生物技术通报 ›› 2025, Vol. 41 ›› Issue (3): 294-307.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0448
• 研究报告 • 上一篇
车建美(), 郑雪芳, 王阶平, 陈燕萍, 陈冰星, 刘波(
)
收稿日期:
2024-05-14
出版日期:
2025-03-26
发布日期:
2025-03-20
通讯作者:
刘波,博士,研究员,研究方向 :农业微生物;E-mail: fzliubo@163.com作者简介:
车建美,博士,研究员,研究方向 :农业微生物;E-mail: chejm2002@163.com
基金资助:
CHE Jian-mei(), ZHENG Xue-fang, WANG Jie-ping, CHEN Yan-ping, CHEN Bing-xing, LIU Bo(
)
Received:
2024-05-14
Published:
2025-03-26
Online:
2025-03-20
摘要:
目的 筛选纤维素降解酶活性强的微生物菌株,用于青贮饲料的高效发酵。 方法 从已有菌种库中,利用羧甲基纤维素钠平板筛选产纤维素酶菌株,测定其纤维素酶活性;采用形态观察、生理生化及16S rRNA对菌株进行鉴定;测定该菌株的生长曲线、生长温度及pH、耐盐性等,研究其生长特性;对该菌株的全基因组数据进行生物信息学分析,探究其产纤维素酶基因。 结果 根据透明圈和菌落直径比值D/d,从菌种库中筛选获得比值最大的菌株为FJAT-25102,其48 h时纤维素酶活性为221.81 U/mL,此外,该菌株具有产蛋白酶和淀粉酶能力。经形态特征、生理生化特征及系统发育分析,将菌株FJAT-25102鉴定为藤黄微球菌(Micrococcus luteus)。菌株FJAT-25102在培养2 h后进入生长起始期,在培养26 h时,OD600值达到最大。该菌株在20-50℃、pH 5-11及NaCl浓度为0%-5%时均能生长,具有一定的耐高温性和耐盐碱性。菌株FJAT-25102的基因组由1条环状染色体组成,大小约为2 570 649 bp,GC含量为72.98%。基因组包含2 378个预测的蛋白质编码序列。菌株FJAT-25102中所有可能参与纤维素降解的基因和推定编码的酶包括可能的α-葡萄糖苷酶GH13、内切葡聚糖酶GH74和乙酰木聚糖酯酶CE1、CE7和CE3,其中在FJAT-25102的糖苷水解酶家族中GH13、GH74调控的酶在其降解纤维素的过程中可能起重要作用。菌株FJAT-25102处理的巨菌草青贮饲料的粗纤维、酸性洗涤纤维及中性洗涤纤维含量均显著降低。 结论 所筛选的藤黄微球菌FJAT-250102可为青贮饲料的发酵提供微生物菌株资源,其全基因组的测定及纤维素酶基因的探究可为后续该菌株产纤维素酶机理研究提供基础。
车建美, 郑雪芳, 王阶平, 陈燕萍, 陈冰星, 刘波. 一株产纤维素酶菌株的筛选、鉴定及全基因组分析[J]. 生物技术通报, 2025, 41(3): 294-307.
CHE Jian-mei, ZHENG Xue-fang, WANG Jie-ping, CHEN Yan-ping, CHEN Bing-xing, LIU Bo. Screening, Identification and Whole Genome Analysis of a Cellulase Producing Strain[J]. Biotechnology Bulletin, 2025, 41(3): 294-307.
