl Acad Sci USA, 2008, 105(47): 18625-18630.
doi: 10.1073/pnas.0809395105 pmid: 19011104 |
[27] |
Saito M, Kondo Y, Fukuda H. BES1 and BZR1 redundantly promote phloem and xylem differentiation[J]. Plant Cell Physiol, 2018, 59(3): 590-600.
doi: 10.1093/pcp/pcy012 pmid: 29385529 |
[28] | Anne P, Azzopardi M, Gissot L, et al. OCTOPUS negatively regulates BIN2 to control phloem differentiation in Arabidopsis thaliana[J]. Curr Biol, 2015, 25(19): 2584-2590. |
[29] | Kurotani KI, Wakatake T, Ichihashi Y, et al. Host-parasite tissue adhesion by a secreted type of β-1,4-glucanase in the parasitic plant Phtheirospermum japonicum[J]. Commun Biol, 2020, 3(1): 407. |
[30] | Luo GB, Huang XR, Chen JW, et al. Systematic analysis of the grafting-related glucanase-encoding GH9 family genes in pepper, tomato and tobacco[J]. Plants, 2022, 11(16): 2092. |
[31] | Thomas HR, Gevorgyan A, Hermanson A, et al. Graft incompatibility between pepper and tomato can be attributed to genetic incompatibility between diverged immune systems[J]. bioRxiv, 2024: 2024.03.29.587379. |
[32] | Thomas H, Van den Broeck L, Spurney R, et al. Gene regulatory networks for compatible versus incompatible grafts identify a role for SlWOX4 during junction formation[J]. Plant Cell, 2022, 34(1): 535-556. |
[33] | Rasool A, Mansoor S, Bhat KM, et al. Mechanisms underlying graft union formation and rootstock scion interaction in horticultural plants[J]. Front Plant Sci, 2020, 11: 590847. |
[34] |
Nanda AK, Melnyk CW. The role of plant hormones during grafting[J]. J Plant Res, 2018, 131(1): 49-58.
doi: 10.1007/s10265-017-0994-5 pmid: 29181647 |
[35] |
Liu Q, Wang XR, Zhao Y, et al. Transcriptome and physiological analyses reveal new insights into delayed incompatibility formed by interspecific grafting[J]. Sci Rep, 2023, 13(1): 4574.
doi: 10.1038/s41598-023-31804-4 pmid: 36941326 |
[36] |
Mähönen AP, Bishopp A, Higuchi M, et al. Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development[J]. Science, 2006, 311(5757): 94-98.
doi: 10.1126/science.1118875 pmid: 16400151 |
[37] |
Jeffs RA, Northcote DH. Experimental induction of vascular tissue in an undifferentiated plant callus[J]. Biochem J, 1966, 101(1): 146-152.
pmid: 5971774 |
[38] | Sharma A, Zheng BS. Molecular responses during plant grafting and its regulation by auxins, cytokinins, and gibberellins[J]. Biomolecules, 2019, 9(9): 397. |
[39] |
Armengot L, Marquès-Bueno MM, Jaillais Y. Regulation of polar auxin transport by protein and lipid kinases[J]. J Exp Bot, 2016, 67(14): 4015-4037.
doi: 10.1093/jxb/erw216 pmid: 27242371 |
[40] |
Ivanchenko MG, Zhu JS, Wang BJ, et al. The cyclophilin A DIAGEOTROPICA gene affects auxin transport in both root and shoot to control lateral root formation[J]. Development, 2015, 142(4): 712-721.
doi: 10.1242/dev.113225 pmid: 25617431 |
[41] | Yuan MZ, Jin T, Wu JQ, et al. IAA-miR164a-NAC100L1 module mediates symbiotic incompatibility of cucumber/pumpkin grafted seedlings through regulating callose deposition[J]. Hortic Res, 2023, 11(2): uhad287. |
[42] |
Liu YS. Historical and modern genetics of plant graft hybridization[J]. Adv Genet, 2006, 56: 101-129.
pmid: 16735156 |
[43] |
Liu YS. Darwin's pangenesis and graft hybridization[J]. Adv Genet, 2018, 102: 27-66.
doi: S0065-2660(18)30007-5 pmid: 30122234 |
[44] |
Hao JJ, Jia XH, Yu JW, et al. Direct visualization of horizontal gene transfer in cotton plants[J]. J Hered, 2014, 105(6): 834-836.
