生物技术通报 ›› 2024, Vol. 40 ›› Issue (9): 249-259.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0253
刘文志1,2(), 贺丹3, 李鹏3, 傅应林1,2, 张译心1,2, 温华杰1,2, 于文清1,2,3()
收稿日期:
2024-03-16
出版日期:
2024-09-26
发布日期:
2024-08-01
通讯作者:
于文清,女,博士,教授,研究方向:植物保护;E-mail: wenqingyu09@163.com作者简介:
刘文志,男,研究员,研究方向:生物防治;E-mail: liuwz19801005@sina.com贺丹为本文共同第一作者
基金资助:
LIU Wen-zhi1,2(), HE Dan3, LI Peng3, FU Ying-lin1,2, ZHANG Yi-xin1,2, WEN Hua-jie1,2, YU Wen-qing1,2,3()
Received:
2024-03-16
Published:
2024-09-26
Online:
2024-08-01
摘要:
【目的】从小麦(Triticum aestivum L)根际筛选到了一株细菌菌株(编号X-11),为该菌株在植物促生上应用提供依据。【方法】结合形态特征、生理生化特性、16S rDNA序列及基因组测序对其进行了鉴定,并测定其对番茄(Solanum lycopersicum)和水稻(Oryza sativa)的促生效应。【结果】该菌株菌落圆形、半透明、凸起、黏稠;菌体杆状,形成芽胞,革兰氏阴性;具有固氮,还原硝酸盐,产吲哚、分泌铁载体及分解有机磷的功能。基于16S rDNA序列比对将X-11菌株归类为多粘类芽胞杆菌种群,基于非冗余蛋白数据库的基因比对表明其与最近缘菌株基因相似率55.7%,证明其为一个新菌株。X-11菌液浸种显著增加了番茄发芽率和胚根伸长度,灌根(R)及灌根结合叶面喷施(R+L)显著提高了番茄叶片中过氧化物酶(POD)活性,R+L处理使超氧化物歧化酶(SOD)活性提高了34.58%。水稻1叶1心期施用X-11菌液,根长增加了6.8%;立针期或1叶1心期施用X-11菌液,使秧苗SOD活性分别提高了90.4%和51.8%。【结论】X-11被鉴定为多粘类芽胞杆菌新菌株,是多种功能的植物根际促生菌,在植物促生方面具有开发应用潜力。
刘文志, 贺丹, 李鹏, 傅应林, 张译心, 温华杰, 于文清. 多粘类芽胞杆菌新菌株X-11及其对番茄和水稻的促生效应[J]. 生物技术通报, 2024, 40(9): 249-259.
LIU Wen-zhi, HE Dan, LI Peng, FU Ying-lin, ZHANG Yi-xin, WEN Hua-jie, YU Wen-qing. Paenibacillus polymyxa New Strain X-11 and Its Growth-promoting Effects on Tomato and Rice[J]. Biotechnology Bulletin, 2024, 40(9): 249-259.
图1 多粘类芽胞杆菌X-11平板菌落形态和显微镜下细胞形态 A和B、C和D、E和F、G和H分别为X-11菌株在阿须贝无氮培养基、硅酸盐细菌培养基、马铃薯葡萄糖培养基、马铃薯蔗糖培养基平板上的菌落形态,I和J分别为X-11在复合培养基中培养24和48 h后细胞在显微镜下的形态
Fig. 1 Morphology of P. polymyxa X-11 colony on plate and cell morphology under microscope A and B, C and D, E and F, G and H, refer to the colony morphology of X-11 strain on the Ashby’s nitrogen-free medium, silicate bacteria medium, potato dextrose medium, potato sucrose medium agar plate, respectively. I and J refer to the morphology of X-11 cell under the microscope after 24-h and 48-h cultivation in complex broth
生理生化反应 Physiological and biochemical reaction | 测定结果 Determination result | 糖酵解反应 Glycolysis reaction | 测定结果 Determination result | |||
---|---|---|---|---|---|---|
产酸Acid production | 产气Aerogenesis | |||||
柠檬酸盐利用 Citrate utilization | + | 葡萄糖Glucose | + | + | ||
酪素水解 Casein hydrolysis | + | 蔗糖 Sucrose | + | + | ||
淀粉水解 Starch hydrolysis | + | 甘露醇 Mannitol | + | + | ||
油脂水解 Lipid hydrolysis | + | 乳糖 Lactose | + | + | ||
明胶水解 Gelatin hydrolysis | + | 山梨醇 Sorbitol | + | + | ||
V-P反应 The V-P reaction | + | 阿拉伯糖 Arabinose | + | + | ||
硝酸盐还原 Nitrate reduction | + | 水杨苷 Salicin | + | + | ||
甲基红变色 Methyl red color | - | 昆布多糖Laminarin | + | + | ||
吲哚试验 Indole test | + | 木聚糖Xylan | + | - | ||
氧化酶活性 Oxidase activity | + | 木糖 Xylose | - | + | ||
接触酶活性 Contactase activity | + | 肌醇 Inositol | - | - | ||
酪氨酸水解 Tyrosine hydrolysis | + | 侧金盏醇 Lateral calendula alcohol | - | - | ||