菌株 Strains | 菌落直径 Colony diameter (d)/mm | 透明圈直径 Diameter of a transparent circle (D)/mm | D/d |
---|---|---|---|
FJAT-16079 | 7.41±0.48 | 16.60±5.55 | 2.30 |
FJAT-16350 | 6.94±4.37 | 16.46±6.27 | 2.99 |
FJAT-16989 | 3.91±0.22 | 7.02±0.70 | 1.81 |
FJAT-25102 | 3.44±0.23 | 14.59±0.14 | 4.26 |
FJAT-17136 | 9.31±1.03 | 11.79±0.37 | 1.28 |
FJAT-10006 | 3.03±1.01 | 8.85±3.61 | 2.84 |
FJAT-20218 | 2.16±0.44 | 8.70±1.93 | 4.02 |
FJAT-22285 | 6.99±0.59 | 9.97±0.18 | 1.43 |
FJAT-16396 | 6.19±1.26 | 13.64±7.30 | 2.05 |
FJAT-20520 | 4.36±0.75 | 9.79±0.07 | 2.31 |
FJAT-20398 | 2.93±0.42 | 11.46±1.29 | 4.06 |
FJAT-16034 | 6.93±0.25 | 13.46±0.02 | 1.95 |
FJAT-16517 | 14.72±0.73 | 21.16±0.20 | 1.44 |
FJAT-26369 | 10.28±0.37 | 12.54±0.24 | 1.22 |
FJAT-41640 | 6.96±1.12 | 10.00±0.16 | 1.47 |
FJAT-25102 | 3.74±0.15 | 14.71±0.43 | 3.94 |
FJAT-22275 | 2.74±0.54 | 7.88±0.44 | 2.96 |
FJAT-4326 | 9.05±2.12 | 20.03±0.82 | 2.32 |
FJAT-41635 | 9.22±1.03 | 21.28±1.35 | 2.32 |
表1 纤维素降解菌株的筛选
Table 1 Screening of cellulose degrading strains
菌株 Strains | 菌落直径 Colony diameter (d)/mm | 透明圈直径 Diameter of a transparent circle (D)/mm | D/d |
---|---|---|---|
FJAT-16079 | 7.41±0.48 | 16.60±5.55 | 2.30 |
FJAT-16350 | 6.94±4.37 | 16.46±6.27 | 2.99 |
FJAT-16989 | 3.91±0.22 | 7.02±0.70 | 1.81 |
FJAT-25102 | 3.44±0.23 | 14.59±0.14 | 4.26 |
FJAT-17136 | 9.31±1.03 | 11.79±0.37 | 1.28 |
FJAT-10006 | 3.03±1.01 | 8.85±3.61 | 2.84 |
FJAT-20218 | 2.16±0.44 | 8.70±1.93 | 4.02 |
FJAT-22285 | 6.99±0.59 | 9.97±0.18 | 1.43 |
FJAT-16396 | 6.19±1.26 | 13.64±7.30 | 2.05 |
FJAT-20520 | 4.36±0.75 | 9.79±0.07 | 2.31 |
FJAT-20398 | 2.93±0.42 | 11.46±1.29 | 4.06 |
FJAT-16034 | 6.93±0.25 | 13.46±0.02 | 1.95 |
FJAT-16517 | 14.72±0.73 | 21.16±0.20 | 1.44 |
FJAT-26369 | 10.28±0.37 | 12.54±0.24 | 1.22 |
FJAT-41640 | 6.96±1.12 | 10.00±0.16 | 1.47 |
FJAT-25102 | 3.74±0.15 | 14.71±0.43 | 3.94 |
FJAT-22275 | 2.74±0.54 | 7.88±0.44 | 2.96 |
FJAT-4326 | 9.05±2.12 | 20.03±0.82 | 2.32 |
FJAT-41635 | 9.22±1.03 | 21.28±1.35 | 2.32 |
项目 Item | 结果 Results | 项目 Item | 结果 Results |
---|---|---|---|
精氨酸水解酶Arginine hydrolase | - | 苦杏仁苷Amygdalin | - |
苯丙氨酸脱氨酶Phenylalanine deaminase | - | 甘露醇Mannitol | - |
VP反应Voges-Proskauer test | + | 肌醇Inositol | - |
赖氨酸脱羧酶Lysine decarboxylase | - | 山梨醇Sorbitol | - |
鸟氨酸脱羧酶Ornithine decarboxylase | - | 密二糖Melibiose | - |
柠檬酸盐利用Sodium critrate | + | 葡萄糖Glucose | - |
明胶液化Gelatin hydrolysis | + | 阿拉伯糖 | - |
β-半乳糖苷酶 O-Nitrophenyl-β- | - | 鼠李糖Rhamnose | - |
蔗糖Sucrose | - | ||
尿素酶Urease | + | 吲哚Indole | - |
硫化氢Hydrogen sulfide | - |
表2 菌株FJAT-25102的API 20E试验结果