doi: 10.1093/jhered/esu052 pmid: 25160847 |
[45] |
Stegemann S, Bock R. Exchange of genetic material between cells in plant tissue grafts[J]. Science, 2009, 324(5927): 649-651.
doi: 10.1126/science.1170397 pmid: 19407205 |
[46] |
Stegemann S, Keuthe M, Greiner S, et al. Horizontal transfer of chloroplast genomes between plant species[J]. Proc Natl Acad Sci USA, 2012, 109(7): 2434-2438.
doi: 10.1073/pnas.1114076109 pmid: 22308367 |
[47] | Fuentes I, Stegemann S, Golczyk H, et al. Horizontal genome transfer as an asexual path to the formation of new species[J]. Nature, 2014, 511(7508): 232-235. |
[48] |
Lu YH, Stegemann S, Agrawal S, et al. Horizontal transfer of a synthetic metabolic pathway between plant species[J]. Curr Biol, 2017, 27(19): 3034-3041.e3.
doi: S0960-9822(17)31082-5 pmid: 28943084 |
[49] |
Haroldsen VM, Chi-Ham CL, Bennett AB. Transgene mobilization and regulatory uncertainty for non-GE fruit products of transgenic rootstocks[J]. J Biotechnol, 2012, 161(3): 349-353.
doi: 10.1016/j.jbiotec.2012.06.017 pmid: 22749907 |
[50] |
Ruiz-Medrano R, Xoconostle-Cázares B, Lucas WJ. Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants[J]. Development, 1999, 126(20): 4405-4419.
doi: 10.1242/dev.126.20.4405 pmid: 10498677 |
[51] |
Ghate TH, Sharma P, Kondhare KR, et al. The mobile RNAs, StBEL11 and StBEL29, suppress growth of tubers in potato[J]. Plant Mol Biol, 2017, 93(6): 563-578.
doi: 10.1007/s11103-016-0582-4 pmid: 28084609 |
[52] |
Omid A, Keilin T, Glass A, et al. Characterization of phloem-sap transcription profile in melon plants[J]. J Exp Bot, 2007, 58(13): 3645-3656.
doi: 10.1093/jxb/erm214 pmid: 17928373 |
[53] |
Haywood V, Yu TS, Huang NC, et al. Phloem long-distance trafficking of gibberellic acid-insensitive RNA regulates leaf development[J]. Plant J, 2005, 42(1): 49-68.
doi: 10.1111/j.1365-313X.2005.02351.x pmid: 15773853 |
[54] |
Zhang HY, Yu PL, Zhao JH, et al. Expression of tomato prosystemin gene in Arabidopsis reveals systemic translocation of its mRNA and confers necrotrophic fungal resistance[J]. New Phytol, 2018, 217(2): 799-812.
doi: 10.1111/nph.14858 pmid: 29105094 |
[55] | Pant BD, Buhtz A, Kehr J, et al. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis[J]. Plant J, 2008, 53(5): 731-738. |
[56] |
Buhtz A, Pieritz J, Springer F, et al. Phloem small RNAs, nutrient stress responses, and systemic mobility[J]. BMC Plant Biol, 2010, 10: 64.
doi: 10.1186/1471-2229-10-64 pmid: 20388194 |
[57] |
Martin A, Adam H, Díaz-Mendoza M, et al. Graft-transmissible induction of potato tuberization by the microRNA miR172[J]. Development, 2009, 136(17): 2873-2881.
doi: 10.1242/dev.031658 pmid: 19666819 |
[58] |
Bhogale S, Mahajan AS, Natarajan B, et al. MicroRNA156: a potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena[J]. Plant Physiol, 2014, 164(2): 1011-1027.
doi: 10.1104/pp.113.230714 pmid: 24351688 |
[59] | Liu N, Yang JH, Guo SG, et al. Genome-wide identification and comparative analysis of conserved and novel microRNAs in grafted watermelon by high-throughput sequencing[J]. PLoS One, 2013, 8(2): e57359. |
[60] |
Kundariya H, Yang XD, Morton K, et al. MSH1-induced heritable enhanced growth vigor through grafting is associated with the RdDM pathway in plants[J]. Nat Commun, 2020, 11: 5343.