石蕊牛奶变色 Litmus milk discoloration | + | 甘油 Glycerin | - | - | ||
过氧化氢酶活性 Catalase activity | - |
表1 多粘类芽胞杆菌X-11生理生化特性及糖酵解试验结果
Table 1 Results of physiological and biochemical characteristics and glycolysis test of P. polymyxa X-11
生理生化反应 Physiological and biochemical reaction | 测定结果 Determination result | 糖酵解反应 Glycolysis reaction | 测定结果 Determination result | |||
---|---|---|---|---|---|---|
产酸Acid production | 产气Aerogenesis | |||||
柠檬酸盐利用 Citrate utilization | + | 葡萄糖Glucose | + | + | ||
酪素水解 Casein hydrolysis | + | 蔗糖 Sucrose | + | + | ||
淀粉水解 Starch hydrolysis | + | 甘露醇 Mannitol | + | + | ||
油脂水解 Lipid hydrolysis | + | 乳糖 Lactose | + | + | ||
明胶水解 Gelatin hydrolysis | + | 山梨醇 Sorbitol | + | + | ||
V-P反应 The V-P reaction | + | 阿拉伯糖 Arabinose | + | + | ||
硝酸盐还原 Nitrate reduction | + | 水杨苷 Salicin | + | + | ||
甲基红变色 Methyl red color | - | 昆布多糖Laminarin | + | + | ||
吲哚试验 Indole test | + | 木聚糖Xylan | + | - | ||
氧化酶活性 Oxidase activity | + | 木糖 Xylose | - | + | ||
接触酶活性 Contactase activity | + | 肌醇 Inositol | - | - | ||
酪氨酸水解 Tyrosine hydrolysis | + | 侧金盏醇 Lateral calendula alcohol | - | - | ||
石蕊牛奶变色 Litmus milk discoloration | + | 甘油 Glycerin | - | - | ||
过氧化氢酶活性 Catalase activity | - |
图2 基于16S rDNA的多粘类芽胞杆菌X-11系统发育树(A)与基于非冗余蛋白数据库的X-11与近缘菌株基因分布饼图(B) 系统发育树中(A)菌株前的编码为16S rDNA在NCBI基因库中的登录码,分支处的数字为相邻2个分支的相似性(%)。饼图(B)中数字代表在非冗余蛋白数据库注释上的X-11基因中与各菌株匹配上的数目
Fig. 2 Evolutionary tree of P. polymyxa X-11 based on 16S rDNA(A), and pie diagram of gene distribution of P. polymyxa X-11 and relative strains based on non-redundant protein sequence database(B) In the evolutionary tree(A), the 16S rDNA entry code of the NCBI GenBank was followed by strain name, the number at the branch is the identification rate of the two adjacent strains. The numbers in the pie diagram(B)indicate the number of matches to each strain in the X-11 genes annotated in the non-redundant protein database
图3 不同浓度多粘类芽胞杆菌X-11菌悬液催芽处理下番茄种子发芽率 A:‘粉冠’品种;B:‘金棚1号’品种。不同小写字母代表处理间差异显著(P<0.05)。下同
Fig. 3 Germination rate of tomato seeds under different concentrations of P. polymyxa X-11 suspension A: ‘Fenguan’ variety. B: ‘Jinpeng No. 1’ variety. Different lower letters on the column indicate difference among treatments are significantly(P<0.05). The same below
图4 多粘类芽胞杆菌X-11不同浓度处理下番茄胚根长度 A-I为番茄‘粉冠’品种,J-R为番茄‘金棚1号’品种;B-I和K-R分别为X-11菌悬液稀释1、10、50、100、200、300和1 000倍及空白对照(0)的种子胚根长度
Fig. 4 Radicle length of tomato treated with different concentrations of P. polymyxa X-11 A-I are the ‘Fenguan’ variety, J-R are the ‘Jinpeng No. 1’ variety; B-I and K-R are the seed radicle length of 1, 10, 50, 100, 200, 300, and 1 000 times dilution of X-11 bacterial suspension, and blank control(0), respectively