Table 2 API 20E results of strain FJAT-25102
项目 Item | 结果 Results | 项目 Item | 结果 Results |
---|---|---|---|
精氨酸水解酶Arginine hydrolase | - | 苦杏仁苷Amygdalin | - |
苯丙氨酸脱氨酶Phenylalanine deaminase | - | 甘露醇Mannitol | - |
VP反应Voges-Proskauer test | + | 肌醇Inositol | - |
赖氨酸脱羧酶Lysine decarboxylase | - | 山梨醇Sorbitol | - |
鸟氨酸脱羧酶Ornithine decarboxylase | - | 密二糖Melibiose | - |
柠檬酸盐利用Sodium critrate | + | 葡萄糖Glucose | - |
明胶液化Gelatin hydrolysis | + | 阿拉伯糖 | - |
β-半乳糖苷酶 O-Nitrophenyl-β- | - | 鼠李糖Rhamnose | - |
蔗糖Sucrose | - | ||
尿素酶Urease | + | 吲哚Indole | - |
硫化氢Hydrogen sulfide | - |
项目 Item | 结果 Results | 项目 Item | 结果 Results |
---|---|---|---|
甘油Glycerol | - | 柳醇Saligenin | - |
- | 纤维二糖Cellobiose | - | |
- | 麦芽糖Maltose | - | |
- | - | ||
- | - | ||
β-甲基- | - | - | |
赤癣醇Erythritol | - | - | |
阿东醇Adonitol | - | - | |
果糖Fructose | - | - | |
核糖Ribose | - | 龙胆二糖Gentiobiose | - |
甘露醇Mannitol | - | 肝糖Glycogen | - |
甘露糖Mannose | - | 菊糖Inulin | - |
半乳糖Galactose | - | 蜜二糖 | - |
半乳糖醇Dulcitol | - | 海藻糖Trehalose | - |
肌醇Inositol | - | 蔗糖Sucrose | - |
山梨醇Sorbitol | - | 棉子糖Raffinose | - |
山梨糖Sorbose | - | 乳糖Lactose | - |
葡萄糖Glucose | - | 松三糖Melizitose | - |
鼠李糖Rhamnose | - | 木糖醇Xylitol | - |
七叶灵Esculin | + | - | |
熊果苷Arbutin | - | 5-酮基-葡萄糖酸盐5-keto- | - |
α-甲基- | - | 2-酮基-葡萄糖酸盐2-keto- | - |
α-甲基- | - | 葡萄糖酸盐Gluconate | - |
N-乙酰-葡糖胺N-acetylglucosamine | - | 苦杏仁苷Amygdalin | - |
淀粉Starch | - |
表3 菌株FJAT-25102的API 50CH试验结果
Table 3 API 50CH experimental results of strain FJAT-25102
项目 Item | 结果 Results | 项目 Item | 结果 Results |
---|---|---|---|
甘油Glycerol | - | 柳醇Saligenin | - |
- | 纤维二糖Cellobiose | - | |
- | 麦芽糖Maltose | - | |
- | - | ||
- | - | ||
β-甲基- | - | - | |
赤癣醇Erythritol | - | - | |
阿东醇Adonitol | - | - | |
果糖Fructose | - | - | |
核糖Ribose | - | 龙胆二糖Gentiobiose | - |
甘露醇Mannitol | - | 肝糖Glycogen | - |
甘露糖Mannose | - | 菊糖Inulin | - |
半乳糖Galactose | - | 蜜二糖 | - |
半乳糖醇Dulcitol | - | 海藻糖Trehalose | - |
肌醇Inositol | - | 蔗糖Sucrose | - |
山梨醇Sorbitol | - | 棉子糖Raffinose | - |
山梨糖Sorbose | - | 乳糖Lactose | - |
葡萄糖Glucose | - | 松三糖Melizitose | - |
鼠李糖Rhamnose | - | 木糖醇Xylitol | - |
七叶灵Esculin | + | - | |
熊果苷Arbutin | - | 5-酮基-葡萄糖酸盐5-keto- | - |
α-甲基- | - | 2-酮基-葡萄糖酸盐2-keto- | - |
α-甲基- | - | 葡萄糖酸盐Gluconate | - |
N-乙酰-葡糖胺N-acetylglucosamine | - | 苦杏仁苷Amygdalin | - |
淀粉Starch | - |
图4 基于16S rRNA基因序列构建的菌株FJAT-25102的系统发育树括号内序号为该菌株GenBank登录号;标尺0.50代表序列偏差值;内部节点数字为支持度,用于代表该分支结构的可靠程度
Fig. 4 Phylogenetic trees of the strain FJAT-25102 based on the 16S rRNA gene sequencesThe serial number in brackets is the GenBank accession number of the strain. The value of 0.50 indicates the sequence deviation value. The number of internal nodes is support value, which indicates the reliability of the branch structure. The same below