doi: 10.1038/s41467-020-19140-x pmid: 33093443 |
[61] | Spanò R, Mascia T, Kormelink R, et al. Grafting on a non-transgenic tolerant tomato variety confers resistance to the infection of a Sw5-breaking strain of tomato spotted wilt virus via RNA silencing[J]. PLoS One, 2015, 10(10): e0141319. |
[62] |
Zhang GH, Mao ZC, Wang Q, et al. Comprehensive transcriptome profiling and phenotyping of rootstock and scion in a tomato/potato heterografting system[J]. Physiol Plant, 2019, 166(3): 833-847.
doi: 10.1111/ppl.12858 pmid: 30357855 |
[63] |
Li WJ, Chen SM, Liu Y, et al. Long-distance transport RNAs between rootstocks and scions and graft hybridization[J]. Planta, 2022, 255(5): 96.
doi: 10.1007/s00425-022-03863-w pmid: 35348893 |
[64] |
Cheng SLH, Xu HY, Ng JHT, et al. Systemic movement of long non-coding RNA ELENA1 attenuates leaf senescence under nitrogen deficiency[J]. Nat Plants, 2023, 9(10): 1598-1606.
doi: 10.1038/s41477-023-01521-x pmid: 37735255 |
[65] |
Notaguchi M. Identification of phloem-mobile mRNA[J]. J Plant Res, 2015, 128(1): 27-35.
doi: 10.1007/s10265-014-0675-6 pmid: 25516498 |
[66] | Notaguchi M, Wolf S, Lucas WJ. Phloem-mobile Aux/IAA transcripts target to the root tip and modify root architecture[J]. J Integr Plant Biol, 2012, 54(10): 760-772. |
[67] | Melnyk CW, Molnar A, Bassett A, et al. Mobile 24 nt small RNAs direct transcriptional gene silencing in the root meristems of Arabidopsis thaliana[J]. Curr Biol, 2011, 21(19): 1678-1683. |
[68] | Borges F, Martienssen RA. The expanding world of small RNAs in plants[J]. Nat Rev Mol Cell Biol, 2015, 16(12): 727-741. |
[69] | 邓竹英. 拟南芥/本生烟草远缘嫁接亲和机理研究[D]. 荆州: 长江大学, 2022. |
Deng ZY. Grafting compatibility of Arabidopsis/nicotina benthamiana hetero-grafting system[D]. Jingzhou: Yangtze University, 2022. | |
[70] |
Molnar A, Melnyk CW, Bassett A, et al. Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells[J]. Science, 2010, 328(5980): 872-875.
doi: 10.1126/science.1187959 pmid: 20413459 |
[71] |
Xie M, Yu B. siRNA-directed DNA methylation in plants[J]. Curr Genomics, 2015, 16(1): 23-31.
doi: 10.2174/1389202915666141128002211 pmid: 25937811 |
[72] | Kasai A, Sano T, Harada T. Scion on a stock producing siRNAs of potato spindle tuber viroid(PSTVd)attenuates accumulation of the viroid[J]. PLoS One, 2013, 8(2): e57736. |
[73] |
Wang J, Jiang LB, Wu RL. Plant grafting: how genetic exchange promotes vascular reconnection[J]. New Phytol, 2017, 214(1): 56-65.
doi: 10.1111/nph.14383 pmid: 27991666 |
[74] |
Tamiru M, Hardcastle TJ, Lewsey MG. Regulation of genome-wide DNA methylation by mobile small RNAs[J]. New Phytol, 2018, 217(2): 540-546.
doi: 10.1111/nph.14874 pmid: 29105762 |
[75] | Lewsey MG, Hardcastle TJ, Melnyk CW, et al. Mobile small RNAs regulate genome-wide DNA methylation[J]. Proc Natl Acad Sci USA, 2016, 113(6): E801-E810. |
[76] |
Varotto S, Tani E, Abraham E, et al. Epigenetics: possible applications in climate-smart crop breeding[J]. J Exp Bot, 2020, 71(17): 5223-5236.