图5 多粘类芽胞杆菌X-11及多菌灵不同处理方式下番茄叶片防御酶活性 R、L、R+L及Con分别代表叶面喷施、灌根、灌根结合叶面喷施及对照;CA代表多菌灵,X-11代表多粘类芽胞杆菌X-11。柱上不同小写字母代表处理方式间差异显著,不同大写字母代表同一处理方式下CA与X-11之间差异显著(P<0.05)
Fig. 5 Defense enzyme activities of tomato leaves under different treating methods of P. polymyxa X-11 and carbendazim The horizontal coordinate R, L, R+L and Con refers to foliar spraying, root irrigation, root irrigation combined foliar spraying, and control respectively. Legend CA and X-11 refers to carbendazim and P. polymyxa X-11, respectively. Different lowercase letters on the column indicate difference among treatment methods is significantly, and different uppercase letters indicate the difference between CA and X-11 under the same treatment is significant (P<0.05)
图6 多粘类芽胞杆菌X-11菌液不同施用时期的水稻株高(A)及根长(B) V、1、2和Con分别代表立针期、1叶1心期、2叶1心期和对照。下同
Fig. 6 Rice shoot length(A)and root length(B)at different application periods of Paenibacillus polymyxa X-11 The horizontal coordinates V, 1, 2 and Con represent the vertical needle phase, the one-leaf phase, the two-leaves phase and control, respectively. The same below
[1] | Grady EN, Macdonald J, Liu LD, et al. Current knowledge and perspectives of Paenibacillus: a review[J]. Microb Cell Fact, 2016, 15(1): 203. |
[2] |
Bosmans L, De Bruijn I, Gerards S, et al. Potential for biocontrol of hairy root disease by a Paenibacillus clade[J]. Front Microbiol, 2017, 8: 447.
doi: 10.3389/fmicb.2017.00447 pmid: 28382027 |
[3] | 于文清, 肖俊杰, 刘文志, 等. 类芽胞杆菌(Paenibacillus)对植物促生御病机理研究进展[J]. 微生物学杂志, 2020, 40(6): 102-112. |
Yu WQ, Xiao JJ, Liu WZ, et al. Advances in mechanisms of Paenibacillus to promote growth & diseases-defending in plant[J]. J Microbiol, 2020, 40(6): 102-112. | |
[4] | Figueiredo MVB, Burity HA, Martínez CR, et al. Alleviation of drought stress in the common bean(Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici[J]. Appl Soil Ecol, 2008, 40(1): 182-188. |
[5] | 舒灿伟, 卢维盛, 杨琳钧, 等. 克里本类芽孢杆菌航天突变菌株在修复Cd污染中的应用: CN115739977A[P]. 2023-03-07. |
Shu CW, Lu WS, Yang LJ, et al. Application of paenibacillus kribbensis space mutant strain in repairing Cd pollution: CN115739977A[P]. 2023-03-07. | |
[6] | Li Q, Li YS, Liu XM, et al. Paenibacillus sinensis sp. nov., a nitrogen-fixing species isolated from plant rhizospheres[J]. Antonie van Leeuwenhoek, 2022, 115(1): 7-18. |
[7] | Kim YC, Hur JY, Park SK. Biocontrol of Botrytis cinerea by chitin-based cultures of Paenibacillus elgii HOA73[J]. Eur J Plant Pathol, 2019, 155(1): 253-263. |
[8] | 金立. 多粘类芽孢杆菌-甲基营养型芽孢杆菌混配对小麦赤霉病的室内毒力及田间药效评价[J]. 世界农药, 2023, 45(1): 56-60. |
Jin L. Laboratory toxicity and field control efficacy of mixture of Paenibacillus polymyxa and Bacillus methylotrophicus against wheat scab[J]. World Pestic, 2023, 45(1): 56-60. | |
[9] | 丰景, 王锟, 姜明国, 等. 一株皮尔瑞俄类芽孢杆菌挥发性次生代谢产物在农业生产的应用: CN115895940A[P]. 2023-04-04. |