图6 不同条件对菌株FJAT-25102生长的影响不同小写字母代表不同处理差异显著(P<0.05)。下同
Fig. 6 Effect of different conditions on growth of strain FJAT-25102Different letters indicate significant difference at P<0.05 level among different treatments. The same below
图7 菌株FJAT-25102的基因组圈图圈图的最外面一圈为基因组大小的标识;第二圈和第三圈为正链、负链上的CDS,不同的颜色表示CDS不同的COG的功能分类;第四圈为rRNA和tRNA;第五圈为GC含量,向外的红色部分表示该区域GC含量高于全基因组平均GC含量,峰值越高表示与平均GC含量差值越大,向内的蓝色部分表示该区域GC含量低于全基因组平均GC含量,峰值越高表示与平均GC含量差值越大;最内一圈为GC-Skew值
Fig. 7 Circular genome circle map of strain FJAT-25102The outermost circle is the genome size. The second and third circles are the CDS on the positive and negative strands. The functional classifications of COGs of different CDS are distinguished by different colors. The fourth circle is rRNA and tRNA. The fifth circle is the GC content. The outward red indicates the GC content is higher than the genome level, and the inward blue indicates that the GC content is lower than the genome level. The innermost circle is GC-skew value
图11 菌株FJAT-25102的CAZy分析统计AA:辅助功能酶;CBM:碳水化合物结合组件;CE:碳水化合物酯酶;GH:糖苷水解酶;GT:糖苷转移酶家族的蛋白
Fig. 11 CAZy analysis of strain FJAT-25102AA: Auxiliary activities. CBM: Carbohydrate-binding modules. CE: Carbohydrat esterases. GH: Glycoside hydrolases. GT: Glycosyl transferases
基因簇编号 Cluster ID | 基因簇类型 Type | 起始位置 Start | 终止位置 End | 已知基因簇 Similar cluster | 相似度 Similarity/% | 基因数量 Gene No. |
---|---|---|---|---|---|---|
Cluster1 | Ectoine | 257 860 | 268 232 | - | - | 9 |
Cluster2 | Siderophore | 1 189 625 | 1 201 461 | - | - | 13 |
Cluster3 | Betalactone | 1 587 487 | 1 614 450 | 五酮安莎霉素 Microansamycin | 7 | 22 |
Cluster4 | NRPS-like | 1 653 516 | 1 696 027 | Stenothricin | 31 | 35 |
Cluster5 | Terpene | 2 371 418 | 2 392 315 | 类胡萝卜素 Carotenoid | 50 | 21 |
表4 菌株FJAT-25102次级代谢产物合成基因簇预测结果
Table 4 Predicted results of gene clusters of secondary metabolite of strain FJAT-25102
基因簇编号 Cluster ID | 基因簇类型 Type | 起始位置 Start | 终止位置 End | 已知基因簇 Similar cluster | 相似度 Similarity/% | 基因数量 Gene No. |
---|---|---|---|---|---|---|
Cluster1 | Ectoine | 257 860 | 268 232 | - | - | 9 |
Cluster2 | Siderophore | 1 189 625 | 1 201 461 | - | - | 13 |
Cluster3 | Betalactone | 1 587 487 | 1 614 450 | 五酮安莎霉素 Microansamycin | 7 | 22 |
Cluster4 | NRPS-like | 1 653 516 | 1 696 027 | Stenothricin | 31 | 35 |
Cluster5 | Terpene | 2 371 418 | 2 392 315 | 类胡萝卜素 Carotenoid | 50 | 21 |
基因编号 Gene No. | 基因名称 Gene name | 酶定义 Definition of enzymes | 家族 Family |
---|---|---|---|