doi: 10.1093/jxb/eraa188 pmid: 32279074 |
[77] | Wu R, Wang XR, Lin Y, et al. Inter-species grafting caused extensive and heritable alterations of DNA methylation in Solanaceae plants[J]. PLoS One, 2013, 8(4): e61995. |
[78] | Avramidou E, Kapazoglou A, Aravanopoulos FA, et al. Global DNA methylation changes in Cucurbitaceae inter-species grafting[J]. Crop Breed Appl Biotechnol, 2015, 15(2): 112-116. |
[79] | Cao LW, Yu NN, Li JX, et al. Heritability and reversibility of DNA methylation induced by in vitro grafting between Brassica juncea and B. oleracea[J]. Sci Rep, 2016, 6: 27233. |
[80] | Fuentes-Merlos MI, Bamba M, Sato S, et al. Self-grafting-induced epigenetic changes leading to drought stress tolerance in tomato plants[J]. DNA Res, 2023, 30(4): dsad016. |
[81] | Cerruti E, Gisbert C, Drost HG, et al. Grafting vigour is associated with DNA de-methylation in eggplant[J]. Hortic Res, 2021, 8(1): 241. |
[82] |
Xanthopoulou A, Tsaballa A, Ganopoulos I, et al. Intra-species grafting induces epigenetic and metabolic changes accompanied by alterations in fruit size and shape of Cucurbita pepo L.[J]. Plant Growth Regul, 2019, 87(1): 93-108.
doi: 10.1007/s10725-018-0456-7 |
[83] | 曹丽雯. 榨菜与紫甘蓝嵌合体后代变异性状发生的分子机理研究[D]. 杭州: 浙江大学, 2018. |
Cao LW. Studies on the molecular mechanism of phenotypic variations in the progenies of chimeras produced by in vitro grafting between Brassica juncea and B. Oleracea[D]. Hangzhou: Zhejiang University, 2018. | |
[84] | Zhang XY, Yazaki J, Sundaresan A, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis[J]. Cell, 2006, 126(6): 1189-1201. |
[85] | Li XJ, Wang Y, Zhang LL, et al. Heritable variation and small RNAs in the progeny of chimeras of Brassica juncea and Brassica oleracea[J]. J Exp Bot, 2013, 64(16): 4851-4862. |
[86] |
Li CH, Li YS, Bai LQ, et al. Grafting-responsive miRNAs in cucumber and pumpkin seedlings identified by high-throughput sequencing at whole genome level[J]. Physiol Plant, 2014, 151(4): 406-422.
doi: 10.1111/ppl.12122 pmid: 24279842 |
[87] | Kumari A, Kumar J, Kumar A, et al. Grafting triggers differential responses between scion and rootstock[J]. PLoS One, 2015, 10(4): e0124438. |
[88] | Davoudi M, Song MF, Zhang MR, et al. Long-distance control of pumpkin rootstock over cucumber scion under drought stress as revealed by transcriptome sequencing and mobile mRNAs identifications[J]. Hortic Res, 2022, 9: uhab033. |
[89] | Zhang GH, Zhou JH, Song J, et al. Grafting-induced transcriptome changes and long-distance mRNA movement in the potato/Datura stramonium heterograft system[J]. Hortic Environ Biotechnol, 2022, 63(2): 229-238. |
[90] | Zhao LL, Liu AQ, Song TF, et al. Transcriptome analysis reveals the effects of grafting on sugar and α-linolenic acid metabolisms in fruits of cucumber with two different rootstocks[J]. Plant Physiol Biochem, 2018, 130: 289-302. |
[91] |
Liu N, Yang JH, Fu XX, et al. Genome-wide identification and comparative analysis of grafting-responsive mRNA in watermelon grafted onto bottle gourd and squash rootstocks by high-throughput sequencing[J]. Mol Genet Genomics, 2016, 291(2): 621-633.
doi: 10.1007/s00438-015-1132-5 pmid: 26500104 |
[92] |
Spanò R, Ferrara M, Montemurro C, et al. Grafting alters tomato transcriptome and enhances tolerance to an airborne virus infection[J]. Sci Rep, 2020, 10(1): 2538.
doi: 10.1038/s41598-020-59421-5 pmid: 32054920 |
[93] |
Wang H, Zhou P, Zhu WY, et al. De novo comparative transcriptome analysis of genes differentially expressed in the scion of homografted and heterografted tomato seedlings[J]. Sci Rep, 2019, 9(1): 20240.
doi: 10.1038/s41598-019-56563-z pmid: 31882801 |
[94] |
Ntatsi G, Savvas D, Papasotiropoulos V, et al. Rootstock sub-optimal temperature tolerance determines transcriptomic responses after long-term root cooling in rootstocks and scions of grafted tomato plants[J]. Front Plant Sci, 2017, 8: 911.