Feng J, Wang K, Jiang MG, et al. Application of peoriae paenibacillus volatile secondary metabolite in agricultural production: CN115895940A[P]. 2023-04-04. | |
[10] | 杨迪, 杜婵娟, 张晋, 等. 香蕉枯萎病拮抗菌的筛选鉴定及其防病效果测定[J]. 南方农业学报, 2023, 54(2): 414-423. |
Yang D, Du CJ, Zhang J, et al. Screening, identification and control efficiency of antagonistic bacteria for banana fusarium wilt[J]. J South Agric, 2023, 54(2): 414-423. | |
[11] | 姜玲, 杨月华, 姜家琳. 多粘类芽孢杆菌在柑桔苗木上控制柑橘黄龙病的应用: CN115968908A[P]. 2023-04-18. |
Jiang L, Yang YH, Jiang JL. Application of Paenibacillus polymyxa in controlling huanglongbing on citrus seedlings: CN115968908A[P]. 2023-04-18. | |
[12] | Judicial Commission of the International Committee on Systematics of Prokaryotes. The type species of the genus Paenibacillus Ash et al. 1994 is Paenibacillus polymyxa. Opinion 77[J]. Int J Syst Evol Microbiol, 2005, 55(Pt1): 513. |
[13] | Hagh Ranjbar H, Hosseini-Abari A, Ghasemi SM, et al. Antibacterial activity of epsilon- poly- l- lysine produced by Stenotrophomonas maltophilia HS4 and Paenibacillus polymyxa HS5, alone and in combination with bacteriophages[J]. Microbiology, 2023, 169(7): 001363. |
[14] | 王分分, 徐哲, 刘浩, 等. 多粘类芽孢杆菌农用菌肥的制备及应用研究[J]. 环境科学与技术, 2020, 43(10): 132-139. |
Wang FF, Xu Z, Liu H, et al. Study on the production and application of Paenibacillus polymyxa biofertilizer[J]. Environ Sci Technol, 2020, 43(10): 132-139. | |
[15] |
Liu H, Li YF, Ge K, et al. Interactional mechanisms of Paenibacillus polymyxa SC2 and pepper(Capsicum annuum L.) suggested by transcriptomics[J]. BMC Microbiol, 2021, 21(1): 70.
doi: 10.1186/s12866-021-02132-2 pmid: 33663386 |
[16] | Li Q, Liu S, Li YB, et al. Nitrogen fixation by Paenibacillus polymyxa WLY78 is responsible for cucumber growth promotion[J]. Plant Soil, 2022, 473(1): 507-516. |
[17] | 陈雪丽, 王光华, 金剑, 等. 多粘类芽孢杆菌BRF-1和枯草芽孢杆菌BRF-2对黄瓜和番茄枯萎病的防治效果[J]. 中国生态农业学报, 2008, 16(2): 446-450. |
Chen XL, Wang GH, Jin J, et al. Biocontrol effect of Paenibacillus polymyxa BRF-1 and Bacillus subtilis BRF-2 on fusarium wilt disease of cucumber and tomato[J]. Chin J Eco Agric, 2008, 16(2): 446-450. | |
[18] | 郭芳芳, 谢镇, 卢鹏, 等. 一株多粘类芽孢杆菌的鉴定及其生防促生效果初步测定[J]. 中国生物防治学报, 2014, 30(4): 489-496. |
Guo FF, Xie Z, Lu P, et al. Identification of a novel Paenibacillus polymyxa strain and its biocontrol and plant growth-promoting effects[J]. Chin J Biol Contr, 2014, 30(4): 489-496. | |
[19] | Zhang QX, Xing CL, Li SY, et al. In vitro antagonism and biocontrol effects of Paenibacillus polymyxa JY1-5 against Botrytis cinerea in tomato[J]. Biol Contr, 2021, 160: 104689. |
[20] |
Abdallah Y, Yang M, Zhang M, et al. Plant growth promotion and suppression of bacterial leaf blight in rice by Paenibacillus polymyxa Sx3[J]. Lett Appl Microbiol, 2019, 68(5): 423-429.