gene0035 | - | Acetyl xylan esterase (EC 3.1.1.72) | CE7 |
gene0587 | metX | Acetyl xylan esterase (EC 3.1.1.72) | CE1 |
gene0588 | - | Acetyl xylan esterase (EC 3.1.1.72) | CE3 |
gene0589 | - | Acetyl xylan esterase (EC 3.1.1.72) | CE1 |
gene1502 | yvaK | Acetyl xylan esterase (EC 3.1.1.72) | CE1 |
gene0137 | malZ | α-glucosidase (EC:3.2.1.20) | GH13 |
gene0656 | - | Endoglucanase (EC 3.2.1.4) | GH74 |
表5 菌株FJAT-25102基因组中纤维素酶相关酶家族
Table 5 Cellulase-related enzyme families in the strain FJAT-25102 genome
基因编号 Gene No. | 基因名称 Gene name | 酶定义 Definition of enzymes | 家族 Family |
---|---|---|---|
gene0035 | - | Acetyl xylan esterase (EC 3.1.1.72) | CE7 |
gene0587 | metX | Acetyl xylan esterase (EC 3.1.1.72) | CE1 |
gene0588 | - | Acetyl xylan esterase (EC 3.1.1.72) | CE3 |
gene0589 | - | Acetyl xylan esterase (EC 3.1.1.72) | CE1 |
gene1502 | yvaK | Acetyl xylan esterase (EC 3.1.1.72) | CE1 |
gene0137 | malZ | α-glucosidase (EC:3.2.1.20) | GH13 |
gene0656 | - | Endoglucanase (EC 3.2.1.4) | GH74 |
图12 菌株FJAT-25102对巨菌草青贮饲料营养品质的影响CF:粗纤维;ADF:酸性洗涤纤维;NDF:中性洗涤纤维
Fig. 12 Effect of strain FJAT-25102 on nutrient quality of giganteum silageCF: Crude fiber; ADF: acid detergent fiber; NDF: neutral detergent fiber
1 | Ghizzi LG, Del Valle TA, de Castro Zilio EM, et al. Influence of different growing stages of whole-plant soybeans on their nutrient content and silage quality for cattle [J]. Arch Anim Nutr, 2023, 77(6): 437-451. |
2 | Zhang XB, He XT, Chen JR, et al. Whole-genome analysis of termite-derived Bacillus velezensis BV-10 and its application in king grass silage [J]. Microorganisms, 2023, 11(11): 2697. |
3 | Steiner E, Margesin R. Production and partial characterization of a crude cold-active cellulase (CMCase) from Bacillus mycoides AR20-61 isolated from an Alpine forest site [J]. Ann Microbiol, 2020, 70(1): 67. |
4 | Harindintwali JD, Wang F, Yang WH, et al. Harnessing the power of cellulolytic nitrogen-fixing bacteria for biovalorization of lignocellulosic biomass [J]. Ind Crops Prod, 2022, 186: 115235. |
5 | 强震宇, 朱林, 朱媛媛, 等. 一株兼具秸秆腐解能力玉米促生菌的筛选、鉴定及发酵优化 [J]. 微生物学通报, 2023, 50(2): 526-540. |
Qiang ZY, Zhu L, Zhu YY, et al. Isolation and identification of a maize growth-promoting bacterial strain with straw-decomposing capacity and optimization of fermentation conditions [J]. Microbiol China, 2023, 50(2): 526-540. | |
6 | 黄悦姝, 邓超, 张馨月, 等. 贝莱斯芽孢杆菌D103产纤维素酶优化及途径分析 [J]. 生物技术, 2023, 33(5): 632-640. |
Huang YS, Deng C, Zhang XY, et al. Optimization and pathway analysis of cellulase production by Bacillus velezensis D103 [J]. Biotechnology, 2023, 33(5): 632-640. | |
