[1] |
Monforte AJ, Diaz A, Caño-Delgado A, et al. The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon[J]. J Exp Bot, 2014, 65(16): 4625-4637.
|
[2] |
Van der Knaap E, Chakrabarti M, Chu YH, et al. What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape[J]. Front Plant Sci, 2014, 5: 227.
|
[3] |
Apri M, Kromdijk J, et al. Modelling cell division and endoreduplication in tomato fruit pericarp[J]. J Theor Biol, 2014, 349: 32-43.
|
[4] |
Cong B, Barrero LS, Tanksley SD. Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication[J]. Nat Genet, 2008, 40(6): 800-804.
|
[5] |
Frary A, Nesbitt TC, Grandillo S, et al. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size[J]. Science, 2000, 289(5476): 85-88.
|
[6] |
Zhang N, Brewer MT, van der Knaap E. Fine mapping of fw3.2 controlling fruit weight in tomato[J]. Theor Appl Genet, 2012, 125(2): 273-284.
|
[7] |
Chakrabarti M, Zhang N, Sauvage C, et al. A cytochrome P450 regulates a domestication trait in cultivated tomato[J]. Proc Natl Acad Sci USA, 2013, 110(42): 17125-17130.
|
[8] |
Mu Q. The cloning and cellular basis of a novel tomato fruit weight gene: Cell Size Regulator(FW11.3/CSR)[D]. Columbus: The Ohio State University, 2015.
|
[9] |
Cong B, Tanksley SD. FW2.2 and cell cycle control in developing tomato fruit: a possible example of gene co-option in the evolution of a novel organ[J]. Plant Mol Biol, 2006, 62(6): 867-880.
|
[10] |
Li Q, Chakrabarti M, Taitano NK, et al. Differential expression of SlKLUH controlling fruit and seed weight is associated with changes in lipid metabolism and photosynthesis-related genes[J]. J Exp Bot, 2021, 72(4): 1225-1244.
|
[11] |
Mu Q, Huang ZJ, Chakrabarti M, et al. Fruit weight is controlled by Cell Size Regulator encoding a novel protein that is expressed in maturing tomato fruits[J]. PLoS Genet, 2017, 13(8): e1006930.
|
[12] |
刘爽. 赤霉素与fasciated在调控番茄心室形成中的作用关系分析[D]. 沈阳: 沈阳农业大学, 2012.
|
|
Liu S. Analysis of the relationship between gibberellin and fasciated in regulating the formation of tomato locule[D]. Shenyang: Shenyang Agricultural University, 2012.
|
[13] |
Xu C, Liberatore KL, MacAlister CA, et al. A cascade of arabinosyltransferases controls shoot meristem size in tomato[J]. Nat Genet, 2015, 47(7): 784-792.
|
[14] |
孙美华. 调控番茄心室数量的fasciated位点基因解析[D]. 沈阳: 沈阳农业大学, 2020.
|
|
Sun MH. Gene analysis of fasciated locus regulating the locule number of tomato[D]. Shenyang: Shenyang Agricultural University, 2020.
|
[15] |
Dai MQ, Zhao Y, Ma Q, et al. The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism[J]. Plant Physiol, 2007, 144(1): 121-133.
|
[16] |
Franco-Zorrilla JM, López-Vidriero I, Carrasco JL, et al. DNA-binding specificities of plant transcription factors and their potential to define target genes[J]. Proc Natl Acad Sci USA, 2014, 111(6): 2367-2372.
|
[17] |
Gross T, Becker A. Transcription factor action orchestrates the complex expression pattern of CRABS CLAW in Arabidopsis[J]. Genes(Basel), 2021, 12(11): 1663.
|
[18] |
Bonaccorso O, Lee JE, Puah L, et al. FILAMENTOUS FLOWER controls lateral organ development by acting as both an activator and a repressor[J]. BMC Plant Biol, 2012, 12: 176.
|
[19] |
Jia DD, Chen LG, Yin GM, et al. Brassinosteroids regulate outer ovule integument growth in part via the control of INNER NO OUTER by BRASSINOZOLE-RESISTANT family transcription factors[J]. J Integr Plant Biol, 2020, 62(8): 1093-1111.
|
[20] |
Siegfried KR, Eshed Y, Baum SF, et al. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis[J]. Development, 1999, 126(18): 4117-4128.
|
[21] |
Ha CM, Jun JH, Fletcher JC. Control of Arabidopsis leaf morphogenesis through regulation of the YABBY and KNOX families of transcription factors[J]. Genetics, 2010, 186(1): 197-206.
|
[22] |
Toriba T, Harada K, Takamura A, et al. Molecular characterization the YABBY gene family in Oryza sativa and expression analysis of OsYABBY1[J]. Mol Genet Genomics, 2007, 277(5): 457-468.
|
[23] |
Dai MQ, Hu YF, Zhao Y, et al. Regulatory networks involving YABBY genes in rice shoot development[J]. Plant Signal Behav, 2007, 2(5): 399-400.
|
[24] |
Toriba T, Hirano HY. The DROOPING LEAF and OsETTIN2 genes promote awn development in rice[J]. Plant J, 2014, 77(4): 616-626.
|
[25] |
Lieberman SL, Ruderman JV. CK2 beta, which inhibits Mos function, binds to a discrete domain in the N-terminus of Mos[J]. Dev Biol, 2004, 268(2): 271-279.
|
[26] |
Homma MK, Wada I, Suzuki T, et al. CK2 phosphorylation of eukaryotic translation initiation factor 5 potentiates cell cycle progression[J]. Proc Natl Acad Sci USA, 2005, 102(43): 15688-15693.
|
[27] |
宛晨晨, 陈元利, 樊婷婷. 蛋白激酶CK2的结构及其生理功能研究进展[J]. 生物工程学报, 2021, 37(12): 4201-4214.
|
|
Wan CC, Chen YL, Fan TT. Advances in the structure and physiological function of protein kinase CK2[J]. Chin J Biotechnol, 2021, 37(12): 4201-4214.
|
[28] |
Velez-Bermudez IC, Irar S, Carretero-Paulet L, et al. Specific characteristics of CK2β regulatory subunits in plants[J]. Mol Cell Biochem, 2011, 356(1/2): 255-260.
|
[29] |
Salinas P, Fuentes D, Vidal E, et al. An extensive survey of CK2 α and β subunits in Arabidopsis: Multiple isoforms exhibit differential subcellular localization[J]. Plant Cell Physiol, 2006, 47(9): 1295-1308.
|
[30] |
Łebska M, Ciesielski A, Szymona L, et al. Phosphorylation of maize eukaryotic translation initiation factor 5A(eIF5A)by casein kinase 2: identification of phosphorylated residue and influence on intracellular localization of eIF5A[J]. J Biol Chem, 2010, 285(9): 6217-6226.
|
[31] |
Espunya MC, Combettes B, Dot J, et al. Cell-cycle modulation of CK2 activity in tobacco BY-2 cells[J]. Plant J, 1999, 19(6): 655-666.
|
[32] |
Tapia JC, Bolanos-Garcia VM, Sayed M, et al. Cell cycle regulatory protein p27KIP1 is a substrate and interacts with the protein kinase CK2[J]. J Cell Biochem, 2004, 91(5): 865-879.
|
[33] |
Yang C, Sofroni K, Wijnker E, et al. The Arabidopsis Cdk1/Cdk2 homolog CDKA;1 controls chromosome axis assembly during plant meiosis[J]. EMBO J, 2020, 39(3): e101625.
|