doi: 10.1111/lam.13117 pmid: 30659625 |
[21] |
陈梦多, 胡春艳, 马肖静, 等. 植物根际细菌HQ1-2的根际定殖与土壤微生态调节及枯萎病防治[J]. 中国生物防治学报, 2023, 39(4): 924-932.
doi: 10.16409/j.cnki.2095-039x.2023.02.034 |
Chen MD, Hu CY, Ma XJ, et al. Rhizosphere colonization of plant growth promoting rhizobacteria HQ1-2 and regulation effects of soil microecology and control effects on the Fusarium wilt[J]. Chin J Biol Contr, 2023, 39(4): 924-932. | |
[22] |
Sen M, Sen SP. Interspecific transformation in Azotobacter[J]. J Gen Microbiol, 1965, 41(1): 1-6.
pmid: 5883695 |
[23] | 孙会忠, 宋月芹, 侯小改, 等. 硅酸盐细菌LJP13的分离鉴定及生长特性[J]. 基因组学与应用生物学, 2017, 36(3): 932-937. |
Sun HZ, Song YQ, Hou XG, et al. Isolation identification and growth characteristics of silicate bacterium LJP13[J]. Genom Appl Biol, 2017, 36(3): 932-937. | |
[24] | 于文清, 胡广民, 田艳洪, 等. 土地类芽孢杆菌生物制剂及其在农业上的应用: CN103141517A[P]. 2014-12-10. |
Yu WQ, Hu GM, Tian YH, et al. Paenibacillus terrae biological agent and application thereof in agriculture: CN103141517A[P]. 2014-12-10. | |
[25] | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. |
Dong XZ, Cai MY. Handbook of identification of common bacterterial systems[M]. Beijing: Science Press, 2001. | |
[26] | 于文清, 刘文志, 胡广民, 等. 土地类芽胞杆菌(Paenibacillus terrae)新菌株NK3-4 及其功能[J]. 微生物学通报, 2014, 41(4): 621-628. |
Yu WQ, Liu WZ, Hu GM, et al. Paenibacillus terrae new strain NK3-4 and its functions[J]. Microbiol China, 2014, 41(4): 621-628. | |
[27] | Yu WQ, Zheng GP, Qiu DW, et al. Draft genome sequence, disease-resistance genes, and phenotype of a Paenibacillus terrae strain(NK3-4)with the potential to control plant diseases[J]. Genome, 2018, 61(10): 725-734. |
[28] |
张荣胜, 戴秀华, 刘永锋, 等. 解淀粉芽孢杆菌Lx-11的促水稻生长作用及促生长物质分析[J]. 核农学报, 2018, 32(6): 1230-1238.
doi: 10.11869/j.issn.100-8551.2018.06.1230 |
Zhang RS, Dai XH, Liu YF, et al. Effect and components analysis of cell free supernatant produced by Bacillus amyloliquefaciens strain Lx-11 on rice plant growth-promoting[J]. J Nucl Agric Sci, 2018, 32(6): 1230-1238. | |
[29] | 李静. 三种荒漠盐生植物促生菌筛选及耐盐促生效果评价[D]. 喀什: 喀什大学, 2023. |
Li J. Screening of plant growth promoting and salt tolerant bacteria from three desert halophytes[D]. Kashi: Kashi University, 2023. | |
[30] |
孙淑琴, 李月娇, 李广胜, 等. 几种植物生长调节剂对水稻种子萌发及对秧苗素质的调控效应[J]. 中国农学通报, 2023, 39(33): 1-7.
doi: 10.11924/j.issn.1000-6850.casb2022-0625 |
Sun SQ, Li YJ, Li GS, et al. Regulating effect of several plant growth regulators on seed germination and seedling quality of rice[J]. Chin Agric Sci Bull, 2023, 39(33): 1-7.