7 | 孟建宇, 李蘅, 樊兆阳, 等. 低温纤维素降解菌的分离与鉴定 [J]. 应用与环境生物学报, 2014, 20(1): 152-156. |
Meng JY, Li H, Fan ZY, et al. Isolation and identification of cellulose-degrading bacteria under low temperature [J]. Chin J Appl Environ Biol, 2014, 20(1): 152-156. | |
8 | 黄婉秋, 石冬冬, 蔡红英, 等. 白星花金龟幼虫肠道中纤维素降解菌的筛选及其全基因组分析 [J]. 中国农业科技导报, 2021, 23(6): 51-58. |
Huang WQ, Shi DD, Cai HY, et al. Identification and genome analysis of a cellulose degrading strain from the intestinal tract of Protaetia brevitarsis larva [J]. J Agric Sci Technol, 2021, 23(6): 51-58. | |
9 | 李国强, 罗巧玉, 杨梅娇, 等. 松墨天牛肠道BS16基因组及其纤维素酶活特性分析 [J]. 西南林业大学学报: 自然科学, 2023, 43(4): 100-108. |
Li GQ, Luo QY, Yang MJ, et al. Genome analysis of Monochamus alternatus gut BS16 and characterization of its cellulase activity [J]. J Southwest For Univ Nat Sci, 2023, 43(4): 100-108. | |
10 | Raza FA, Faisal M. Growth promotion of maize by desiccation tolerant Micrococcus luteus-chp37 isolated from Cholistan desert, Pakistan [J]. Aust J Crop Sci, 2013, 7(11): 1693-1698. |
11 | Jampasri K, Pokethitiyook P, Kruatrachue M, et al. Phytoremediation of fuel oil and lead co-contaminated soil by Chromolaena odorata in association with Micrococcus luteus [J]. Int J Phytoremediation, 2016, 18(10): 994-1001. |
12 | Jampasri K, Pokethitiyook P, Poolpak T, et al. Bacteria-assisted phytoremediation of fuel oil and lead co-contaminated soil in the salt-stressed condition by Chromolaena odorata and Micrococcus luteus [J]. Int J Phytoremediation, 2020, 22(3): 322-333. |
13 | 李云琪, 王宇辉, 李小锦, 等. 藤黄微球菌Rpf因子对土壤细菌可培养物种分离效果的影响 [J]. 河北大学学报: 自然科学版, 2019, 39(1): 63-68. |
Li YQ, Wang YH, Li XJ, et al. Effects of Rpf factor of Micrococcus luteus on the isolation of soil culturable species [J]. J Hebei Univ Nat Sci Ed, 2019, 39(1): 63-68. | |
14 | 陈曦, 陈红, 刘懋, 等. 藤黄微球菌(Micrococcus luteus)KDF1胞外蛋白酶酶学性质与水解大豆蛋白产物研究 [J]. 食品与发酵工业, 2013, 39(9): 11-17. |
Chen X, Chen H, Liu M, et al. The extracellular protease from Micrococcus luteus KDF1: properties and characterization of its hydrolysates from soy protein [J]. Food Ferment Ind, 2013, 39(9): 11-17. | |
15 | 宋时丽, 吴昊, 黄鹏伟, 等. 秸秆还田土壤改良培肥基质和复合菌剂配施对土壤生态的影响 [J]. 生态学报, 2021, 41(11): 4562-4576. |
Song SL, Wu H, Huang PW, et al. Effects of total straw incorporation combined with soil modified fertilizer substrate and compound microbial agent on soil ecology and wheat yield [J]. Acta Ecol Sin, 2021, 41(11): 4562-4576. | |
16 | 王永伦, 余克非, 郑展望. 1株耐高温纤维素降解菌发酵条件优化与秸秆降解应用 [J]. 江苏农业科学, 2023, 51(19): 229-236, 244. |