doi: 10.3389/fpls.2017.00911 pmid: 28642763 |
[95] |
Liu C, Jia YH, He LX, et al. Integrated transcriptome and DNA methylome analysis reveal the biological base of increased resistance to gray leaf spot and growth inhibition in interspecific grafted tomato scions[J]. BMC Plant Biol, 2024, 24(1): 130.
doi: 10.1186/s12870-024-04764-8 pmid: 38383283 |
[96] | Thakur V, Sharma P, Kumar P, et al. Rootstock scion interaction studies on various horticultural attributes of pomato grafts under protected structures[J]. Heliyon, 2024, 10(10): e30930. |
[97] | Tsaballa A, Athanasiadis C, Pasentsis K, et al. Molecular studies of inheritable grafting induced changes in pepper(Capsicum annuum)fruit shape[J]. Sci Hortic, 2013, 149: 2-8. |
[98] |
Tsaballa A, Pasentsis K, Darzentas N, et al. Multiple evidence for the role of an Ovate-like gene in determining fruit shape in pepper[J]. BMC Plant Biol, 2011, 11: 46.
doi: 10.1186/1471-2229-11-46 pmid: 21401913 |
[99] |
Haroldsen VM, Szczerba MW, Aktas H, et al. Mobility of transgenic nucleic acids and proteins within grafted rootstocks for agricultural improvement[J]. Front Plant Sci, 2012, 3: 39.
doi: 10.3389/fpls.2012.00039 pmid: 22645583 |
[1] | 胡永波, 雷雨田, 杨永森, 陈馨, 林黄昉, 林碧英, 刘爽, 毕格, 申宝营. 黄瓜和南瓜Bcl-2相关抗凋亡家族全基因组鉴定与表达模式分析[J]. 生物技术通报, 2024, 40(6): 219-237. |
[2] | 徐红云, 张恩辉, 于存. 柽柳ThWRKY4转录因子结合ARR1AT元件调控基因表达[J]. 生物技术通报, 2021, 37(3): 18-26. |
[3] | 赵琳, 王璞, 吴琦, 宋瑞瑞, 兰韬, 云振宇. 非生物胁迫下植物组蛋白修饰参与基因表达调控的研究进展[J]. 生物技术通报, 2020, 36(7): 182-189. |
[4] | 吴霄, 庄站伟, 马晓莉, 黄思秀, 李紫聪, 徐铮. 核移植介导的哺乳动物体细胞核重编程研究进展[J]. 生物技术通报, 2019, 35(11): 187-194. |
[5] | 徐以华, 黎起秦, 刘连盟, 王玲, 丁新华, 侯雨萱, 黄世文. 水稻/拟南芥防御病原细菌入侵的表观遗传调控研究进展[J]. 生物技术通报, 2018, 34(2): 87-95. |
[6] | 熊莹喆, 曹苑青, 肖玲慧, 李招发. 基于核糖开关的新型基因表达调控系统的应用[J]. 生物技术通报, 2017, 33(2): 41-46. |
[7] | 庞庆霄, 梁泉峰, 祁庆生. 合成生物学开关在代谢工程中的应用[J]. 生物技术通报, 2017, 33(1): 58-64. |
[8] | 陈红伟, 李英伦, 刘娟, 吴俊伟, 黄庆洲. 抗菌肽的临床应用与内源性表达调控研究进展[J]. 生物技术通报, 2014, 30(4): 25-29. |
[9] | 李宏. 基因组稳定性与iPS细胞重编程的分子机制[J]. 生物技术通报, 2013, 29(12): 36-42. |
[10] | 陈秀莉;马利兵;. DNA甲基化与基因表达调节[J]. , 2010, 0(05): 7-10. |
[11] | 王少伟;李锡香;. 核糖开关的结构和调控机理[J]. , 2010, 0(05): 16-22. |
[12] | 姚绛;罗玉萍;李思光;. 与肿瘤相关的MicroRNA研究进展[J]. , 2008, 0(06): 52-55. |
[13] | 王悦冰;郎志宏;黄大昉;. 内含子对真核基因表达调控的影响[J]. , 2008, 0(04): 1-4. |
[14] | 马莉;陈丽梅;. 植物丝氨酸羟甲基转移酶基因研究进展[J]. , 2008, 0(02): 15-19. |
[15] | 秦云霞;田娥;刘志昕;曾华金. 非编码RNA及其研究进展[J]. , 2004, 0(05): 9-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||