doi: 10.11924/j.issn.1000-6850.casb2022-0625 |
|
[31] | 董环宇, 高芳, 王兴溶, 等. 吲哚乙酸、萘乙酸和吲哚丁酸对蔓越莓组培苗扦插生根的影响[J]. 森林工程, 2024, 40(1): 37-43. |
Dong HY, Gao F, Wang XR, et al. Effects of IAA, NAA and IBA on rooting of tissue culture seedlings of cranberry[J]. For Eng, 2024, 40(1): 37-43. | |
[32] | Khayum Ahammed S, Aggarwal R, Kapoor HC. Production, partial purification and characterization of extracelluar xylanase from Chaetomium globosum[J]. J Plant Biochem Biotechnol, 2008, 17(1): 95-98. |
[33] | Li JJ, Liu WC, Luo LJ, et al. Expression of Paenibacillus polymyxa, β-1,3-1,4-glucanase in Streptomyces lydicus, A01 improves its biocontrol effect against Botrytis cinerea[J]. Biol Contr, 2015, 90(12): 141-147. |
[34] | Xu T, Zhu TH, Li SJ. β-1,3-1,4-glucanase gene from Bacillus velezensis ZJ20 exerts antifungal effect on plant pathogenic fungi[J]. World J Microbiol Biotechnol, 2016, 32(2): 26. |
[35] | Zalila-Kolsi I, Sellami S, Tounsi S, et al. Heterologous expression and periplasmic secretion of an antifungal Bacillus amyloliquefaciens-BLB369 endo-β-1,3-1,4-glucanase in Escherichia coli[J]. J Phytopathol, 2018, 166(1): 28-33. |
[36] | Liu XM, Zhao XY, Li XH, et al. Suppression of hesA mutation on nitrogenase activity in Paenibacillus polymyxa WLY78 with the addition of high levels of molybdate or cystine[J]. PeerJ, 2019, 7: e6294. |
[37] | 马夙静. 多粘类芽孢杆菌ZYPP18的分离鉴定与促生防病效果测定[D]. 泰安: 山东农业大学, 2018. |
Ma SJ. Identification and determination the plant growth promoting and biocontrol properties of Paenibacillus polymyxa ZYPP18[D]. Tai'an: Shandong Agricultural University, 2018. | |
[38] | Lebuhn M, Heulin T, Hartmann A. Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa isolated from different proximity to plant roots[J]. FEMS Microbiol Ecol, 2006, 22(4): 325-334. |
[39] | Phi QT, Park YM, Seul KJ, et al. Assessment of root-associated Paenibacillus polymyxa groups on growth promotion and induced systemic resistance in pepper[J]. J Microbiol Biotechnol, 2010, 20(12): 1605-1613. |
[40] | Kwon YS, Lee DY, Rakwal R, et al. Proteomic analyses of the interaction between the plant-growth promoting rhizobacterium Paenibacillus polymyxa E681 and Arabidopsis thaliana[J]. Proteomics, 2016, 16(1): 122-135. |
[41] | 牛永艳, 朱瑞清, 毛婷, 等. 多黏类芽孢杆菌SWS-15玉米促生效果测定及其废水发酵条件优化[J]. 江苏农业科学, 2021, 49(22): 204-209. |
Niu YY, Zhu RQ, Mao T, et al. growth-promoting effects of Bacillus polymyxa SWS-15 on corn and optimization of wastewater fermentation conditions[J]. Jiangsu Agric Sci, 2021, 49(22): 204-209. | |