Wang YL, Yu KF, Zheng ZW. Optimization of fermentation conditions of a cellulose degrading strain with high temperature resistance and its application in straw degradation [J]. Jiangsu Agric Sci, 2023, 51(19): 229-236, 244. | |
17 | 魏越波, 郭晓军, 孙悦龙, 等. 发酵用高温放线菌的筛选及性质研究 [J]. 饲料工业, 2020, 41(21): 47-52. |
Wei YB, Guo XJ, Sun YL, et al. Screening and properties of high-temperature actinomycetes for fermentation [J]. Feed Ind, 2020, 41(21): 47-52. | |
18 | Lichev A, Angelov A, Cucurull I, et al. Amino acids as nutritional factors and (p)ppGpp as an alarmone of the stringent response regulate natural transformation in Micrococcus luteus [J]. Sci Rep, 2019, 9: 11030. |
19 | Sher S, Rehman A, Hansen LH, et al. Complete genome sequences of highly arsenite-resistant bacteria Brevibacterium sp. strain CS2 and Micrococcus luteus AS2 [J]. Microbiol Resour Announc, 2019, 8(31): e00531-19. |
20 | 孙敏, 陈天宇, 冯红. 藤黄微球菌V017基因组测序及对辐照的转录组响应 [J]. 微生物学通报, 2021, 48(5): 1648-1661. |
Sun M, Chen TY, Feng H. Complete genome of Micrococcus luteus V017 and its transcriptomic response to gamma ray radiation [J]. Microbiol China, 2021, 48(5): 1648-1661. | |
21 | Kutmutia SK, Drautz-Moses DI, Uchida A, et al. Complete genome sequence of Micrococcus luteus strain SGAir0127, isolated from indoor air samples from Singapore [J]. Microbiol Resour Announc, 2019, 8(41): e00646-19. |
22 | Martínez FL, Anton BP, DasSarma P, et al. Complete genome sequence and methylome analysis of Micrococcus luteus SA211, a halophilic, lithium-tolerant actinobacterium from Argentina [J]. Microbiol Resour Announc, 2019, 8(4): e01557-18. |
23 | Wang J, Lu C, Tang Y, et al. Microansamycins J and K from Micromonospora sp. HK160111mas13OE [J]. Nat Prod Res, 2024, 38(21): 3854-3858. |
24 | Liu S, Gao YW, Quan L, et al. Improvement of lignocellulolytic enzyme production mediated by calcium signaling in Bacillus subtilis Z2 under graphene oxide stress [J]. Appl Environ Microbiol, 2022, 88(19): e0096022. |
25 | 饶紫环, 谢志雄. 一株Olivibacter jilunii纤维素降解菌株的分离鉴定与降解能力分析 [J]. 生物技术通报, 2023, 39(8): 283-290. |
Rao ZH, Xie ZX. Isolation and identification of a cellulose-degrading strain of Olivibacter jilunii and analysis of its degradability [J]. Biotechnol Bull, 2023, 39(8): 283-290. | |
26 | 张超, 李晓意, 杨吉, 等. 1株耐酸秸秆纤维素降解菌株的筛选、鉴定及其内切葡聚糖酶的异源表达研究 [J]. 饲料研究, 2023, 46(2): 89-93. |
Zhang C, Li XY, Yang J, et al. Study on screening and identification of an acid-tolerant straw cellulose-degrading bacteria and heterologous expression of endoglucanase [J]. Feed Res, 2023, 46(2): 89-93. | |