[42] | 刘守德, 刘华梅, 周莉, 等. 多粘类芽孢杆菌的研究进展[J]. 武汉工程大学学报, 2022, 44(3): 237-243. |
Liu SD, Liu HM, Zhou L, et al. Research progress of Paenibacillus polymyxa[J]. J Wuhan Inst Technol, 2022, 44(3): 237-243. | |
[43] | 胡琼, 任国平. 多粘类芽孢杆菌在植物生产中的应用及作用机制[J]. 北方园艺, 2020(24): 137-144. |
Hu Q, Ren GP. Application and mechanism of Paenibacillus polymyxa in plant production[J]. North Horticulture, 2020(24): 137-144. | |
[44] | 史应武, 娄恺, 李春, 等. 内生多粘类芽孢杆菌S-7对甜菜光合作用及产量和品质的影响[J]. 应用生态学报, 2009, 20(3): 597-602. |
Shi YW, Lou K, Li C, et al. Effects of endophytic Paenibacillus polymyxa S-7 on photosynthesis, yield, and quality of sugar beet[J]. Chin J Appl Ecol, 2009, 20(3): 597-602. | |
[45] | 金美芳, 林茂兹, 陈春香, 等. 多粘类芽孢杆菌S960对番茄生长与光合生理特性的影响[J]. 江西农业大学学报, 2018, 40(5): 941-948. |
Jin MF, Lin MZ, Chen CX, et al. Effects of Paenibacillus polymyxa S960 on the growth and photosynthetic physiological characteristics of tomato[J]. Acta Agric Univ Jiangxiensis, 2018, 40(5): 941-948. |
[1] | 朱诗斐, 刘敬, 张家芊, 黄文坤, 彭德良, 孔令安, 彭焕. 水稻和拟禾本科根结线虫互作分子机制研究进展[J]. 生物技术通报, 2024, 40(9): 172-180. |
[2] | 李庆懋, 彭聪归, 齐笑含, 刘兴蕾, 李臻园, 李沁妍, 黄立钰. 促进水稻铁素吸收的野生稻内生细菌优良菌株的筛选与鉴定[J]. 生物技术通报, 2024, 40(8): 255-263. |
[3] | 孙志勇, 杜怀东, 刘阳, 马嘉欣, 于雪然, 马伟, 姚鑫杰, 王敏, 李培富. 水稻籽粒γ-氨基丁酸含量的全基因组关联分析[J]. 生物技术通报, 2024, 40(8): 53-62. |
[4] | 庞梦真, 徐汉琴, 刘海燕, 宋娟, 王佳涵, 孙丽娜, 姬佩梅, 尹泽芝, 胡又川, 赵晓萌, 梁闪闪, 张泗举, 栾维江. 水稻黄化早抽穗突变体 hz1 的基因鉴定及功能分析[J]. 生物技术通报, 2024, 40(7): 125-136. |
[5] | 张明亚, 庞胜群, 刘玉东, 苏永峰, 牛博文, 韩琼琼. 番茄FAD基因家族的鉴定与表达分析[J]. 生物技术通报, 2024, 40(7): 150-162. |
[6] | 田胜尼, 张琴, 董玉飞, 丁洲, 叶爱华, 张明珠. 酸性矿山废水对成熟期水稻根区理化因子及固氮微生物的影响[J]. 生物技术通报, 2024, 40(6): 271-280. |
[7] | 杨淇, 魏子迪, 宋娟, 童堃, 杨柳, 王佳涵, 刘海燕, 栾维江, 马轩. 水稻组蛋白H1三突变体的创建和转录组学分析[J]. 生物技术通报, 2024, 40(4): 85-96. |
[8] | 李兴容, 谭志兵, 赵燕, 李曜魁, 赵炳然, 唐丽. 水稻低亲和性阳离子转运蛋白基因OsLCT3的克隆与功能研究[J]. 生物技术通报, 2024, 40(4): 97-109. |
[9] | 李雪, 李容欧, 孔美懿, 黄磊. 解淀粉芽孢杆菌SQ-2对水稻的促生作用[J]. 生物技术通报, 2024, 40(2): 109-119. |
[10] | 赵曜, 文朗, 骆少丹, 栗子杏, 刘超超. 番茄HMA基因家族的鉴定及SlHMA1镉转运功能研究[J]. 生物技术通报, 2024, 40(2): 212-222. |
[11] | 王楠, 廖永琴, 施竹凤, 申云鑫, 杨童雨, 冯路遥, 矣小鹏, 唐加菜, 陈齐斌, 杨佩文. 三株无量山森林土壤芽孢杆菌鉴定及其生物活性挖掘[J]. 生物技术通报, 2024, 40(2): 277-288. |
[12] | 邹修为, 岳佳妮, 李志宇, 戴良英, 李魏. 水稻热激转录因子HsfA2b调控非生物胁迫抗性的功能分析[J]. 生物技术通报, 2024, 40(2): 90-98. |
[13] | 张超, 王子瑞, 孙亚丽, 毛馨晨, 唐家琪, 于恒秀. 水稻维生素B1合成相关基因OsTHIC的功能研究[J]. 生物技术通报, 2024, 40(2): 99-108. |
[14] | 贺文闯, 许强, 钱前, 商连光. 水稻泛基因组学的发展与前景:重要工具与应用[J]. 生物技术通报, 2024, 40(10): 1-10. |
[15] | 李欣格, 王美霞, 王晨阳, 马桂根, 周常勇, 王亚南, 周焕斌. 基于CRISPR/LanCas9的水稻基因编辑系统的开发和优化[J]. 生物技术通报, 2024, 40(10): 233-242. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||