27 | Zafar A, Aftab MN, Din ZU, et al. Cloning, expression, and purification of xylanase gene from Bacillus licheniformis for use in saccharification of plant biomass [J]. Appl Biochem Biotechnol, 2016, 178(2): 294-311. |
28 | 王靖宇, 刘玉春, 韩伟, 等. 玉米皮纤维发酵裂褶菌的产酶分析及木聚糖酶基因克隆、表达和酶学性质测定 [J]. 食品与发酵工业, 2018, 44(5): 46-51. |
Wang JY, Liu YC, Han W, et al. Analysis on enzyme production of Schizophyllum commune fermented with corn bran fiber and cloning, expression and characterization of xylanase gene [J]. Food Ferment Ind, 2018, 44(5): 46-51. | |
29 | Yang R, Li JC, Teng C, et al. Cloning, overexpression and characterization of a xylanase gene from a novel Streptomyces rameus L2001 in Pichia pastoris [J]. J Mol Catal B Enzym, 2016, 131: 85-93. |
30 | He LW, Zhou W, Wang C, et al. Effect of cellulase and Lactobacillus casei on ensiling characteristics, chemical composition, antioxidant activity, and digestibility of mulberry leaf silage [J]. J Dairy Sci, 2019, 102(11): 9919-9931. |
[1] | 宋姝熠, 蒋开秀, 刘欢艳, 黄亚成, 刘林娅. ‘红阳’猕猴桃TCP基因家族鉴定及其在果实中的表达分析[J]. 生物技术通报, 2025, 41(3): 190-201. |
[2] | 宋英培, 王灿, 周会汶, 孔可可, 许孟歌, 王瑞凯. 基于全基因组关联分析和遗传多样性的大豆裂荚性状解析[J]. 生物技术通报, 2025, 41(2): 97-106. |
[3] | 何财林, 卢晶, 郭会会, 李小安, 吴琪. 藜麦MADS-box基因家族的全基因组鉴定和表达分析[J]. 生物技术通报, 2025, 41(1): 157-172. |
[4] | 张婷, 万雨欣, 徐伟慧, 王志刚, 陈文晶, 胡云龙. 一株玉米根际促生菌Leclercia adecarboxylata LN01促生效果研究及其基因组分析[J]. 生物技术通报, 2025, 41(1): 263-275. |
[5] | 崔原瑗, 王昭懿, 白双宇, 任毓昭, 豆飞飞, 刘彩霞, 刘凤楼, 王掌军, 李清峰. 大麦非特异性磷脂酶C基因家族全基因组鉴定及苗期胁迫表达分析[J]. 生物技术通报, 2024, 40(8): 74-82. |
[6] | 孙志勇, 杜怀东, 刘阳, 马嘉欣, 于雪然, 马伟, 姚鑫杰, 王敏, 李培富. 水稻籽粒γ-氨基丁酸含量的全基因组关联分析[J]. 生物技术通报, 2024, 40(8): 53-62. |
[7] | 臧文蕊, 马明, 砗根, 哈斯阿古拉. 甜瓜BZR转录因子家族基因的全基因组鉴定及表达模式分析[J]. 生物技术通报, 2024, 40(7): 163-171. |
[8] | 周江鸿, 夏菲, 仲丽, 仇兰芬, 李广, 刘倩, 张国锋, 邵金丽, 李娜, 车少臣. 黄栌枯萎病拮抗细菌CCBC3-3-1的全基因组测序及比较基因组分析[J]. 生物技术通报, 2024, 40(7): 235-246. |
[9] | 田彤彤, 葛家振, 高鹏程, 李学瑞, 宋国栋, 郑福英, 储岳峰. 绵羊肺炎支原体GH3-3株全基因组测序及生物信息学分析[J]. 生物技术通报, 2024, 40(7): 323-334. |
[10] | 阿丽亚·外力, 陈永坤, 克拉热木·克里木江, 王宝庆, 陈凌娜. 核桃SPL基因家族的系统进化和表达分析[J]. 生物技术通报, 2024, 40(6): 180-189. |
[11] | 孔小平, 陈利文, 刘思思, 严湘萍. 胡萝卜抽薹相关性状全基因组关联分析[J]. 生物技术通报, 2024, 40(5): 120-130. |
[12] | 孙亚楠, 王春雪, 王欣, 杜秉海, 刘凯, 汪城墙. 萎缩芽孢杆菌CNY01的生防特性及其对玉米的抗盐促生作用[J]. 生物技术通报, 2024, 40(5): 248-260. |
[13] | 徐伟芳, 李贺宇, 张慧, 何仔昂, 高文恒, 谢紫洋, 王传文, 尹登科. 生防细菌HX0037对栝楼炭疽病的防病能力及其机制[J]. 生物技术通报, 2024, 40(4): 228-241. |
[14] | 王欣, 徐一亿, 徐扬, 徐辰武. 作物全基因组选择育种技术研究进展[J]. 生物技术通报, 2024, 40(3): 1-13. |
[15] | 龚丽丽, 余花, 杨杰, 陈天池, 赵双滢, 吴月燕. 葡萄CYP707A基因家族的鉴定及对果实成熟的功能验证[J]. 生物技术通报, 2024, 40(2): 160-171. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 26
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 34
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||